Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Background

(CM) is a traditional Chinese herbal medicine used for the treatment of sinusitis and rhinitis, and it possesses anti-cancer properties. However, the mechanism of CM in the treatment of nasopharyngeal carcinoma (NPC) remains unclear.

Objective

This study aimed to explore the mechanism of CM in the treatment of NPC using a network pharmacology approach.

Methods

The active components and targets of CM and NPC were screened using TCMSP, SwissTarget, and GeneCards database. The association between CM components and NPC targets or pathways was analyzed using String, Cytoscape 3.9.1, David 6.7, and AutoDock Vina. The Sangerbox platform was used to conduct differential expression and Kaplan-Meier survival analysis of core genes.

Results and Discussion

We identified 17 active compounds of CM and 146 corresponding targeted proteins in NPC. These targets may modulate pathways in cancer, PI3K-Akt, apoptosis, prolactin, relaxin, and TNF signaling. The top 5 core genes of the PPI network were found to be AKT1, STAT3, CASP3, EGFR, and SRC, which may be the main targets of CM in treating NPC. Molecular docking confirmed the binding energies of quercetin with CASP3, 8-Hydroxy-9,10-diisobutyryloxythymol with AKT1, and plenolin with AKT1, which were particularly low, suggesting robust and stable interactions. The expression levels of AKT1, CASP3, EGFR, SRC, MMP9, PTGS2 are significantly higher in head and neck squamous cell carcinoma (HNSC) samples compared to normal samples. In addition, the hub genes could predict the prognosis of HNSC as the Kaplan-Meier survival curve showed that patients with lower expressions of AKT1, EGFR, SRC, CCND1, PPARG had better overall survival.

Conclusion

By conducting a network pharmacology approach, we revealed the main ingredients, key targets, and regulatory pathways of in the treatment of NPC.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099305631240930054417
2024-10-14
2026-02-12
Loading full text...

Full text loading...

References

  1. DingR.B. ChenP. RajendranB.K. LyuX. WangH. BaoJ. ZengJ. HaoW. SunH. WongA.H.H. ValechaM.V. YangE.J. SuS.M. ChoiT.K. LiuS. ChanK.I. YangL.L. WuJ. MiaoK. ChenQ. ShimJ.S. XuX. DengC.X. Molecular landscape and subtype-specific therapeutic response of nasopharyngeal carcinoma revealed by integrative pharmacogenomics.Nat. Commun.2021121304610.1038/s41467‑021‑23379‑334031426
    [Google Scholar]
  2. ChenY.P. ChanA.T.C. LeQ.T. BlanchardP. SunY. MaJ. Nasopharyngeal carcinoma.Lancet201939410192648010.1016/S0140‑6736(19)30956‑031178151
    [Google Scholar]
  3. GuoZ. LiZ. ZhangM. BaoM. HeB. ZhouX. LncRNA FAS-AS1 upregulated by its genetic variation rs6586163 promotes cell apoptosis in nasopharyngeal carcinoma through regulating mitochondria function and Fas splicing.Sci. Rep.2023131821810.1038/s41598‑023‑35502‑z37217794
    [Google Scholar]
  4. TangL.L. ChenY.P. ChenC.B. ChenM.Y. ChenN.Y. ChenX.Z. DuX.J. FangW.F. FengM. GaoJ. HanF. HeX. HuC.S. HuD. HuG.Y. JiangH. JiangW. JinF. LangJ.Y. LiJ.G. LinS.J. LiuX. LiuQ.F. MaL. MaiH.Q. QinJ.Y. ShenL.F. SunY. WangP.G. WangR.S. WangR.Z. WangX.S. WangY. WuH. XiaY.F. XiaoS.W. YangK.Y. YiJ.L. ZhuX.D. MaJ. The Chinese Society of Clinical Oncology (CSCO) clinical guidelines for the diagnosis and treatment of nasopharyngeal carcinoma.Cancer Commun. (Lond.)202141111195122710.1002/cac2.1221834699681
    [Google Scholar]
  5. GuoZ. WangY.J. HeB.S. ZhouJ. Linc00312 single nucleotide polymorphism as biomarker for chemoradiotherapy induced hematotoxicity in nasopharyngeal carcinoma patients.Dis. Markers202220221910.1155/2022/670782135990252
    [Google Scholar]
  6. ChengM. LiT. HuE. YanQ. LiH. WangY. LuoJ. TangT. A novel strategy of integrating network pharmacology and transcriptome reveals antiapoptotic mechanisms of Buyang Huanwu Decoction in treating intracerebral hemorrhage.J. Ethnopharmacol.2024319Pt 111712310.1016/j.jep.2023.11712337673200
    [Google Scholar]
  7. SuY.N. WangM.J. YangJ.P. WuX.L. XiaM. BaoM.H. DingY.B. FengQ. FuL.J. Effects of Yulin Tong Bu formula on modulating gut microbiota and fecal metabolite interactions in mice with polycystic ovary syndrome.Front. Endocrinol. (Lausanne)202314112270910.3389/fendo.2023.112270936814581
    [Google Scholar]
  8. DaiB. WuQ. ZengC. ZhangJ. CaoL. XiaoZ. YangM. The effect of Liuwei Dihuang decoction on PI3K/Akt signaling pathway in liver of type 2 diabetes mellitus (T2DM) rats with insulin resistance.J. Ethnopharmacol.201619238238910.1016/j.jep.2016.07.02427401286
    [Google Scholar]
  9. HeR. HeF. HuZ. HeY. ZengX. LiuY. TangL. XiangJ. LiJ. HeB. XiangQ. Analysis of potential mechanism of herbal formula Taohong Siwu decoction against vascular dementia based on network pharmacology and molecular docking.BioMed Res. Int.202320231123555210.1155/2023/123555236726841
    [Google Scholar]
  10. ZhouJ. LiH. WuB. ZhuL. HuangQ. GuoZ. HeQ. WangL. PengX. GuoT. Network pharmacology combined with experimental verification to explore the potential mechanism of naringenin in the treatment of cervical cancer.Sci. Rep.2024141186010.1038/s41598‑024‑52413‑938253629
    [Google Scholar]
  11. WeiS. SunT. DuJ. ZhangB. XiangD. LiW. Xanthohumol, a prenylated flavonoid from Hops, exerts anticancer effects against gastric cancer in vitro.Oncol. Rep.20184063213322210.3892/or.2018.672330272303
    [Google Scholar]
  12. LiuY.Q. ZhouG.B. Promising anticancer activities and mechanisms of action of active compounds from the medicinal herb Centipeda minima (L.) A. Braun & Asch.Phytomedicine202210615439710.1016/j.phymed.2022.15439736084403
    [Google Scholar]
  13. TanJ. QiaoZ. MengM. ZhangF. KwanH.Y. ZhongK. YangC. WangY. ZhangM. LiuZ. SuT. Centipeda minima: An update on its phytochemistry, pharmacology and safety.J. Ethnopharmacol.202229211502710.1016/j.jep.2022.11502735091011
    [Google Scholar]
  14. LinhN.T.T. HaN.T.T. TraN.T. AnhL.T.T. TuyenN.V. SonN.T. Medicinal plant Centipeda minima : A resource of bioactive compounds.Mini Rev. Med. Chem.202121327328710.2174/138955752066620102114325733087028
    [Google Scholar]
  15. BhatiV. KumarA. LatherV. SharmaR. PanditaD. Association of temozolomide with progressive multifocal leukoencephalopathy: A disproportionality analysis integrated with network pharmacology.Expert Opin. Drug Saf.202423564965810.1080/14740338.2023.227868237915230
    [Google Scholar]
  16. SaimaL.S. LathaS. SharmaR. KumarA. Role of network pharmacology in prediction of mechanism of neuroprotective compounds.Methods Mol. Biol.2024276115917910.1007/978‑1‑0716‑3662‑6_1338427237
    [Google Scholar]
  17. SinghR. KumarA. LatherV. SharmaR. PanditaD. Identification of novel signal of Raynaud’s phenomenon with Calcitonin Gene-Related Peptide(CGRP) antagonists using data mining algorithms and network pharmacological approaches.Expert Opin. Drug Saf.202423223123810.1080/14740338.2023.224887737594041
    [Google Scholar]
  18. HuE. LiZ. LiT. YangX. DingR. JiangH. SuH. ChengM. YuZ. LiH. TangT. WangY. A novel microbial and hepatic biotransformation-integrated network pharmacology strategy explores the therapeutic mechanisms of bioactive herbal products in neurological diseases: The effects of Astragaloside IV on intracerebral hemorrhage as an example.Chin. Med.20231814010.1186/s13020‑023‑00745‑537069580
    [Google Scholar]
  19. TiwariP. AliS.A. PuriB. KumarA. DatusaliaA.K. Tinospora cordifolia Miers enhances the immune response in mice immunized with JEV-vaccine: A network pharmacology and experimental approach.Phytomedicine202311915497610.1016/j.phymed.2023.15497637573808
    [Google Scholar]
  20. ZhaoL. ZhangH. LiN. ChenJ. XuH. WangY. LiangQ. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula.J. Ethnopharmacol.202330911630610.1016/j.jep.2023.11630636858276
    [Google Scholar]
  21. LiuJ. ZhengW. HeY. ZhangW. LuoZ. LiuX. JiangX. MengF. WuL. A review of the research applications of Centipeda minima. Molecules202329110810.3390/molecules2901010838202691
    [Google Scholar]
  22. JiaY. ZouJ. WangY. ZhangX. ShiY. LiangY. GuoD. YangM. Mechanism of allergic rhinitis treated by Centipeda minima from different geographic areas.Pharm. Biol.202159160461610.1080/13880209.2021.192375734010591
    [Google Scholar]
  23. LeeM.M.L. ChanB.D. WongW.Y. QuZ. ChanM.S. LeungT.W. LinY. MokD.K.W. ChenS. TaiW.C.S. Anti-cancer activity of Centipeda minima extract in triple negative breast cancer via inhibition of AKT, NF-κB, and STAT3 signaling pathways.Front. Oncol.20201049110.3389/fonc.2020.0049132328465
    [Google Scholar]
  24. WangM. GuoH. SunB.B. JieX.L. ShiX.Y. LiuY.Q. ShiX.L. DingL.Q. XueP.H. QiuF. CaoW. WangG.Z. ZhouG.B. Centipeda minima and 6-O-angeloylplenolin enhance the efficacy of immune checkpoint inhibitors in non-small cell lung cancer.Phytomedicine202413215582510.1016/j.phymed.2024.15582538968790
    [Google Scholar]
  25. FanX.Z. ChenY.F. ZhangS.B. HeD.H. WeiS.F. WangQ. PanH.F. LiuY.Q. Centipeda minima extract sensitizes lung cancer cells to DNA-crosslinking agents via targeting Fanconi anemia pathway.Phytomedicine20219115368910.1016/j.phymed.2021.15368934446320
    [Google Scholar]
  26. GuoY. SunH. ChanC. LiuB. WuJ. ChanS. MokD.K.W. TseA.K.W. YuZ. ChenS. Centipeda minima (Ebushicao) extract inhibits PI3K-Akt-mTOR signaling in nasopharyngeal carcinoma CNE-1 cells.Chin. Med.20151012610.1186/s13020‑015‑0058‑526388933
    [Google Scholar]
  27. Deepika MauryaP.K. Health benefits of quercetin in age-related diseases.Molecules2022278249810.3390/molecules27082498
    [Google Scholar]
  28. Reyes-FariasM. Carrasco-PozoC. The anti-cancer effect of quercetin: Molecular implications in cancer metabolism.Int. J. Mol. Sci.20192013317710.3390/ijms2013317731261749
    [Google Scholar]
  29. LiuR. Dow ChanB. MokD.K.W. LeeC.S. TaiW.C.S. ChenS. Arnicolide D, from the herb Centipeda minima, is a therapeutic candidate against nasopharyngeal carcinoma.Molecules20192410190810.3390/molecules2410190831108969
    [Google Scholar]
  30. RaufA. ImranM. ButtM.S. NadeemM. PetersD.G. MubarakM.S. Resveratrol as an anti-cancer agent: A review.Crit. Rev. Food Sci. Nutr.20185891428144710.1080/10408398.2016.126359728001084
    [Google Scholar]
  31. SuM. LiY. ChungH.Y. YeW. 2beta-(Isobutyryloxy)florilenalin, a sesquiterpene lactone isolated from the medicinal plant Centipeda minima , induces apoptosis in human nasopharyngeal carcinoma CNE cells.Molecules20091462135214610.3390/molecules1406213519553887
    [Google Scholar]
  32. SuM. WuP. LiY. ChungH.Y. Antiproliferative effects of volatile oils from Centipeda minima on human nasopharyngeal cancer CNE cells.Nat. Prod. Commun.2010511934578X100050010.1177/1934578X100050013520184042
    [Google Scholar]
  33. LiuR. QuZ. LinY. LeeC.S. TaiW.C.S. ChenS. Brevilin A induces cell cycle arrest and apoptosis in nasopharyngeal carcinoma.Front. Pharmacol.20191059410.3389/fphar.2019.0059431178739
    [Google Scholar]
  34. RuJ. LiP. WangJ. ZhouW. LiB. HuangC. LiP. GuoZ. TaoW. YangY. XuX. LiY. WangY. YangL. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines.J. Cheminform.2014611310.1186/1758‑2946‑6‑1324735618
    [Google Scholar]
  35. WangY. LiuM. JafariM. TangJ. A critical assessment of traditional Chinese medicine databases as a source for drug discovery.Front. Pharmacol.202415130369310.3389/fphar.2024.130369338738181
    [Google Scholar]
  36. LiQ. LiZ. LuoT. ShiH. Targeting the PI3K/AKT/mTOR and RAF/MEK/ERK pathways for cancer therapy.Mol. Biomed.2022314710.1186/s43556‑022‑00110‑236539659
    [Google Scholar]
  37. PengY. WangY. ZhouC. MeiW. ZengC. PI3K/Akt/mTOR pathway and its role in cancer therapeutics: Are we making headway?Front. Oncol.20221281912810.3389/fonc.2022.81912835402264
    [Google Scholar]
  38. LiH.L. DengN.H. HeX.S. LiY.H. Small biomarkers with massive impacts: PI3K/AKT/mTOR signalling and microRNA crosstalk regulate nasopharyngeal carcinoma.Biomark. Res.20221015210.1186/s40364‑022‑00397‑x35883139
    [Google Scholar]
  39. StandingD. DandawateP. AnantS. Prolactin receptor signaling: A novel target for cancer treatment - Exploring anti-PRLR signaling strategies.Front. Endocrinol. (Lausanne)202313111298710.3389/fendo.2022.111298736714582
    [Google Scholar]
  40. LiX. BecharaR. ZhaoJ. McGeachyM.J. GaffenS.L. IL-17 receptor–based signaling and implications for disease.Nat. Immunol.201920121594160210.1038/s41590‑019‑0514‑y31745337
    [Google Scholar]
  41. ThanasupawatT. GlogowskaA. Nivedita-KrishnanS. WilsonB. KlonischT. Hombach-KlonischS. Emerging roles for the relaxin/RXFP1 system in cancer therapy.Mol. Cell. Endocrinol.2019487859310.1016/j.mce.2019.02.00130763603
    [Google Scholar]
  42. ManoharS.M. At the crossroads of TNF α signaling and cancer.Curr. Mol. Pharmacol.2024171e06092322075837691196
    [Google Scholar]
  43. AugoffK. Hryniewicz-JankowskaA. TabolaR. StachK. MMP9: A tough target for targeted therapy for cancer.Cancers (Basel)2022147184710.3390/cancers1407184735406619
    [Google Scholar]
  44. LinY. ChengA. SolankiM. SuW. ZakiM. TiradoC.A. Amplification of CCND1 in urothelial carcinoma.J. Assoc. Genet. Technol.20224814935247258
    [Google Scholar]
  45. ZouS. TongQ. LiuB. HuangW. TianY. FuX. Targeting STAT3 in cancer immunotherapy.Mol. Cancer202019114510.1186/s12943‑020‑01258‑732972405
    [Google Scholar]
  46. LeeH. JeongA.J. YeS.K. Highlighted STAT3 as a potential drug target for cancer therapy.BMB Rep.201952741542310.5483/BMBRep.2019.52.7.15231186087
    [Google Scholar]
  47. LiL. DengC.X. ChenQ. SRC-3, a steroid receptor coactivator: Implication in cancer.Int. J. Mol. Sci.2021229476010.3390/ijms2209476033946224
    [Google Scholar]
  48. CaiB. QuX. KanD. LuoY. miR-26a-5p suppresses nasopharyngeal carcinoma progression by inhibiting PTGS2 expression.Cell Cycle202221661862910.1080/15384101.2022.203016835073820
    [Google Scholar]
  49. ZhouZ. ZhouQ. WuX. XuS. HuX. TaoX. LiB. PengJ. LiD. ShenL. CaoY. YangL. VCAM-1 secreted from cancer-associated fibroblasts enhances the growth and invasion of lung cancer cells through AKT and MAPK signaling.Cancer Lett.2020473627310.1016/j.canlet.2019.12.03931904479
    [Google Scholar]
  50. HuaH. KongQ. ZhangH. WangJ. LuoT. JiangY. Targeting mTOR for cancer therapy.J. Hematol. Oncol.20191217110.1186/s13045‑019‑0754‑131277692
    [Google Scholar]
  51. EskandariE. EavesC.J. Paradoxical roles of caspase-3 in regulating cell survival, proliferation, and tumorigenesis.J. Cell Biol.20222216e20220115910.1083/jcb.20220115935551578
    [Google Scholar]
  52. SabbahD.A. HajjoR. SweidanK. Review on Epidermal Growth Factor Receptor (EGFR) structure, signaling pathways, interactions, and recent updates of EGFR inhibitors.Curr. Top. Med. Chem.2020201081583410.2174/156802662066620030312310232124699
    [Google Scholar]
/content/journals/cad/10.2174/0115734099305631240930054417
Loading
/content/journals/cad/10.2174/0115734099305631240930054417
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test