Skip to content
2000
image of Mechanism of Shenfu Injection in Treating Ischemic Stroke Elucidated
using Network Pharmacology and Experimental Validation

Abstract

Background

Shenfu injection was derived from the classical Chinese medicine formula ‘Shenfu decoction’, which was widely used in the treatment of cardiovascular and cerebrovascular diseases in clinical practice.

Objectives

Predict the main active ingredients, core targets, and related signaling pathways of Shenfu injection in the treatment of ischemic stroke.

Methods

Databases were used to collect the active ingredients and target information of Shenfu injection; GO and KEGG pathway enrichment analyses were performed using the David database. The effects of Shenfu injection on core targets were verified using molecular docking and experiments.

Results

The predicted results identified 44 active ingredients and 635 targets in Shenfu injection, among which 418 targets, including TNF, IL-6, MAPK1, and MAPK14, were potential targets for the treatment of ischemic stroke. Molecular docking revealed that the active ingredients had good binding to IL-6, MAPK1, and MAPK14. experiments demonstrated that Shenfu injection significantly improved the pathological damage due to ischemic stroke, promoted the expression of tight junction proteins, and inhibited MMP-2 and MMP-9 expressions, thereby reducing BBB permeability. Animal experiments revealed that Shenfu injection could inhibit p38、JNK and ERK phosphorylation.

Conclusions

Mechanism of Shenfu injection in treating ischemic stroke may be inhibition of the inflammatory factors levels and protecting the BBB, thereby warranting subsequent studies and highlighting its potential as a reference for new drug development.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099292513240404091734
2024-04-15
2025-01-29
Loading full text...

Full text loading...

References

  1. Tater P. Pandey S. Post-stroke movement disorders: Clinical spectrum, pathogenesis, and management. Neurol. India 2021 69 2 272 283 10.4103/0028‑3886.314574 33904435
    [Google Scholar]
  2. Zhao Y. Zhang X. Chen X. Wei Y. Neuronal injuries in cerebral infarction and ischemic stroke: From mechanisms to treatment. Int. J. Mol. Med. 2022 49 2 15 10.3892/ijmm.2021.5070 34878154
    [Google Scholar]
  3. Campbell B.C.V. De Silva D.A. Macleod M.R. Coutts S.B. Schwamm L.H. Davis S.M. Donnan G.A. Ischaemic stroke. Nat. Rev. Dis. Primers 2019 5 1 70 10.1038/s41572‑019‑0118‑8 31601801
    [Google Scholar]
  4. Pohl M. Hesszenberger D. Kapus K. Meszaros J. Feher A. Varadi I. Pusch G. Fejes E. Tibold A. Feher G. Ischemic stroke mimics: A comprehensive review. J. Clin. Neurosci. 2021 93 174 182 10.1016/j.jocn.2021.09.025 34656244
    [Google Scholar]
  5. Maida C.D. Norrito R.L. Daidone M. Tuttolomondo A. Pinto A. Neuroinflammatory mechanisms in ischemic stroke: focus on cardioembolic stroke, background, and therapeutic approaches. Int. J. Mol. Sci. 2020 21 18 6454 10.3390/ijms21186454 32899616
    [Google Scholar]
  6. Yang Y. Zhang M. Zhao J. Song S. Hong F. Zhang G. Effect of traditional Chinese medicine emotional therapy on poststroke depression. A protocol for systematic review and metaanalysis Medicine (Baltimore) 2021 100 14 e25386 10.1097/MD.0000000000025386 33832127
    [Google Scholar]
  7. Chavez L. Huang S.S. MacDonald I. Lin J.G. Lee Y.C. Chen Y.H. Mechanisms of acupuncture therapy in ischemic stroke rehabilitation: A literature review of basic studies. Int. J. Mol. Sci. 2017 18 11 2270 10.3390/ijms18112270 29143805
    [Google Scholar]
  8. Dong R. Huang R. Shi X. Xu Z. Mang J. Exploration of the mechanism of luteolin against ischemic stroke based on network pharmacology, molecular docking and experimental verification. Bioengineered 2021 12 2 12274 12293 10.1080/21655979.2021.2006966 34898370
    [Google Scholar]
  9. Lin S. Shi Q. Ge Z. Liu Y. Cao Y. Yang Y. Zhao Z. Bi Y. Hou Y. Wang S. Wang X. Mao J. Efficacy and safety of traditional chinese medicine injections for heart failure with reduced ejection fraction: a bayesian network meta-analysis of randomized controlled trials. Front. Pharmacol. 2021 12 659707 10.3389/fphar.2021.659707 34916929
    [Google Scholar]
  10. Li P. Lv B. Jiang X. Wang T. Ma X. Chang N. Wang X. Gao X. Identification of nf-κb inhibitors following shenfu injection and bioactivity-integrated uplc/q-tof-ms and screening for related anti-inflammatory targets in vitro and in silico. J. Ethnopharmacol. 2016 194 658 667 10.1016/j.jep.2016.10.052 27771457
    [Google Scholar]
  11. Guo B. Yang T. Nan J. Huang Q. Wang C. Xu W. Efficacy and safety of Shenfu injection combined with sodium nitroprusside in the treatment of chronic heart failure in patients with coronary heart disease. A protocol of randomized controlled trial. Medicine 2021 100 7 e24414 10.1097/MD.0000000000024414 33607775
    [Google Scholar]
  12. Wang Y. Li Y. Li L. Yang D. Zhou K. Li Y. Protective effects of shenfu injection against myocardial ischemia–reperfusion injury via activation of enos in rats. Biol. Pharm. Bull. 2018 41 9 1406 1413 10.1248/bpb.b18‑00212 29910216
    [Google Scholar]
  13. Shi K. Xiao Y. Dong Y. Wang D. Xie Y. Tu J. Xu K. Zhou Z. Cao G. Liu Y. Protective Effects of Atractylodis lancea Rhizoma on Lipopolysaccharide-Induced Acute Lung Injury via TLR4/NF-κB and Keap1/Nrf2 Signaling Pathways In Vitro and In Vivo. Int. J. Mol. Sci. 2022 23 24 16134 10.3390/ijms232416134 36555773
    [Google Scholar]
  14. Kim Y. Lee S. Zhang H. Lee S. Kim H. Kim Y. Won M.H. Kim Y.M. Kwon Y.G. CLEC14A deficiency exacerbates neuronal loss by increasing blood-brain barrier permeability and inflammation. J. Neuroinflammation 2020 17 1 48 10.1186/s12974‑020‑1727‑6 32019570
    [Google Scholar]
  15. Abdullahi W. Tripathi D. Ronaldson P.T. Blood-brain barrier dysfunction in ischemic stroke: targeting tight junctions and transporters for vascular protection. Am. J. Physiol. Cell Physiol. 2018 315 3 C343 C356 10.1152/ajpcell.00095.2018 29949404
    [Google Scholar]
  16. Zhang S. An Q. Wang T. Gao S. Zhou G. Autophagy- and MMP-2/9-mediated Reduction and Redistribution of ZO-1 Contribute to Hyperglycemia-increased Blood–Brain Barrier Permeability During Early Reperfusion in Stroke. Neuroscience 2018 377 126 137 10.1016/j.neuroscience.2018.02.035 29524637
    [Google Scholar]
  17. Hannocks M.J. Zhang X. Gerwien H. Chashchina A. Burmeister M. Korpos E. Song J. Sorokin L. The gelatinases, MMP-2 and MMP-9, as fine tuners of neuroinflammatory processes. Matrix Biol. 2019 75-76 102 113 10.1016/j.matbio.2017.11.007 29158162
    [Google Scholar]
  18. Cao Z.Q. Yu X. Leng P. Research progress on the role of gal-3 in cardio/cerebrovascular diseases. Biomed. Pharmacother. 2021 133 111066 10.1016/j.biopha.2020.111066 33378967
    [Google Scholar]
  19. Lu J. Liu W. Zhao H. Headache in cerebrovascular diseases. Stroke Vasc. Neurol. 2020 5 2 205 210 10.1136/svn‑2020‑000333 32606088
    [Google Scholar]
  20. Westendorp W.F. Dames C. Nederkoorn P.J. Meisel A. Immunodepression, infections, and functional outcome in ischemic stroke. Stroke 2022 53 5 1438 1448 10.1161/STROKEAHA.122.038867 35341322
    [Google Scholar]
  21. Mark V.W. Stroke and Behavior. Neurol. Clin. 2016 34 1 205 234 10.1016/j.ncl.2015.08.009 26614000
    [Google Scholar]
  22. Caprio F.Z. Sorond F.A. Cerebrovascular Disease. Med. Clin. North Am. 2019 103 2 295 308 10.1016/j.mcna.2018.10.001 30704682
    [Google Scholar]
  23. Kalaria R.N. Akinyemi R. Ihara M. Stroke injury, cognitive impairment and vascular dementia. Biochim. Biophys. Acta Mol. Basis Dis. 2016 1862 5 915 925 10.1016/j.bbadis.2016.01.015 26806700
    [Google Scholar]
  24. Wu S. Wu B. Liu M. Chen Z. Wang W. Anderson C.S. Sandercock P. Wang Y. Huang Y. Cui L. Pu C. Jia J. Zhang T. Liu X. Zhang S. Xie P. Fan D. Ji X. Wong K.S.L. Wang L. Wu S. Wu B. Liu M. Chen Z. Wang W. Anderson C.S. Sandercock P. Wang Y. Huang Y. Cui L. Pu C. Jia J. Zhang T. Liu X. Zhang S. Xie P. Fan D. Ji X. Wong K-S.L. Wang L. Wei C. Wang Y. Cheng Y. Liu Y. Li X. Dong Q. Zeng J. Peng B. Xu Y. Yang Y. Wang Y. Zhao G. Wang W. Xu Y. Yang Q. He Z. Wang S. You C. Gao Y. Zhou D. He L. Li Z. Yang J. Lei C. Zhao Y. Liu J. Zhang S. Tao W. Hao Z. Wang D. Zhang S. Stroke in China: advances and challenges in epidemiology, prevention, and management. Lancet Neurol. 2019 18 4 394 405 10.1016/S1474‑4422(18)30500‑3 30878104
    [Google Scholar]
  25. Deng H. Tang Z. Tuo P. Wu R. Jia S. Zhao X. Huang D. Gao Y. Lan Z. Shenfu injection protects brain injury in rats with cardiac arrest through nogo/ngr pathway. Anal. Cell. Pathol. 2022 2022 1 8 10.1155/2022/4588999 36600931
    [Google Scholar]
  26. Guo Z.J. Li C.S. Therapeutic effects of Shenfu Injection on post-cardiac arrest syndrome. Chin. J. Integr. Med. 2013 19 9 716 720 10.1007/s11655‑013‑1566‑8 23975138
    [Google Scholar]
  27. Qin C. Yang S. Chu Y.H. Zhang H. Pang X.W. Chen L. Zhou L.Q. Chen M. Tian D.S. Wang W. Signaling pathways involved in ischemic stroke: molecular mechanisms and therapeutic interventions. Signal Transduct. Target. Ther. 2022 7 1 215 10.1038/s41392‑022‑01064‑1 35794095
    [Google Scholar]
  28. Regenhardt R.W. Das A.S. Lo E.H. Caplan L.R. Advances in understanding the pathophysiology of lacunar stroke. JAMA Neurol. 2018 75 10 1273 1281 10.1001/jamaneurol.2018.1073 30167649
    [Google Scholar]
  29. Zhou Z. Lu J. Liu W.W. Manaenko A. Hou X. Mei Q. Huang J.L. Tang J. Zhang J.H. Yao H. Hu Q. Advances in stroke pharmacology. Pharmacol. Ther. 2018 191 23 42 10.1016/j.pharmthera.2018.05.012 29807056
    [Google Scholar]
  30. Zhu H. Hu S. Li Y. Sun Y. Xiong X. Hu X. Chen J. Qiu S. Interleukins and Ischemic Stroke. Front. Immunol. 2022 13 828447 10.3389/fimmu.2022.828447 35173738
    [Google Scholar]
  31. Candelario-Jalil E. Dijkhuizen R.M. Magnus T. Neuroinflammation, stroke, blood-brain barrier dysfunction, and imaging modalities. Stroke 2022 53 5 1473 1486 10.1161/STROKEAHA.122.036946 35387495
    [Google Scholar]
  32. Pan J. Qu M. Li Y. Wang L. Zhang L. Wang Y. Tang Y. Tian H.L. Zhang Z. Yang G.Y. MicroRNA-126-3p/-5p overexpression attenuates blood-brain barrier disruption in a mouse model of middle cerebral artery occlusion. Stroke 2020 51 2 619 627 10.1161/STROKEAHA.119.027531 31822249
    [Google Scholar]
  33. Pan L. Peng C. Wang L. Li L. Huang S. Fei C. Wang N. Chu F. Peng D. Duan X. Network pharmacology and experimental validation-based approach to understand the effect and mechanism of Taohong Siwu Decoction against ischemic stroke. J. Ethnopharmacol. 2022 294 115339 10.1016/j.jep.2022.115339 35525530
    [Google Scholar]
  34. Wang H. Ran H. Yin Y. Xu X. Jiang B. Yu S. Chen Y. Ren H. Feng S. Zhang J. Chen Y. Xue Q. Xu X. Catalpol improves impaired neurovascular unit in ischemic stroke rats via enhancing VEGF-PI3K/AKT and VEGF-MEK1/2/ERK1/2 signaling. Acta Pharmacol. Sin. 2022 43 7 1670 1685 10.1038/s41401‑021‑00803‑4 34795412
    [Google Scholar]
/content/journals/cad/10.2174/0115734099292513240404091734
Loading
/content/journals/cad/10.2174/0115734099292513240404091734
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test