Skip to content
2000
Volume 21, Issue 1
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Natural plant sources are essential in the development of several anticancer drugs, such as vincristine, vinblastine, vinorelbine, docetaxel, paclitaxel, camptothecin, etoposide, and teniposide. However, various chemotherapies fail due to adverse reactions, drug resistance, and target specificity. Researchers are now focusing on developing drugs that use natural compounds to overcome these issues. These drugs can affect multiple targets, have reduced adverse effects, and are effective against several cancer types. Developing a new drug is a highly complex, expensive, and time-consuming process. Traditional drug discovery methods take up to 15 years for a new medicine to enter the market and cost more than one billion USD. However, recent Computer Aided Drug Discovery (CADD) advancements have changed this situation. This paper aims to comprehensively describe the different CADD approaches in identifying anticancer drugs from natural products. Data from various sources, including Science Direct, Elsevier, NCBI, and Web of Science, are used in this review. techniques and optimization algorithms can provide versatile solutions in drug discovery ventures. The structure-based drug design technique is widely used to understand chemical constituents' molecular-level interactions and identify hit leads. This review will discuss the concept of CADD, tools, virtual screening in drug discovery, and the concept of natural products as anticancer therapies. Representative examples of molecules identified will also be provided.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099283410240406064042
2024-05-02
2024-11-26
Loading full text...

Full text loading...

References

  1. NewmanD.J. CraggG.M. Natural products as sources of new drugs over the last 25 years.J. Nat. Prod.200770346147710.1021/np068054v17309302
    [Google Scholar]
  2. RinehartK.L. HoltT.G. FregeauN.L. KeiferP.A. WilsonG.R. PerunT.J.Jr SakaiR. ThompsonA.G. StrohJ.G. ShieldL.S. SeiglerD.S. LiL.H. MartinD.G. GrimmelikhuijzenC.J.P. GädeG. Bioactive compounds from aquatic and terrestrial sources.J. Nat. Prod.199053477179210.1021/np50070a0012095373
    [Google Scholar]
  3. FujitaT. IwasaJ. HanschC. A New Substituent Constant, π, Derived from Partition Coefficients.J. Am. Chem. Soc.196486235175518010.1021/ja01077a028
    [Google Scholar]
  4. FoyeW.O. Principles of Medicinal Chemistry8th ed.Wolters Kluwer198910.1021/ed066pA158.2
    [Google Scholar]
  5. LeoA. HanschC. ElkinsD. Partition coefficients and their uses.Chem. Rev.197171652561610.1021/cr60274a001
    [Google Scholar]
  6. WolffM.E. Burger’s Medicinal Chemistry And Drug Discovery5th edNew YorkWiley1995
    [Google Scholar]
  7. SmithR.N. HanschC. AmesM.M. Selection of a reference partitioning system for drug design work.J. Pharm. Sci.197564459960610.1002/jps.26006404051142068
    [Google Scholar]
  8. HanschC. Structure-Activity Relationship In Drug DesignNew YorkAcademic Press19711271342
    [Google Scholar]
  9. (a ShahA. ParmarG. KumarSeth A. In silico discovery of novel flavonoids as poly ADP ribose polymerase (PARP) inhibitors. Curr. Comput.Aided Drug Des.202117334435010.2174/157340991666620040808285832268868
    [Google Scholar]
  10. (b CramerR.D.III SnaderK.M. WillisC.R. ChakrinL.W. ThomasJ. SuttonB.M. Application of quantitative structure-activity relationships in the development of the antiallergic pyranenamines.J. Med. Chem.197922671472510.1021/jm00192a019458823
    [Google Scholar]
  11. VeereshamC. Natural products derived from plants as a source of drugs.J. Adv. Pharm. Technol. Res.20123420020110.4103/2231‑4040.10470923378939
    [Google Scholar]
  12. RallabandiH.R. Computational methods used in phytocompound-based drug discovery.Plant-derived Bioactives SwamyM. SingaporeSpringer202010.1007/978‑981‑15‑2361‑8_25
    [Google Scholar]
  13. MaiaE.H.B. AssisL.C. de OliveiraT.A. da SilvaA.M. TarantoA.G. Structure-based virtual screening: From classical to artificial intelligence.Front Chem.2020834310.3389/fchem.2020.0034332411671
    [Google Scholar]
  14. FerreiraL. dos SantosR. OlivaG. AndricopuloA. Molecular docking and structure-based drug design strategies.Molecules2015207133841342110.3390/molecules20071338426205061
    [Google Scholar]
  15. SarvagallaS. SyedS.B. CoumarM.S. An overview of computational methods, tools, servers, and databases for drug repurposing. In Silico Drug DesignAcademic Press201974378010.1016/B978‑0‑12‑816125‑8.00025‑0
    [Google Scholar]
  16. ScottiL. CADD studies applied to secondary metabolites in the anticancer drug research.Anticancer Plants: Mechanisms and Molecular Interactions AkhtarM. SwamyM. SingaporeSpringer201810.1007/978‑981‑10‑8417‑1_9
    [Google Scholar]
  17. HalperinI. MaB. WolfsonH. NussinovR. Principles of docking: An overview of search algorithms and a guide to scoring functions.Proteins200247440944310.1002/prot.1011512001221
    [Google Scholar]
  18. DiasR. de AzevedoW.Jr Molecular docking algorithms.Curr. Drug Targets20089121040104710.2174/13894500878694943219128213
    [Google Scholar]
  19. KK.R. MathiP. PrasadM.V.V.V. BotlaguntaM. MR. DR. De novo design of selective Sortase-A inhibitors: Synthesis, structural and in vitro characterization.Chem. Data Collect.201815-1612613310.1016/j.cdc.2018.04.007
    [Google Scholar]
  20. HuangS.Y. GrinterS.Z. ZouX. Scoring functions and their evaluation methods for protein–ligand docking: Recent advances and future directions.Phys. Chem. Chem. Phys.20101240128991290810.1039/c0cp00151a20730182
    [Google Scholar]
  21. KortagereS. EkinsS. Troubleshooting computational methods in drug discovery.J. Pharmacol. Toxicol. Methods2010612677510.1016/j.vascn.2010.02.00520176118
    [Google Scholar]
  22. YurievE. HolienJ. RamslandP.A. Improvements, trends, and new ideas in molecular docking: 2012–2013 in review.J. Mol. Recognit.2015281058160410.1002/jmr.247125808539
    [Google Scholar]
  23. YangS.Y. Pharmacophore modeling and applications in drug discovery: challenges and recent advances.Drug Discov. Today20101511-1244445010.1016/j.drudis.2010.03.01320362693
    [Google Scholar]
  24. LuX. YangH. ChenY. LiQ. HeS. JiangX. FengF. QuW. SunH. The development of pharmacophore modeling: Generation and recent applications in drug discovery.Curr. Pharm. Des.201824293424343910.2174/138161282466618081016294430101699
    [Google Scholar]
  25. PirhadiS. ShiriF. GhasemiJ.B. Methods and applications of structure based pharmacophores in drug discovery.Curr. Top. Med. Chem.20131391036104710.2174/156802661131309000623651482
    [Google Scholar]
  26. WolberG. DornhoferA.A. LangerT. Efficient overlay of small organic molecules using 3D pharmacophores.J. Comput. Aided Mol. Des.2007201277378810.1007/s10822‑006‑9078‑717051340
    [Google Scholar]
  27. ChenJ. LaiL. Pocket v.2: Further developments on receptor-based pharmacophore modeling.J. Chem. Inf. Model.20064662684269110.1021/ci600246s17125208
    [Google Scholar]
  28. OrtusoF. LangerT. AlcaroS. GBPM: GRID-based pharmacophore model: Concept and application studies to protein–protein recognition.Bioinformatics200622121449145510.1093/bioinformatics/btl11516567363
    [Google Scholar]
  29. BöhmH.J. The computer program LUDI: A new method for the de novo design of enzyme inhibitors.J. Comput. Aided Mol. Des.199261617810.1007/BF001243871583540
    [Google Scholar]
  30. ZhavoronkovA. IvanenkovY.A. AliperA. VeselovM.S. AladinskiyV.A. AladinskayaA.V. TerentievV.A. PolykovskiyD.A. KuznetsovM.D. AsadulaevA. VolkovY. ZholusA. ShayakhmetovR.R. ZhebrakA. MinaevaL.I. ZagribelnyyB.A. LeeL.H. SollR. MadgeD. XingL. GuoT. GuzikA.A. Deep learning enables rapid identification of potent DDR1 kinase inhibitors.Nat. Biotechnol.20193791038104010.1038/s41587‑019‑0224‑x31477924
    [Google Scholar]
  31. GhofraniH.A. OsterlohI.H. GrimmingerF. Sildenafil: From angina to erectile dysfunction to pulmonary hypertension and beyond.Nat. Rev. Drug Discov.20065868970210.1038/nrd203016883306
    [Google Scholar]
  32. RushT.S.III GrantJ.A. MosyakL. NichollsA. A shape-based 3-D scaffold hopping method and its application to a bacterial protein-protein interaction.J. Med. Chem.20054851489149510.1021/jm040163o15743191
    [Google Scholar]
  33. BologaC.G. RevankarC.M. YoungS.M. EdwardsB.S. ArterburnJ.B. KiselyovA.S. ParkerM.A. TkachenkoS.E. SavchuckN.P. SklarL.A. OpreaT.I. ProssnitzE.R. Virtual and biomolecular screening converge on a selective agonist for GPR30.Nat. Chem. Biol.20062420721210.1038/nchembio77516520733
    [Google Scholar]
  34. BuckleD.R. ErhardtP.W. GanellinC.R. KobayashiT. PerunT.J. ProudfootJ. Senn-BilfingerJ. Glossary of terms used in medicinal chemistry. Part II (IUPAC Recommendations 2013).Pure Appl. Chem.20138581725175810.1351/PAC‑REC‑12‑11‑23
    [Google Scholar]
  35. ChaoW.R. YeanD. AminK. GreenC. JongL. Computer-aided rational drug design: A novel agent (SR13668) designed to mimic the unique anticancer mechanisms of dietary indole-3-carbinol to block Akt signaling.J. Med. Chem.200750153412341510.1021/jm070040e17602463
    [Google Scholar]
  36. ChiangY.K. KuoC.C. WuY.S. ChenC.T. CoumarM.S. WuJ.S. HsiehH.P. ChangC.Y. JsengH.Y. WuM.H. LeouJ.S. SongJ.S. ChangJ.Y. LyuP.C. ChaoY.S. WuS.Y. Generation of ligand-based pharmacophore model and virtual screening for identification of novel tubulin inhibitors with potent anticancer activity.J. Med. Chem.200952144221423310.1021/jm801649y19507860
    [Google Scholar]
  37. PeiQ. LuoY. ChenY. LiJ. XieD. YeT. Artificial intelligence in clinical applications for lung cancer: diagnosis, treatment and prognosis.Clin. Chem. Lab. Med.202260121974198310.1515/cclm‑2022‑029135771735
    [Google Scholar]
  38. NayarisseriA. KhandelwalR. TanwarP. MadhaviM. SharmaD. ThakurG. Speck-PlancheA. SinghS.K. Artificial intelligence, big data and machine learning approaches in precision medicine & drug discovery.Curr. Drug Targets202122663165510.2174/18735592MTEzsMDMnz33397265
    [Google Scholar]
  39. ChoudharyR. WalhekarV. MuthalA. KumarD. BagulC. KulkarniR. Machine learning facilitated structural activity relationship approach for the discovery of novel inhibitors targeting EGFR.J. Biomol. Struct. Dyn.20234122124451246310.1080/07391102.2023.217526336762704
    [Google Scholar]
  40. MendenhallJ. MeilerJ. Improving quantitative structure–activity relationship models using artificial neural networks trained with dropout.J. Comput. Aided Mol. Des.201630217718910.1007/s10822‑016‑9895‑226830599
    [Google Scholar]
  41. HanschC. FujitaT. Additions and corrections - ρ-σ-π analysis. A method for the correlation of biological activity and chemical structure.J. Am. Chem. Soc.196486245710571010.1021/ja01078a623
    [Google Scholar]
  42. CramerR.D. PattersonD.E. BunceJ.D. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins.J. Am. Chem. Soc.1988110185959596710.1021/ja00226a00522148765
    [Google Scholar]
  43. KlebeG. AbrahamU. MietznerT. Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity.J. Med. Chem.199437244130414610.1021/jm00050a0107990113
    [Google Scholar]
  44. JanZ. Integrative and personalized QSAR analysis in cancer by kernelized Bayesian matrix factorization.J Chem Inf Model202325e4424810.1021/ci500152b37000507
    [Google Scholar]
  45. LinX. LiX. LinX. A review on applications of computational methods in drug screening and design.Molecules2020256137510.3390/molecules2506137532197324
    [Google Scholar]
  46. PerkinsR. FangH. TongW. WelshW.J. Quantitative structure‐activity relationship methods: Perspectives on drug discovery and toxicology.Environ. Toxicol. Chem.20032281666167910.1897/01‑17112924569
    [Google Scholar]
  47. KleandrovaV.V. PlancheS.A. The QSAR paradigm in fragment-based drug discovery: From the virtual generation of target inhibitors to multi-scale modeling.Mini Rev. Med. Chem.202020141357137410.2174/138955752066620020412315632013845
    [Google Scholar]
  48. MahapatraM.K. KaruppasamyM. Fundamental considerations in drug design.Computer Aided Drug Design (CADD): From Ligand-Based Methods to Structure-Based ApproachesElsevier2022175510.1016/B978‑0‑323‑90608‑1.00005‑8
    [Google Scholar]
  49. Jeffrey ConnP. ChristopoulosA. LindsleyC.W. Allosteric modulators of GPCRs: A novel approach for the treatment of CNS disorders.Nat. Rev. Drug Discov.200981415410.1038/nrd276019116626
    [Google Scholar]
  50. TautermannC.S. GPCR structures in drug design, emerging opportunities with new structures.Bioorg. Med. Chem. Lett.201424174073407910.1016/j.bmcl.2014.07.00925086683
    [Google Scholar]
  51. SunD. FlockT. DeupiX. MaedaS. MatkovicM. MendietaS. MayerD. DawsonR.J.P. SchertlerG.F.X. BabuM.M. VeprintsevD.B. Probing Gαi1 protein activation at single–amino acid resolution.Nat. Struct. Mol. Biol.201522968669410.1038/nsmb.307026258638
    [Google Scholar]
  52. SabbadinD. MoroS. Supervised molecular dynamics (SuMD) as a helpful tool to depict GPCR-ligand recognition pathway in a nanosecond time scale.J. Chem. Inf. Model.201454237237610.1021/ci400766b24456045
    [Google Scholar]
  53. DeganuttiG. CuzzolinA. CiancettaA. MoroS. Understanding allosteric interactions in G protein-coupled receptors using Supervised Molecular Dynamics: A prototype study analysing the human A3 adenosine receptor positive allosteric modulator LUF6000.Bioorg. Med. Chem.201523144065407110.1016/j.bmc.2015.03.03925868747
    [Google Scholar]
  54. CuzzolinA. SturleseM. DeganuttiG. SalmasoV. SabbadinD. CiancettaA. MoroS. Deciphering the complexity of ligand–protein recognition pathways using supervised molecular dynamics (SuMD) simulations.J. Chem. Inf. Model.201656468770510.1021/acs.jcim.5b0070227019343
    [Google Scholar]
  55. ChanH.C.S. XuY. TanL. VogelH. ChengJ. WuD. YuanS. Enhancing the signaling of GPCRs via orthosteric ions.ACS Cent. Sci.20206227428210.1021/acscentsci.9b0124732123746
    [Google Scholar]
  56. ChanH.C.S. WangJ. PalczewskiK. FilipekS. VogelH. LiuZ.J. YuanS. Exploring a new ligand binding site of G protein-coupled receptors.Chem. Sci.20189316480648910.1039/C8SC01680A30310578
    [Google Scholar]
  57. TongM. SeeligerM.A. Targeting conformational plasticity of protein kinases.ACS Chem. Biol.201510119020010.1021/cb500870a25486330
    [Google Scholar]
  58. HancockJ.F. Ras proteins: Different signals from different locations.Nat. Rev. Mol. Cell Biol.20034537338510.1038/nrm110512728271
    [Google Scholar]
  59. MazmanianS.K. LiuG. Ton-ThatH. SchneewindO. Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall.Science1999285542876076310.1126/science.285.5428.76010427003
    [Google Scholar]
  60. JarmanM. BarrieS.E. LleraJ.M. The 16,17-double bond is needed for irreversible inhibition of human cytochrome p45017alpha by abiraterone (17-(3-pyridyl)androsta-5, 16-dien-3beta-ol) and related steroidal inhibitors.J. Med. Chem.199841275375538110.1021/jm981017j9876107
    [Google Scholar]
  61. MuhsinM. GrahamJ. KirkpatrickP. Gefitinib.Nat. Rev. Drug Discov.20032751551610.1038/nrd113612841190
    [Google Scholar]
  62. GrünwaldV. HidalgoM. Development of the epidermal growth factor receptor inhibitor Tarceva (OSI-774).Adv. Exp. Med. Biol.200353223524610.1007/978‑1‑4615‑0081‑0_1912908562
    [Google Scholar]
  63. WoodE.R. TruesdaleA.T. McDonaldO.B. YuanD. HassellA. DickersonS.H. EllisB. PennisiC. HorneE. LackeyK. AlligoodK.J. RusnakD.W. GilmerT.M. ShewchukL. A unique structure for epidermal growth factor receptor bound to GW572016 (Lapatinib): Relationships among protein conformation, inhibitor off-rate, and receptor activity in tumor cells.Cancer Res.200464186652665910.1158/0008‑5472.CAN‑04‑116815374980
    [Google Scholar]
  64. WilhelmS. CarterC. LynchM. LowingerT. DumasJ. SmithR.A. SchwartzB. SimantovR. KelleyS. Discovery and development of sorafenib: A multikinase inhibitor for treating cancer.Nat. Rev. Drug Discov.200651083584410.1038/nrd213017016424
    [Google Scholar]
  65. ButrynskiJ.E. D’AdamoD.R. HornickJ.L. Dal CinP. AntonescuC.R. JhanwarS.C. LadanyiM. CapellettiM. RodigS.J. RamaiyaN. KwakE.L. ClarkJ.W. WilnerK.D. ChristensenJ.G. JänneP.A. MakiR.G. DemetriG.D. ShapiroG.I. Crizotinib in ALK-rearranged inflammatory myofibroblastic tumor.N. Engl. J. Med.2010363181727173310.1056/NEJMoa100705620979472
    [Google Scholar]
  66. RekerD. RodriguesT. SchneiderP. SchneiderG. Identifying the macromolecular targets of de novo-designed chemical entities through self-organizing map consensus.Proc. Natl. Acad. Sci.2014111114067407210.1073/pnas.132000111124591595
    [Google Scholar]
  67. RodriguesT. WernerM. RothJ. da CruzE.H.G. MarquesM.C. AkkapeddiP. LoboS.A. KoeberleA. CorzanaF. da Silva JúniorE.N. WerzO. BernardesG.J.L. Machine intelligence decrypts β-lapachone as an allosteric 5-lipoxygenase inhibitor.Chem. Sci.20189346899690310.1039/C8SC02634C30310622
    [Google Scholar]
  68. BombarelliG.R. WeiJ.N. DuvenaudD. LobatoH.J.M. LengelingS.B. SheberlaD. IparraguirreA.J. HirzelT.D. AdamsR.P. GuzikA.A. Automatic chemical design using a data-driven continuous representation of molecules.ACS Cent. Sci.20184226827610.1021/acscentsci.7b0057229532027
    [Google Scholar]
  69. BornJ. ManicaM. OskooeiA. CadowJ. MarkertG. MartínezR.M. PaccMannRL: De novo generation of hit-like anticancer molecules from transcriptomic data via reinforcement learning.iScience202124410226910.1016/j.isci.2021.10226933851095
    [Google Scholar]
  70. ThomsenR. ChristensenM.H. MolDock: A new technique for high-accuracy molecular docking.J. Med. Chem.200649113315332110.1021/jm051197e16722650
    [Google Scholar]
  71. OrioliS. LarsenA.H. BottaroS. LarsenL.K. How to learn from inconsistencies: Integrating molecular simulations with experimental data.Prog. Mol. Biol. Transl. Sci.202017012317610.1016/bs.pmbts.2019.12.00632145944
    [Google Scholar]
  72. LiuZ. ZhaoJ. LiW. WangX. XuJ. XieJ. TaoK. ShenL. ZhangR. Molecular docking of potential inhibitors for influenza H7N9.Comput. Math. Methods Med.201520151810.1155/2015/48076425861376
    [Google Scholar]
  73. CuiJ.J. Tran-DubéM. ShenH. NambuM. KungP.P. PairishM. JiaL. MengJ. FunkL. BotrousI. McTigueM. GrodskyN. RyanK. PadriqueE. AltonG. TimofeevskiS. YamazakiS. LiQ. ZouH. ChristensenJ. MroczkowskiB. BenderS. KaniaR.S. EdwardsM.P. Structure based drug design of crizotinib (PF-02341066), a potent and selective dual inhibitor of mesenchymal-epithelial transition factor (c-MET) kinase and anaplastic lymphoma kinase (ALK).J. Med. Chem.201154186342636310.1021/jm200761321812414
    [Google Scholar]
  74. GoyalL. SahaS.K. LiuL.Y. SiravegnaG. LeshchinerI. AhronianL.G. LennerzJ.K. VuP. DeshpandeV. KambadakoneA. MussolinB. ReyesS. HendersonL. SunJ.E. Van SeventerE.E. GurskiJ.M.Jr BaltschukatS. EngstlerS.B. BarysL. StammC. FuretP. RyanD.P. StoneJ.R. IafrateA.J. GetzG. PortaD.G. TiedtR. BardelliA. JuricD. CorcoranR.B. BardeesyN. ZhuA.X. Polyclonal secondary FGFR2 mutations drive acquired resistance to FGFR inhibition in patients with FGFR2 fusion–positive cholangiocarcinoma.Cancer Discov.20177325226310.1158/2159‑8290.CD‑16‑100028034880
    [Google Scholar]
  75. ŁyskowskiA. GruberC. SteinkellnerG. SchürmannM. SchwabH. GruberK. SteinerK. Crystal structure of an (R)-selective ω-transaminase from Aspergillus terreus.PLoS One201491e8735010.1371/journal.pone.008735024498081
    [Google Scholar]
  76. RahmanE.Y. UtomoD.H. AliM. PurnomoB.B. KaniaN. Evaluating the potency of active compounds from Eurycoma longifolia jack roots extract as prostate cancer therapy.Drug Invent. Today201810122374
    [Google Scholar]
  77. KurczynskaM. KaniaE. KonopkaB.M. KotulskaM. Applying PyRosetta molecular energies to separate properly oriented protein models from mirror models, obtained from contact maps.J. Mol. Model.201622511110.1007/s00894‑016‑2975‑327107578
    [Google Scholar]
  78. KaniaA. BratekM. MajtaJ. SarapataK. GałanW. MarkiewiczM. AugustynW.A. The importance of atomic partial charges in the reproduction of intermolecular interactions for the triacetin - A model of glycerol backbone.Chem. Phys. Lipids202224510520310.1016/j.chemphyslip.2022.10520335398336
    [Google Scholar]
  79. SahniN YiS TaipaleM BassJI HuntingtonC.J YangF PengJ WeileJ KarrasGI WangY KovácsIA Widespread macromolecular interaction perturbations in human genetic disorders.Cell.2015161364766010.1016/j.cell.2015.04.013
    [Google Scholar]
  80. PearlL.H. ProdromouC. Structure and mechanism of the Hsp90 molecular chaperone machinery.Annu. Rev. Biochem.200675127129410.1146/annurev.biochem.75.103004.14273816756493
    [Google Scholar]
  81. BroughP.A. BarrilX. BorgognoniJ. CheneP. DaviesN.G.M. DavisB. DrysdaleM.J. DymockB. EcclesS.A. EcheverriaG.C. FromontC. HayesA. HubbardR.E. JordanA.M. JensenM.R. MasseyA. MerrettA. PadfieldA. ParsonsR. RadimerskiT. RaynaudF.I. RobertsonA. RoughleyS.D. SchoepferJ. SimmoniteH. SharpS.Y. SurgenorA. ValentiM. WallsS. WebbP. WoodM. WorkmanP. WrightL. Combining hit identification strategies: Fragment-based and in silico approaches to orally active 2-aminothieno[2,3-d]pyrimidine inhibitors of the Hsp90 molecular chaperone.J. Med. Chem.200952154794480910.1021/jm900357y19610616
    [Google Scholar]
  82. WissnerA. FloydM.B. JohnsonB.D. FraserH. IngallsC. NittoliT. DushinR.G. DiscafaniC. NilakantanR. MariniJ. RaviM. CheungK. TanX. MustoS. AnnableT. SiegelM.M. LoganzoF. 2-(Quinazolin-4-ylamino)-[1,4]benzoquinones as covalent-binding, irreversible inhibitors of the kinase domain of vascular endothelial growth factor receptor-2.J. Med. Chem.200548247560758110.1021/jm050559f16302797
    [Google Scholar]
  83. BeaversM.P. MyersM.C. ShahP.P. PurvisJ.E. DiamondS.L. CoopermanB.S. HurynD.M. SmithA.B.III Molecular docking of cathepsin L inhibitors in the binding site of papain.J. Chem. Inf. Model.20084871464147210.1021/ci800085c18598021
    [Google Scholar]
  84. B Fortela DL FortelaD.L.B. AshleyP.M. CarnesM.R. SharpW. RevellameE. HernandezR. HolmesW.E. ZappiM.E. Predicting molecular docking of per-and polyfluoroalkyl substances to blood protein using generative artificial intelligence algorithm DiffDock.Biotechniques2023761142610.2144/btn‑2023‑007037947020
    [Google Scholar]
  85. PlancheS.A. CordeiroM.N.D.S. Chemoinformatics for medicinal chemistry: In silico model to enable the discovery of potent and safer anti-cocci agents.Future Med. Chem.20146182013202810.4155/fmc.14.13625531966
    [Google Scholar]
  86. XiongH. LiR.R. LiuS.Y. WuF.X. YangW.C. YangG.F. Discovery of specific nonpeptide probe for chymotrypsin via molecular docking-based virtual screening and the application.ACS Appl. Bio Mater.20181231031710.1021/acsabm.8b0007235016378
    [Google Scholar]
  87. PlancheS.A. CordeiroM.N.D.S. Fragment-based in silico modeling of multi-target inhibitors against breast cancer-related proteins.Mol. Divers.201721351152310.1007/s11030‑017‑9731‑128194627
    [Google Scholar]
  88. WangJ.L. LiuD. ZhangZ.J. ShanS. HanX. SrinivasulaS.M. CroceC.M. AlnemriE.S. HuangZ. Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells.Proc. Natl. Acad. Sci.200097137124712910.1073/pnas.97.13.712410860979
    [Google Scholar]
  89. TakarabeM. KoteraM. NishimuraY. GotoS. YamanishiY. Drug target prediction using adverse event report systems: A pharmacogenomic approach.Bioinformatics20122818i611i61810.1093/bioinformatics/bts41322962489
    [Google Scholar]
  90. ZehirA. BenayedR. ShahR.H. SyedA. MiddhaS. KimH.R. SrinivasanP. GaoJ. ChakravartyD. DevlinS.M. HellmannM.D. BarronD.A. SchramA.M. HameedM. DoganS. RossD.S. HechtmanJ.F. DeLairD.F. YaoJ. MandelkerD.L. ChengD.T. ChandramohanR. MohantyA.S. PtashkinR.N. JayakumaranG. PrasadM. SyedM.H. RemaA.B. LiuZ.Y. NafaK. BorsuL. SadowskaJ. CasanovaJ. BacaresR. KieckaI.J. RazumovaA. SonJ.B. StewartL. BaldiT. MullaneyK.A. Al-AhmadieH. VakianiE. AbeshouseA.A. PensonA.V. JonssonP. CamachoN. ChangM.T. WonH.H. GrossB.E. KundraR. HeinsZ.J. ChenH.W. PhillipsS. ZhangH. WangJ. OchoaA. WillsJ. EubankM. ThomasS.B. GardosS.M. RealesD.N. GalleJ. DuranyR. CambriaR. AbidaW. CercekA. FeldmanD.R. GounderM.M. HakimiA.A. HardingJ.J. IyerG. JanjigianY.Y. JordanE.J. KellyC.M. LoweryM.A. MorrisL.G.T. OmuroA.M. RajN. RazaviP. ShoushtariA.N. ShuklaN. SoumeraiT.E. VargheseA.M. YaegerR. ColemanJ. BochnerB. RielyG.J. SaltzL.B. ScherH.I. SabbatiniP.J. RobsonM.E. KlimstraD.S. TaylorB.S. BaselgaJ. SchultzN. HymanD.M. ArcilaM.E. SolitD.B. LadanyiM. BergerM.F. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients.Nat. Med.201723670371310.1038/nm.433328481359
    [Google Scholar]
  91. MitticaG. GhisoniE. GiannoneG. GentaS. AgliettaM. SapinoA. ValabregaG. PARP inhibitors in ovarian cancer.Recent Pat Anticancer Drug Discov201813439241010.2174/157489281366618030516525629512470
    [Google Scholar]
  92. KoteckiN. GombosA. AwadaA. Adjuvant therapeutic approaches of HER2-positive breast cancer with a focus on neratinib maleate.Expert Rev. Anticancer Ther.201919644745410.1080/14737140.2019.161389231082272
    [Google Scholar]
  93. GrasJ. Enasidenib mesylate.Drugs Future201742152010.1358/dof.2017.042.01.2579894
    [Google Scholar]
  94. MarkhamA. Brigatinib: First global approval.Drugs201777101131113510.1007/s40265‑017‑0776‑328597393
    [Google Scholar]
  95. VibalaB.V. PraseethaP.K. VijayakumarS. Evaluating new strategies for anticancer molecules from ethnic medicinal plants through in silico and biological approach - A review.Gene Rep.20201810055310.1016/j.genrep.2019.100553
    [Google Scholar]
  96. EskilerG.G. Talazoparib to treat BRCA-positive breast cancer.Drugs Today201955745946710.1358/dot.2019.55.7.301564231347614
    [Google Scholar]
  97. PolgárováK. OtáhalP. ŠálekC. PytlíkR. Chimeric antigen receptor based cellular therapy for treatment of T-cell malignancies.Front. Oncol.20221287675810.3389/fonc.2022.87675835600381
    [Google Scholar]
  98. BulgaruA.M. ManiS. GoelS. SolerP.R. Erlotinib (Tarceva®): A promising drug targeting epidermal growth factor receptor tyrosine kinase.Expert Rev. Anticancer Ther.20033326927910.1586/14737140.3.3.26912820772
    [Google Scholar]
  99. HerbstR.S. FukuokaM. BaselgaJ. Gefitinib — A novel targeted approach to treating cancer.Nat. Rev. Cancer200441295696510.1038/nrc150615573117
    [Google Scholar]
  100. YinL. HuQ. CYP17 inhibitors—abiraterone, C17,20-lyase inhibitors and multi-targeting agents.Nat. Rev. Urol.2014111324210.1038/nrurol.2013.27424276076
    [Google Scholar]
  101. Dal LagoL. D’HondtV. AwadaA. Selected combination therapy with sorafenib: A review of clinical data and perspectives in advanced solid tumors.Oncologist200813884585810.1634/theoncologist.2007‑023318695262
    [Google Scholar]
  102. XiaW. GerardC.M. LiuL. BaudsonN.M. OryT.L. SpectorN.L. Combining lapatinib (GW572016), a small molecule inhibitor of ErbB1 and ErbB2 tyrosine kinases, with therapeutic anti-ErbB2 antibodies enhances apoptosis of ErbB2-overexpressing breast cancer cells.Oncogene200524416213622110.1038/sj.onc.120877416091755
    [Google Scholar]
  103. TalpazM. SilverR.T. DrukerB.J. GoldmanJ.M. PasseriniG.C. GuilhotF. SchifferC.A. FischerT. DeiningerM.W. LennardA.L. HochhausA. OttmannO.G. GratwohlA. BaccaraniM. StoneR. TuraS. MahonF.X. ReeseF.S. GathmannI. CapdevilleR. KantarjianH.M. SawyersC.L. Imatinib induces durable hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: results of a phase 2 study.Blood20029961928193710.1182/blood.V99.6.192811877262
    [Google Scholar]
/content/journals/cad/10.2174/0115734099283410240406064042
Loading
/content/journals/cad/10.2174/0115734099283410240406064042
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test