Skip to content
2000
image of Discovery of Novel PTP1B Inhibitors by High-throughput Virtual Screening

Abstract

Aim

To Discover novel PTP1B inhibitors by high-throughput virtual screening

Background

Type 2 Diabetes is a significant global health concern. According to projections, the estimated number of individuals affected by the condition will reach 578 million by the year 2030 and is expected to further increase to 700 million deaths by 2045. Protein Tyrosine Phosphatase 1B is an enzymatic protein that has a negative regulatory effect on the pathways involved in insulin signaling. This regulatory action ultimately results in the development of insulin resistance and the subsequent elevation of glucose levels in the bloodstream. The proper functioning of insulin signaling is essential for maintaining glucose homeostasis, whereas the disruption of insulin signaling can result in the development of type 2 diabetes. Consequently, we sought to utilize PTP1B as a drug target in this investigation.

Objective

The purpose of our study was to identify novel PTP1B inhibitors as a potential treatment for managing type 2 diabetes.

Methods

To discover potent PTP1B inhibitors, we have screened the Maybridge HitDiscover database by SBVS. Top hits have been passed based on various drug-likeness rules, toxicity predictions, ADME assessment, Consensus Molecular docking, DFT, and 300 ns MD Simulations.

Results

Two compounds have been identified with strong binding affinity at the active site of PTP1B along with drug-like properties, efficient ADME, low toxicity, and high stability.

Conclusion

The identified molecules could potentially manage T2DM effectively by inhibiting PTP1B, providing a promising avenue for therapeutic strategies.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099278007241004105500
2024-10-17
2025-01-29
Loading full text...

Full text loading...

References

  1. Saeedi P. Petersohn I. Salpea P. Malanda B. Karuranga S. Unwin N. Colagiuri S. Guariguata L. Motala A.A. Ogurtsova K. Shaw J.E. Bright D. Williams R. IDF Diabetes Atlas Committee Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 2019 157 107843 10.1016/j.diabres.2019.107843 31518657
    [Google Scholar]
  2. Sun H. Saeedi P. Karuranga S. Pinkepank M. Ogurtsova K. Duncan B.B. Stein C. Basit A. Chan J.C.N. Mbanya J.C. Pavkov M.E. Ramachandaran A. Wild S.H. James S. Herman W.H. Zhang P. Bommer C. Kuo S. Boyko E.J. Magliano D.J. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 2022 183 109119 10.1016/j.diabres.2021.109119 34879977
    [Google Scholar]
  3. Venable C.L. Frevert E.U. Kim Y.B. Fischer B.M. Kamatkar S. Neel B.G. Kahn B.B. Overexpression of protein-tyrosine phosphatase-1B in adipocytes inhibits insulin-stimulated phosphoinositide 3-kinase activity without altering glucose transport or Akt/Protein kinase B activation. J. Biol. Chem. 2000 275 24 18318 18326 10.1074/jbc.M908392199 10751417
    [Google Scholar]
  4. Obanda D.N. Cefalu W.T. Modulation of cellular insulin signaling and PTP1B effects by lipid metabolites in skeletal muscle cells. J. Nutr. Biochem. 2013 24 8 1529 1537 10.1016/j.jnutbio.2012.12.014 23481236
    [Google Scholar]
  5. Zabolotny J.M. Haj F.G. Kim Y.B. Kim H.J. Shulman G.I. Kim J.K. Neel B.G. Kahn B.B. Transgenic overexpression of protein-tyrosine phosphatase 1B in muscle causes insulin resistance, but overexpression with leukocyte antigen-related phosphatase does not additively impair insulin action. J. Biol. Chem. 2004 279 23 24844 24851 10.1074/jbc.M310688200 15031294
    [Google Scholar]
  6. Villamar-Cruz O. Loza-Mejía M.A. Arias-Romero L.E. Camacho-Arroyo I. Recent advances in PTP1B signaling in metabolism and cancer. Biosci. Rep. 2021 41 11 BSR20211994 10.1042/BSR20211994 34726241
    [Google Scholar]
  7. Giri L. Mutalik V.K. Venkatesh K.V. A steady state analysis indicates that negative feedback regulation of PTP1B by Akt elicits bistability in insulin-stimulated GLUT4 translocation. Theor. Biol. Med. Model. 2004 1 1 2 10.1186/1742‑4682‑1‑2 15291972
    [Google Scholar]
  8. Alonso-Chamorro M. Nieto-Vazquez I. Montori-Grau M. Gomez-Foix A.M. Fernandez-Veledo S. Lorenzo M. New emerging role of protein-tyrosine phosphatase 1B in the regulation of glycogen metabolism in basal and TNF-α-induced insulin-resistant conditions in an immortalised muscle cell line isolated from mice. Diabetologia 2011 54 5 1157 1168 10.1007/s00125‑011‑2057‑0 21311858
    [Google Scholar]
  9. Saini V. Molecular mechanisms of insulin resistance in type 2 diabetes mellitus. World J. Diabetes 2010 1 3 68 75 10.4239/wjd.v1.i3.68 21537430
    [Google Scholar]
  10. Abdelsalam S.S. Korashy H.M. Zeidan A. Agouni A. The Role of Protein Tyrosine Phosphatase (PTP)-1B in Cardiovascular Disease and Its Interplay with Insulin Resistance. Biomolecules 2019 9 7 286 10.3390/biom9070286 31319588
    [Google Scholar]
  11. Owen C. Czopek A. Agouni A. Grant L. Judson R. Lees E.K. Adipocyte-specific protein tyrosine phosphatase 1b deletion increases lipogenesis, adipocyte cell size and is a minor regulator of glucose homeostasis. PLoS ONE 2012 7 2 e32700
    [Google Scholar]
  12. Ozek C. Kanoski S.E. Zhang Z.Y. Grill H.J. Bence K.K. Protein-tyrosine phosphatase 1B (PTP1B) is a novel regulator of central brain-derived neurotrophic factor and tropomyosin receptor kinase B (TrkB) signaling. J. Biol. Chem. 2014 289 46 31682 31692 10.1074/jbc.M114.603621 25288805
    [Google Scholar]
  13. Krishnan N. Bonham C.A. Rus I.A. Shrestha O.K. Gauss C.M. Haque A. Tocilj A. Joshua-Tor L. Tonks N.K. Harnessing insulin- and leptin-induced oxidation of PTP1B for therapeutic development. Nat. Commun. 2018 9 1 283 10.1038/s41467‑017‑02252‑2 29348454
    [Google Scholar]
  14. Liu R. Mathieu C. Berthelet J. Zhang W. Dupret J.M. Rodrigues Lima F. Human Protein Tyrosine Phosphatase 1B (PTP1B): From Structure to Clinical Inhibitor Perspectives. Int. J. Mol. Sci. 2022 23 13 7027 10.3390/ijms23137027 35806030
    [Google Scholar]
  15. Kumar A. Rana D. Rana R. Bhatia R. Protein Tyrosine Phosphatase (PTP1B): A promising Drug Target Against Life-threatening Ailments. Curr. Mol. Pharmacol. 2020 13 1 17 30 10.2174/1874467212666190724150723 31339082
    [Google Scholar]
  16. Vieira M.N.N. Lyra e Silva N.M. Ferreira S.T. De Felice F.G. Protein Tyrosine Phosphatase 1B (PTP1B): A Potential Target for Alzheimer’s Therapy? Front. Aging Neurosci. 2017 9 7 10.3389/fnagi.2017.00007 28197094
    [Google Scholar]
  17. Olloquequi J. Cano A. Sanchez-López E. Carrasco M. Verdaguer E. Fortuna A. Folch J. Bulló M. Auladell C. Camins A. Ettcheto M. Protein tyrosine phosphatase 1B (PTP1B) as a potential therapeutic target for neurological disorders. Biomed. Pharmacother. 2022 155 113709 10.1016/j.biopha.2022.113709 36126456
    [Google Scholar]
  18. Singh S. Singh Grewal A. Grover R. Sharma N. Chopra B. Kumar Dhingra A. Arora S. Redhu S. Lather V. Recent updates on development of protein-tyrosine phosphatase 1B inhibitors for treatment of diabetes, obesity and related disorders. Bioorg. Chem. 2022 121 105626 10.1016/j.bioorg.2022.105626 35255350
    [Google Scholar]
  19. Eleftheriou P. Geronikaki A. Petrou A. PTP1b Inhibition, A Promising Approach for the Treatment of Diabetes Type II. Curr. Top. Med. Chem. 2019 19 4 246 263 10.2174/1568026619666190201152153 30714526
    [Google Scholar]
  20. Krishnan N. Koveal D. Miller D.H. Xue B. Akshinthala S.D. Kragelj J. Jensen M.R. Gauss C.M. Page R. Blackledge M. Muthuswamy S.K. Peti W. Tonks N.K. Targeting the disordered C terminus of PTP1B with an allosteric inhibitor. Nat. Chem. Biol. 2014 10 7 558 566 10.1038/nchembio.1528 24845231
    [Google Scholar]
  21. Zhang Z.Y. Lee S.Y. PTP1B inhibitors as potential therapeutics in the treatment of Type 2 diabetes and obesity. Expert Opin. Investig. Drugs 2003 12 2 223 233 10.1517/13543784.12.2.223 12556216
    [Google Scholar]
  22. Tamrakar A.K. Maurya C.K. Rai A.K. PTP1B inhibitors for type 2 diabetes treatment: a patent review (2011 – 2014). Expert Opin. Ther. Pat. 2014 24 10 1101 1115 10.1517/13543776.2014.947268 25120222
    [Google Scholar]
  23. Nie X. Jnr Chen Z. Pang L. Wang L. Jiang H. Chen Y. Zhang Z. Fu C. Ren B. Zhang J. Oral Nano Drug Delivery Systems for the Treatment of Type 2 Diabetes Mellitus: An Available Administration Strategy for Antidiabetic Phytocompounds. Int. J. Nanomedicine 2020 15 10215 10240 10.2147/IJN.S285134 33364755
    [Google Scholar]
  24. Tsou R.C. Bence K.K. The Genetics of PTPN1 and Obesity: Insights from Mouse Models of Tissue-Specific PTP1B Deficiency. J. Obes. 2012 2012 1 8 10.1155/2012/926857 22811891
    [Google Scholar]
  25. Zhang C. Yang X. Meng X. Wu L. Liu X. Gao J. Liu S. Wu J. Huang D. Wang Z. Su X. Discovery of Novel PTP1B Inhibitors with Once-Weekly Therapeutic Potential for Type 2 Diabetes: Design, Synthesis, and In Vitro and In Vivo Investigations of BimBH3 Peptide Analogues. J. Med. Chem. 2023 66 4 3030 3044 10.1021/acs.jmedchem.2c02003 36749220
    [Google Scholar]
  26. Chen X. Gan Q. Feng C. Liu X. Zhang Q. Virtual Screening of Novel and Selective Inhibitors of Protein Tyrosine Phosphatase 1B over T-Cell Protein Tyrosine Phosphatase Using a Bidentate Inhibition Strategy. J. Chem. Inf. Model. 2018 58 4 837 847 10.1021/acs.jcim.8b00040 29608303
    [Google Scholar]
  27. Luo J. Zheng M. Jiang B. Li C. Guo S. Wang L. Li X. Yu R. Shi D. Antidiabetic activity in vitro and in vivo of BDB, a selective inhibitor of protein tyrosine phosphatase 1B, from Rhodomela confervoides. Br. J. Pharmacol. 2020 177 19 4464 4480 10.1111/bph.15195 32663313
    [Google Scholar]
  28. Erbe D.V. Wang S. Zhang Y.L. Harding K. Kung L. Tam M. Stolz L. Xing Y. Furey S. Qadri A. Klaman L.D. Tobin J.F. Ertiprotafib improves glycemic control and lowers lipids via multiple mechanisms. Mol. Pharmacol. 2005 67 1 69 77 10.1124/mol.104.005553 15475571
    [Google Scholar]
  29. Zasloff M. Williams J.I. Chen Q. Anderson M. Maeder T. Holroyd K. Jones S. Kinney W. Cheshire K. McLane M. A spermine-coupled cholesterol metabolite from the shark with potent appetite suppressant and antidiabetic properties. Int. J. Obes. 2001 25 5 689 697 10.1038/sj.ijo.0801599 11360152
    [Google Scholar]
  30. Lantz K.A. Hart S.G.E. Planey S.L. Roitman M.F. Ruiz-White I.A. Wolfe H.R. McLane M.P. Inhibition of PTP1B by trodusquemine (MSI-1436) causes fat-specific weight loss in diet-induced obese mice. Obesity (Silver Spring) 2010 18 8 1516 1523 10.1038/oby.2009.444 20075852
    [Google Scholar]
  31. Fukuda S. Ohta T. Sakata S. Morinaga H. Ito M. Nakagawa Y. Tanaka M. Matsushita M. Pharmacological profiles of a novel protein tyrosine phosphatase 1B inhibitor, JTT‐551. Diabetes Obes. Metab. 2010 12 4 299 306 10.1111/j.1463‑1326.2009.01162.x 20380650
    [Google Scholar]
  32. Ito M. Fukuda S. Sakata S. Morinaga H. Ohta T. Pharmacological effects of JTT-551, a novel protein tyrosine phosphatase 1B inhibitor, in diet-induced obesity mice. J. Diabetes Res. 2014 2014 1 7 10.1155/2014/680348 24987707
    [Google Scholar]
  33. Qian S. Zhang M. He Y. Wang W. Liu S. Recent advances in the development of protein tyrosine phosphatase 1B inhibitors for Type 2 diabetes. Future Med. Chem. 2016 8 11 1239 1258 10.4155/fmc‑2016‑0064 27357615
    [Google Scholar]
  34. Kim K.H. Kim N.D. Seong B.L. Pharmacophore-based virtual screening: a review of recent applications. Expert Opin. Drug Discov. 2010 5 3 205 222 10.1517/17460441003592072 22823018
    [Google Scholar]
  35. Clark D.E. What has virtual screening ever done for drug discovery? Expert Opin. Drug Discov. 2008 3 8 841 851 10.1517/17460441.3.8.841 23484962
    [Google Scholar]
  36. Suay-García B. Bueso-Bordils J.I. Falcó A. Antón-Fos G.M. Alemán-López P.A. Virtual Combinatorial Chemistry and Pharmacological Screening: A Short Guide to Drug Design. Int. J. Mol. Sci. 2022 23 3 1620 10.3390/ijms23031620 35163543
    [Google Scholar]
  37. Krüger D.M. Evers A. Comparison of structure- and ligand-based virtual screening protocols considering hit list complementarity and enrichment factors. ChemMedChem 2010 5 1 148 158 10.1002/cmdc.200900314 19908272
    [Google Scholar]
  38. Stumpfe D. Ripphausen P. Bajorath J. Virtual compound screening in drug discovery. Future Med. Chem. 2012 4 5 593 602 10.4155/fmc.12.19 22458679
    [Google Scholar]
  39. Hassan N.M. Alhossary A.A. Mu Y. Kwoh C.K. Protein-Ligand Blind Docking Using QuickVina-W With Inter-Process Spatio-Temporal Integration. Sci. Rep. 2017 7 1 15451 10.1038/s41598‑017‑15571‑7 29133831
    [Google Scholar]
  40. O’Boyle N.M. Banck M. James C.A. Morley C. Vandermeersch T. Hutchison G.R. Open Babel: An open chemical toolbox. J. Cheminform. 2011 3 1 33 10.1186/1758‑2946‑3‑33 21982300
    [Google Scholar]
  41. Landrum G. RDKit: Open-Source Cheminformatics Software. 2016 Available from: https://www.rdkit.org/(accessed on 21-9-2024)
  42. Lipinski C.A. Lombardo F. Dominy B.W. Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3–25. 1. Adv. Drug Deliv. Rev. 2001 46 1-3 3 26 10.1016/S0169‑409X(00)00129‑0 11259830
    [Google Scholar]
  43. Sander T. Freyss J. von Korff M. Rufener C. DataWarrior: an open-source program for chemistry aware data visualization and analysis. J. Chem. Inf. Model. 2015 55 2 460 473 10.1021/ci500588j 25558886
    [Google Scholar]
  44. Daina A. Michielin O. Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017 7 1 42717 10.1038/srep42717 28256516
    [Google Scholar]
  45. Hanwell M.D. Curtis D.E. Lonie D.C. Vandermeersch T. Zurek E. Hutchison G.R. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012 4 1 17 10.1186/1758‑2946‑4‑17 22889332
    [Google Scholar]
  46. Pettersen E.F. Goddard T.D. Huang C.C. Couch G.S. Greenblatt D.M. Meng E.C. Ferrin T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004 25 13 1605 1612 10.1002/jcc.20084 15264254
    [Google Scholar]
  47. Berman H.M. Battistuz T. Bhat T.N. Bluhm W.F. Bourne P.E. Burkhardt K. Feng Z. Gilliland G.L. Iype L. Jain S. Fagan P. Marvin J. Padilla D. Ravichandran V. Schneider B. Thanki N. Weissig H. Westbrook J.D. Zardecki C. The Protein Data Bank. Acta Crystallogr. D Biol. Crystallogr. 2002 58 6 899 907 10.1107/S0907444902003451 12037327
    [Google Scholar]
  48. Klopfenstein S.R. Evdokimov A.G. Colson A.O. Fairweather N.T. Neuman J.J. Maier M.B. Gray J.L. Gerwe G.S. Stake G.E. Howard B.W. Farmer J.A. Pokross M.E. Downs T.R. Kasibhatla B. Peters K.G. 1,2,3,4-Tetrahydroisoquinolinyl sulfamic acids as phosphatase PTP1B inhibitors. Bioorg. Med. Chem. Lett. 2006 16 6 1574 1578 10.1016/j.bmcl.2005.12.051 16386905
    [Google Scholar]
  49. Puius Y.A. Zhao Y. Sullivan M. Lawrence D.S. Almo S.C. Zhang Z.Y. Identification of a second aryl phosphate-binding site in protein-tyrosine phosphatase 1B: A paradigm for inhibitor design. Proc. Natl. Acad. Sci. USA 1997 94 25 13420 13425 10.1073/pnas.94.25.13420 9391040
    [Google Scholar]
  50. Groves M.R. Yao Z.J. Roller P.P. Burke T.R. Jr Barford D. Structural basis for inhibition of the protein tyrosine phosphatase 1B by phosphotyrosine peptide mimetics. Biochemistry 1998 37 51 17773 17783 10.1021/bi9816958 9922143
    [Google Scholar]
  51. Andersen H.S. Iversen L.F. Jeppesen C.B. Branner S. Norris K. Rasmussen H.B. Møller K.B. Møller N.P.H. 2-(oxalylamino)-benzoic acid is a general, competitive inhibitor of protein-tyrosine phosphatases. J. Biol. Chem. 2000 275 10 7101 7108 10.1074/jbc.275.10.7101 10702277
    [Google Scholar]
  52. Zhang Y. Du Y. The development of protein tyrosine phosphatase1B inhibitors defined by binding sites in crystalline complexes. Future Med. Chem. 2018 10 19 2345 2367 10.4155/fmc‑2018‑0089 30273014
    [Google Scholar]
  53. Singh T. Biswas D. Jayaram B. AADS--an automated active site identification, docking, and scoring protocol for protein targets based on physicochemical descriptors. J. Chem. Inf. Model. 2011 51 10 2515 2527 10.1021/ci200193z 21877713
    [Google Scholar]
  54. Valdés-Tresanco M.S. Valdés-Tresanco M.E. Valiente P.A. Moreno E. AMDock: a versatile graphical tool for assisting molecular docking with Autodock Vina and Autodock4. Biol. Direct 2020 15 1 12 10.1186/s13062‑020‑00267‑2 32938494
    [Google Scholar]
  55. Debnath A. Sharma S. Mazumder R. Mazumder A. Kumar R. Kumar A. In Search of Novel SGLT2 Inhibitors by High-throughput Virtual Screening. Curr. Drug Discov. Technol. 2023 21 3 20 31 10.2174/0115701638267615231123160650
    [Google Scholar]
  56. Debnath A. Mazumder R. Identification of novel CDK 4/6 inhibitors by high-throughput virtual screening. LDDD 2024 21 15 3229 3246 10.2174/0115701808273043231130100833
    [Google Scholar]
  57. Debnath A. Chaudhary H. Sharma P. Singh R. Srivastava S. A Deep Dive into PDE5 Inhibition: Innovative Discoveries via Virtual Screening. LDDD 2024 21 16 3425 3442 10.2174/0115701808279586231221043744
    [Google Scholar]
  58. Morris G.M. Huey R. Lindstrom W. Sanner M.F. Belew R.K. Goodsell D.S. Olson A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009 30 16 2785 2791 10.1002/jcc.21256 19399780
    [Google Scholar]
  59. Li H. Leung K.S. Wong M.H. Idock: A multithreaded virtual screening tool for flexible ligand docking. 2012 IEEE Symposium on Computational Intelligence and Computational Biology, CIBCB 2012 09-12 May 2012, San Diego, CA, USA, 2012, pp. 77-84. 10.1109/CIBCB.2012.6217214
    [Google Scholar]
  60. Liu N. Xu Z. Using LeDock as a docking tool for computational drug design. IOP Conf. Ser. Earth Environ. Sci. 2019 218 012143 10.1088/1755‑1315/218/1/012143
    [Google Scholar]
  61. Alhossary A. Handoko S.D. Mu Y. Kwoh C.K. Fast, accurate, and reliable molecular docking with QuickVina 2. Bioinformatics 2015 31 13 2214 2216 10.1093/bioinformatics/btv082 25717194
    [Google Scholar]
  62. Koes D.R. Baumgartner M.P. Camacho C.J. Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise. J. Chem. Inf. Model. 2013 53 8 1893 1904 10.1021/ci300604z 23379370
    [Google Scholar]
  63. Eberhardt J. Santos-Martins D. Tillack A.F. Forli S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J. Chem. Inf. Model. 2021 61 8 3891 3898 10.1021/acs.jcim.1c00203 34278794
    [Google Scholar]
  64. Trott O. Olson A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2009 31 2 455 461 10.1002/jcc.21334
    [Google Scholar]
  65. Neese F. Wennmohs F. Becker U. Riplinger C. The ORCA quantum chemistry program package. J. Chem. Phys. 2020 152 22 224108 10.1063/5.0004608 32534543
    [Google Scholar]
  66. Knizia G. Klein J.E.M.N. Electron flow in reaction mechanisms--revealed from first principles. Angew. Chem. Int. Ed. 2015 54 18 5518 5522 10.1002/anie.201410637 25737294
    [Google Scholar]
  67. Knizia G. Intrinsic Atomic Orbitals: An Unbiased Bridge between Quantum Theory and Chemical Concepts. J. Chem. Theory Comput. 2013 9 11 4834 4843 10.1021/ct400687b 26583402
    [Google Scholar]
  68. Van Der Spoel D. Lindahl E. Hess B. Groenhof G. Mark A.E. Berendsen H.J.C. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005 26 16 1701 1718 10.1002/jcc.20291 16211538
    [Google Scholar]
  69. Brooks B.R. Brooks C.L. Mackerell A.D. Nilsson L. Petrella R.J. Roux B. CHARMM: Molecular dynamics simulation package. J. Comput. Chem. 2009 30 10 1545 1614 10.1002/jcc.21287 19444816
    [Google Scholar]
  70. Berendsen H.J.C. van der Spoel D. van Drunen R. GROMACS: A message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 1995 91 1-3 43 56 10.1016/0010‑4655(95)00042‑E
    [Google Scholar]
  71. Pillai G.G. Jupyter Notebook for MD using Gromacs. 2020 Available from: https://github.com/giribio/MDNotebooks(accessed on 21-9-2024)
  72. Huang J. Rauscher S. Nawrocki G. Ran T. Feig M. de Groot B.L. Grubmüller H. MacKerell A.D. Jr CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods 2017 14 1 71 73 10.1038/nmeth.4067 27819658
    [Google Scholar]
  73. Huang J. MacKerell A.D. Jr CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. J. Comput. Chem. 2013 34 25 2135 2145 10.1002/jcc.23354 23832629
    [Google Scholar]
  74. Vanommeslaeghe K. MacKerell A.D. Jr Automation of the CHARMM General Force Field (CGenFF) I: bond perception and atom typing. J. Chem. Inf. Model. 2012 52 12 3144 3154 10.1021/ci300363c 23146088
    [Google Scholar]
  75. Jorgensen W.L. Chandrasekhar J. Madura J.D. Impey R.W. Klein M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983 79 2 926 935 10.1063/1.445869
    [Google Scholar]
  76. Waals D. Van der Waals Volumes and Radii. J. Phys. Chem. 1964 68 3 441 451
    [Google Scholar]
  77. Berendsen H.J.C. Postma J.P.M. van Gunsteren W.F. DiNola A. Haak J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984 81 8 3684 3690 10.1063/1.448118
    [Google Scholar]
  78. Debnath A. Mazumder R. Mazumder A. Singh R. Srivastava S. In Silico Identification of HDAC Inhibitors for Multiple Myeloma: A Structure-based Virtual Screening, Drug Likeness, ADMET Profiling, Molecular Docking, and Molecular Dynamics Simulation Study. Lett. Drug Des. Discov. 2023 20 1
    [Google Scholar]
  79. Michaud-Agrawal N. Denning E.J. Woolf T.B. Beckstein O. MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. J. Comput. Chem. 2011 32 10 2319 2327 10.1002/jcc.21787 21500218
    [Google Scholar]
  80. Bouysset C. Fiorucci S. ProLIF: a library to encode molecular interactions as fingerprints. J. Cheminform. 2021 13 1 72 10.1186/s13321‑021‑00548‑6 34563256
    [Google Scholar]
  81. Rose A.S. Bradley A.R. Valasatava Y. Duarte J.M. Prlić A. Rose P.W. NGL viewer: web-based molecular graphics for large complexes. Bioinformatics 2018 34 21 3755 3758 10.1093/bioinformatics/bty419
    [Google Scholar]
  82. Kumari R. Kumar R. Lynn A. Open Source Drug Discovery Consortium g_mmpbsa--a GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model. 2014 54 7 1951 1962 10.1021/ci500020m 24850022
    [Google Scholar]
  83. The pandas development team. pandas-dev/pandas: Pandas 2024 Available from: https://zenodo.org/doi/10.5281/zenodo.3509134(accessed on 21-9-2024)
  84. Hunter J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007 9 3 90 95 10.1109/MCSE.2007.55
    [Google Scholar]
  85. Waskom M. seaborn: statistical data visualization. J. Open Source Softw. 2021 6 60 3021 10.21105/joss.03021
    [Google Scholar]
  86. Nhat Phuong D. Flower D.R. Chattopadhyay S. Chattopadhyay A.K. Towards Effective Consensus Scoring in Structure-Based Virtual Screening. Interdiscip. Sci. 2023 15 1 131 145 36550341
    [Google Scholar]
  87. Ochoa R. Palacio-Rodriguez K. Clemente C.M. Adler N.S. dockECR: Open consensus docking and ranking protocol for virtual screening of small molecules. J. Mol. Graph. Model. 2021 109 August 108023 10.1016/j.jmgm.2021.108023 34555725
    [Google Scholar]
  88. Blanes-Mira C. Fernández-Aguado P. de Andrés-López J. Fernández-Carvajal A. Ferrer-Montiel A. Fernández-Ballester G. Comprehensive Survey of Consensus Docking for High-Throughput Virtual Screening. Molecules 2022 28 1 175 10.3390/molecules28010175 36615367
    [Google Scholar]
  89. Goldstein B.J. Protein-tyrosine phosphatase 1B (PTP1B): a novel therapeutic target for type 2 diabetes mellitus, obesity and related states of insulin resistance. Curr. Drug Targets Immune Endocr. Metabol. Disord. 2001 1 3 265 275 10.2174/1568008013341163 12477292
    [Google Scholar]
  90. Shinde R.N. Kumar G.S. Eqbal S. Sobhia M.E. Screening and identification of potential PTP1B allosteric inhibitors using in silico and in vitro approaches. PLOS ONE. 2018 13 6 e0199020
    [Google Scholar]
  91. Campos-Almazán M.I. Hernández-Campos A. Castillo R. Sierra-Campos E. Valdez-Solana M. Avitia-Domínguez C. Téllez-Valencia A. Computational methods in cooperation with experimental approaches to design protein tyrosine phosphatase 1b inhibitors in type 2 diabetes drug design: a review of the achievements of this century. Pharmaceuticals 2022 15 7 866 10.3390/ph15070866 35890163
    [Google Scholar]
  92. Ha M.T. Shrestha S. Tran T.H. Kim J.A. Woo M.H. Choi J.S. Min B.S. Inhibition of PTP1B by farnesylated 2-arylbenzofurans isolated from Morus alba root bark: unraveling the mechanism of inhibition based on in vitro and in silico studies. Arch. Pharm. Res. 2020 43 9 961 975 10.1007/s12272‑020‑01269‑4 32978714
    [Google Scholar]
  93. Rao G.S. Ramachandran M.V. Bajaj J.S. In silico structure-based design of a potent and selective small peptide inhibitor of protein tyrosine phosphatase 1B, a novel therapeutic target for obesity and type 2 diabetes mellitus: a computer modeling approach. J. Biomol. Struct. Dyn. 2006 23 4 377 384 10.1080/07391102.2006.10531233 16363874
    [Google Scholar]
  94. Szczepankiewicz B.G. Liu G. Hajduk P.J. Abad-Zapatero C. Pei Z. Xin Z. Lubben T.H. Trevillyan J.M. Stashko M.A. Ballaron S.J. Liang H. Huang F. Hutchins C.W. Fesik S.W. Jirousek M.R. Discovery of a potent, selective protein tyrosine phosphatase 1B inhibitor using a linked-fragment strategy. J. Am. Chem. Soc. 2003 125 14 4087 4096 10.1021/ja0296733 12670229
    [Google Scholar]
  95. Scapin G. Patel S.B. Becker J.W. Wang Q. Desponts C. Waddleton D. Skorey K. Cromlish W. Bayly C. Therien M. Gauthier J.Y. Li C.S. Lau C.K. Ramachandran C. Kennedy B.P. Asante-Appiah E. The structural basis for the selectivity of benzotriazole inhibitors of PTP1B. Biochemistry 2003 42 39 11451 11459 10.1021/bi035098j 14516196
    [Google Scholar]
  96. Macalalad M.A.B. Gonzales A.A. III In Silico Screening and Identification of Antidiabetic Inhibitors Sourced from Phytochemicals of Philippine Plants against Four Protein Targets of Diabetes (PTP1B, DPP-4, SGLT-2, and FBPase). Molecules 2023 28 14 5301 10.3390/molecules28145301 37513175
    [Google Scholar]
  97. Friedman A.J. Padgette H.M. Kramer L. Liechty E.T. Donovan G.W. Fox J.M. A biophysical rationale for the selective inhibition of PTP1B over TCPTP by nonpolar terpenoids. J. Phys. Chem. B 2023 127 8305 8316
    [Google Scholar]
  98. Irfan Dar M. Qureshi M.I. Zahiruddin S. Abass S. Jan B. Sultan A. Ahmad S. In Silico Analysis of PTP1B Inhibitors and TLC-MS Bioautography-Based Identification of Free Radical Scavenging and α-Amylase Inhibitory Compounds from Heartwood Extract of Pterocarpus marsupium. ACS Omega 2022 7 50 46156 46173 10.1021/acsomega.2c04283 36570189
    [Google Scholar]
  99. Casertano M. Genovese M. Piazza L. Balestri F. Del Corso A. Vito A. Paoli P. Santi A. Imperatore C. Menna M. Identifying Human PTP1B Enzyme Inhibitors from Marine Natural Products: Perspectives for Developing of Novel Insulin-Mimetic Drugs. Pharmaceuticals (Basel) 2022 15 3 325 10.3390/ph15030325 35337123
    [Google Scholar]
  100. Genovese M. Nesi I. Caselli A. Paoli P. Natural α-Glucosidase and Protein Tyrosine Phosphatase 1B Inhibitors: A Source of Scaffold Molecules for Synthesis of New Multitarget Antidiabetic Drugs. Molecules 2021 26 16 4818 10.3390/molecules26164818 34443409
    [Google Scholar]
  101. Zhao D. Zhong S. Binding mechanisms of varic acid inhibitors on protein tyrosine phosphatase 1B and in silico design of the novel derivatives. Mol. Simul. 2021 47 9 771 784 10.1080/08927022.2021.1929970
    [Google Scholar]
  102. Alfarisi S. Santoso M. Kristanti A.N. Siswanto I. Puspaningsih N.N.T. Synthesis, Antimicrobial Study, and Molecular Docking Simulation of 3,4-Dimethoxy-β-Nitrostyrene Derivatives as Candidate PTP1B Inhibitor. Sci. Pharm. 2020 88 3 37 10.3390/scipharm88030037
    [Google Scholar]
  103. Tibbitts J. Canter D. Graff R. Smith A. Khawli L.A. Key factors influencing ADME properties of therapeutic proteins: A need for ADME characterization in drug discovery and development. MAbs 2016 8 2 229 245 10.1080/19420862.2015.1115937 26636901
    [Google Scholar]
  104. Sun D. Gao W. Hu H. Zhou S. Why 90% of clinical drug development fails and how to improve it? Acta Pharm. Sin. B 2022 12 7 3049 3062 10.1016/j.apsb.2022.02.002 35865092
    [Google Scholar]
  105. Monari L. Galentino K. Cecchini M. ChemFlow_py: a flexible toolkit for docking and rescoring. J. Comput. Aided Mol. Des. 2023 37 11 565 572 10.1007/s10822‑023‑00527‑z 37620503
    [Google Scholar]
  106. Chilingaryan G. Abelyan N. Sargsyan A. Nazaryan K. Serobian A. Zakaryan H. Combination of consensus and ensemble docking strategies for the discovery of human dihydroorotate dehydrogenase inhibitors. Sci. Rep. 2021 11 1 11417 10.1038/s41598‑021‑91069‑7 34075175
    [Google Scholar]
/content/journals/cad/10.2174/0115734099278007241004105500
Loading
/content/journals/cad/10.2174/0115734099278007241004105500
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: PTP1B inhibitor ; T2DM drugs ; type 2 diabetes mellitus ; PTP1B ; protein tyrosine phosphatase
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test