Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Aims

To Discover novel PTP1B inhibitors by high-throughput virtual screening.

Background

Type 2 Diabetes is a significant global health concern. According to projections, the estimated number of individuals affected by the condition will reach 578 million by the year 2030 and is expected to further increase to 700 million deaths by 2045. Protein Tyrosine Phosphatase 1B is an enzymatic protein that has a negative regulatory effect on the pathways involved in insulin signaling. This regulatory action ultimately results in the development of insulin resistance and the subsequent elevation of glucose levels in the bloodstream. The proper functioning of insulin signaling is essential for maintaining glucose homeostasis, whereas the disruption of insulin signaling can result in the development of type 2 diabetes. Consequently, we sought to utilize PTP1B as a drug target in this investigation.

Objective

The purpose of our study was to identify novel PTP1B inhibitors as a potential treatment for managing type 2 diabetes.

Methods

To discover potent PTP1B inhibitors, we have screened the Maybridge HitDiscover database by SBVS. Top hits have been passed based on various drug-likeness rules, toxicity predictions, ADME assessment, Consensus Molecular docking, DFT, and 300 ns MD Simulations.

Results

Compound RJC02059 has been identified with strong binding affinity at the active site of PTP1B along with drug-like properties, efficient ADME, low toxicity, and high stability.

Discussion

Two compounds, demonstrated strong binding affinity, favorable drug-like properties, and stable interactions with PTP1B's active site throughout 200 ns MD simulations, with RJC02059 showing superior binding stability and persistent hydrogen bonding with catalytic residues. However, experimental validation through enzymatic assays and assessment of selectivity against related phosphatases, remain essential next steps to confirm therapeutic potential.

Conclusion

The identified molecule could potentially manage T2DM effectively by inhibiting PTP1B, providing a promising avenue for therapeutic strategies.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099278007241004105500
2024-10-14
2026-02-19
Loading full text...

Full text loading...

References

  1. SaeediP. PetersohnI. SalpeaP. MalandaB. KarurangaS. UnwinN. ColagiuriS. GuariguataL. MotalaA.A. OgurtsovaK. ShawJ.E. BrightD. WilliamsR. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition.Diabetes Res. Clin. Pract.201915710784310.1016/j.diabres.2019.107843 31518657
    [Google Scholar]
  2. SunH. SaeediP. KarurangaS. PinkepankM. OgurtsovaK. DuncanB.B. SteinC. BasitA. ChanJ.C.N. MbanyaJ.C. PavkovM.E. RamachandaranA. WildS.H. JamesS. HermanW.H. ZhangP. BommerC. KuoS. BoykoE.J. MaglianoD.J. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045.Diabetes Res. Clin. Pract.202218310911910.1016/j.diabres.2021.109119 34879977
    [Google Scholar]
  3. VenableC.L. FrevertE.U. KimY.B. FischerB.M. KamatkarS. NeelB.G. KahnB.B. Overexpression of protein-tyrosine phosphatase-1B in adipocytes inhibits insulin-stimulated phosphoinositide 3-kinase activity without altering glucose transport or Akt/Protein kinase B activation.J. Biol. Chem.200027524183181832610.1074/jbc.M908392199 10751417
    [Google Scholar]
  4. ObandaD.N. CefaluW.T. Modulation of cellular insulin signaling and PTP1B effects by lipid metabolites in skeletal muscle cells.J. Nutr. Biochem.20132481529153710.1016/j.jnutbio.2012.12.014 23481236
    [Google Scholar]
  5. ZabolotnyJ.M. HajF.G. KimY.B. KimH.J. ShulmanG.I. KimJ.K. NeelB.G. KahnB.B. Transgenic overexpression of protein-tyrosine phosphatase 1B in muscle causes insulin resistance, but overexpression with leukocyte antigen-related phosphatase does not additively impair insulin action.J. Biol. Chem.200427923248442485110.1074/jbc.M310688200 15031294
    [Google Scholar]
  6. Villamar-CruzO. Loza-MejíaM.A. Arias-RomeroL.E. Camacho-ArroyoI. Recent advances in PTP1B signaling in metabolism and cancer.Biosci. Rep.20214111BSR2021199410.1042/BSR20211994 34726241
    [Google Scholar]
  7. GiriL. MutalikV.K. VenkateshK.V. A steady state analysis indicates that negative feedback regulation of PTP1B by Akt elicits bistability in insulin-stimulated GLUT4 translocation.Theor. Biol. Med. Model.200411210.1186/1742‑4682‑1‑2 15291972
    [Google Scholar]
  8. Alonso-ChamorroM. Nieto-VazquezI. Montori-GrauM. Gomez-FoixA.M. Fernandez-VeledoS. LorenzoM. New emerging role of protein-tyrosine phosphatase 1B in the regulation of glycogen metabolism in basal and TNF-α-induced insulin-resistant conditions in an immortalised muscle cell line isolated from mice.Diabetologia20115451157116810.1007/s00125‑011‑2057‑0 21311858
    [Google Scholar]
  9. SainiV. Molecular mechanisms of insulin resistance in type 2 diabetes mellitus.World J. Diabetes201013687510.4239/wjd.v1.i3.68 21537430
    [Google Scholar]
  10. AbdelsalamS.S. KorashyH.M. ZeidanA. AgouniA. The Role of Protein Tyrosine Phosphatase (PTP)-1B in Cardiovascular Disease and Its Interplay with Insulin Resistance.Biomolecules20199728610.3390/biom9070286 31319588
    [Google Scholar]
  11. OwenC. CzopekA. AgouniA. GrantL. JudsonR. LeesE.K. Adipocyte-specific protein tyrosine phosphatase 1b deletion increases lipogenesis, adipocyte cell size and is a minor regulator of glucose homeostasis.PLoS ONE201272e32700
    [Google Scholar]
  12. OzekC. KanoskiS.E. ZhangZ.Y. GrillH.J. BenceK.K. Protein-tyrosine phosphatase 1B (PTP1B) is a novel regulator of central brain-derived neurotrophic factor and tropomyosin receptor kinase B (TrkB) signaling.J. Biol. Chem.201428946316823169210.1074/jbc.M114.603621 25288805
    [Google Scholar]
  13. KrishnanN. BonhamC.A. RusI.A. ShresthaO.K. GaussC.M. HaqueA. TociljA. Joshua-TorL. TonksN.K. Harnessing insulin- and leptin-induced oxidation of PTP1B for therapeutic development.Nat. Commun.20189128310.1038/s41467‑017‑02252‑2 29348454
    [Google Scholar]
  14. LiuR. MathieuC. BertheletJ. ZhangW. DupretJ.M. Rodrigues LimaF. Human Protein Tyrosine Phosphatase 1B (PTP1B): From Structure to Clinical Inhibitor Perspectives.Int. J. Mol. Sci.20222313702710.3390/ijms23137027 35806030
    [Google Scholar]
  15. KumarA. RanaD. RanaR. BhatiaR. Protein Tyrosine Phosphatase (PTP1B): A promising Drug Target Against Life-threatening Ailments.Curr. Mol. Pharmacol.2020131173010.2174/1874467212666190724150723 31339082
    [Google Scholar]
  16. VieiraM.N.N. Lyra e SilvaN.M. FerreiraS.T. De FeliceF.G. Protein Tyrosine Phosphatase 1B (PTP1B): A Potential Target for Alzheimer’s Therapy?Front. Aging Neurosci.20179710.3389/fnagi.2017.00007 28197094
    [Google Scholar]
  17. OlloquequiJ. CanoA. Sanchez-LópezE. CarrascoM. VerdaguerE. FortunaA. FolchJ. BullóM. AuladellC. CaminsA. EttchetoM. Protein tyrosine phosphatase 1B (PTP1B) as a potential therapeutic target for neurological disorders.Biomed. Pharmacother.202215511370910.1016/j.biopha.2022.113709 36126456
    [Google Scholar]
  18. SinghS. Singh GrewalA. GroverR. SharmaN. ChopraB. Kumar DhingraA. AroraS. RedhuS. LatherV. Recent updates on development of protein-tyrosine phosphatase 1B inhibitors for treatment of diabetes, obesity and related disorders.Bioorg. Chem.202212110562610.1016/j.bioorg.2022.105626 35255350
    [Google Scholar]
  19. EleftheriouP. GeronikakiA. PetrouA. PTP1b Inhibition, A Promising Approach for the Treatment of Diabetes Type II.Curr. Top. Med. Chem.201919424626310.2174/1568026619666190201152153 30714526
    [Google Scholar]
  20. KrishnanN. KovealD. MillerD.H. XueB. AkshinthalaS.D. KrageljJ. JensenM.R. GaussC.M. PageR. BlackledgeM. MuthuswamyS.K. PetiW. TonksN.K. Targeting the disordered C terminus of PTP1B with an allosteric inhibitor.Nat. Chem. Biol.201410755856610.1038/nchembio.1528 24845231
    [Google Scholar]
  21. ZhangZ.Y. LeeS.Y. PTP1B inhibitors as potential therapeutics in the treatment of Type 2 diabetes and obesity.Expert Opin. Investig. Drugs200312222323310.1517/13543784.12.2.223 12556216
    [Google Scholar]
  22. TamrakarA.K. MauryaC.K. RaiA.K. PTP1B inhibitors for type 2 diabetes treatment: a patent review (2011 – 2014).Expert Opin. Ther. Pat.201424101101111510.1517/13543776.2014.947268 25120222
    [Google Scholar]
  23. NieX.Jnr ChenZ. PangL. WangL. JiangH. ChenY. ZhangZ. FuC. RenB. ZhangJ. Oral Nano Drug Delivery Systems for the Treatment of Type 2 Diabetes Mellitus: An Available Administration Strategy for Antidiabetic Phytocompounds.Int. J. Nanomedicine202015102151024010.2147/IJN.S285134 33364755
    [Google Scholar]
  24. TsouR.C. BenceK.K. The Genetics of PTPN1 and Obesity: Insights from Mouse Models of Tissue-Specific PTP1B Deficiency.J. Obes.201220121810.1155/2012/926857 22811891
    [Google Scholar]
  25. ZhangC. YangX. MengX. WuL. LiuX. GaoJ. LiuS. WuJ. HuangD. WangZ. SuX. Discovery of Novel PTP1B Inhibitors with Once-Weekly Therapeutic Potential for Type 2 Diabetes: Design, Synthesis, and In Vitro and In Vivo Investigations of BimBH3 Peptide Analogues.J. Med. Chem.20236643030304410.1021/acs.jmedchem.2c02003 36749220
    [Google Scholar]
  26. ChenX. GanQ. FengC. LiuX. ZhangQ. Virtual Screening of Novel and Selective Inhibitors of Protein Tyrosine Phosphatase 1B over T-Cell Protein Tyrosine Phosphatase Using a Bidentate Inhibition Strategy.J. Chem. Inf. Model.201858483784710.1021/acs.jcim.8b00040 29608303
    [Google Scholar]
  27. LuoJ. ZhengM. JiangB. LiC. GuoS. WangL. LiX. YuR. ShiD. Antidiabetic activity in vitro and in vivo of BDB, a selective inhibitor of protein tyrosine phosphatase 1B, from Rhodomela confervoides.Br. J. Pharmacol.2020177194464448010.1111/bph.15195 32663313
    [Google Scholar]
  28. ErbeD.V. WangS. ZhangY.L. HardingK. KungL. TamM. StolzL. XingY. FureyS. QadriA. KlamanL.D. TobinJ.F. Ertiprotafib improves glycemic control and lowers lipids via multiple mechanisms.Mol. Pharmacol.2005671697710.1124/mol.104.005553 15475571
    [Google Scholar]
  29. ZasloffM. WilliamsJ.I. ChenQ. AndersonM. MaederT. HolroydK. JonesS. KinneyW. CheshireK. McLaneM. A spermine-coupled cholesterol metabolite from the shark with potent appetite suppressant and antidiabetic properties.Int. J. Obes.200125568969710.1038/sj.ijo.0801599 11360152
    [Google Scholar]
  30. LantzK.A. HartS.G.E. PlaneyS.L. RoitmanM.F. Ruiz-WhiteI.A. WolfeH.R. McLaneM.P. Inhibition of PTP1B by trodusquemine (MSI-1436) causes fat-specific weight loss in diet-induced obese mice.Obesity (Silver Spring)20101881516152310.1038/oby.2009.444 20075852
    [Google Scholar]
  31. FukudaS. OhtaT. SakataS. MorinagaH. ItoM. NakagawaY. TanakaM. MatsushitaM. Pharmacological profiles of a novel protein tyrosine phosphatase 1B inhibitor, JTT‐551.Diabetes Obes. Metab.201012429930610.1111/j.1463‑1326.2009.01162.x 20380650
    [Google Scholar]
  32. ItoM. FukudaS. SakataS. MorinagaH. OhtaT. Pharmacological effects of JTT-551, a novel protein tyrosine phosphatase 1B inhibitor, in diet-induced obesity mice.J. Diabetes Res.201420141710.1155/2014/680348 24987707
    [Google Scholar]
  33. QianS. ZhangM. HeY. WangW. LiuS. Recent advances in the development of protein tyrosine phosphatase 1B inhibitors for Type 2 diabetes.Future Med. Chem.20168111239125810.4155/fmc‑2016‑0064 27357615
    [Google Scholar]
  34. KimK.H. KimN.D. SeongB.L. Pharmacophore-based virtual screening: a review of recent applications.Expert Opin. Drug Discov.20105320522210.1517/17460441003592072 22823018
    [Google Scholar]
  35. ClarkD.E. What has virtual screening ever done for drug discovery?Expert Opin. Drug Discov.20083884185110.1517/17460441.3.8.841 23484962
    [Google Scholar]
  36. Suay-GarcíaB. Bueso-BordilsJ.I. FalcóA. Antón-FosG.M. Alemán-LópezP.A. Virtual Combinatorial Chemistry and Pharmacological Screening: A Short Guide to Drug Design.Int. J. Mol. Sci.2022233162010.3390/ijms23031620 35163543
    [Google Scholar]
  37. KrügerD.M. EversA. Comparison of structure- and ligand-based virtual screening protocols considering hit list complementarity and enrichment factors.ChemMedChem20105114815810.1002/cmdc.200900314 19908272
    [Google Scholar]
  38. StumpfeD. RipphausenP. BajorathJ. Virtual compound screening in drug discovery.Future Med. Chem.20124559360210.4155/fmc.12.19 22458679
    [Google Scholar]
  39. HassanN.M. AlhossaryA.A. MuY. KwohC.K. Protein-Ligand Blind Docking Using QuickVina-W With Inter-Process Spatio-Temporal Integration.Sci. Rep.2017711545110.1038/s41598‑017‑15571‑7 29133831
    [Google Scholar]
  40. O’BoyleN.M. BanckM. JamesC.A. MorleyC. VandermeerschT. HutchisonG.R. Open Babel: An open chemical toolbox.J. Cheminform.2011313310.1186/1758‑2946‑3‑33 21982300
    [Google Scholar]
  41. LandrumG. RDKit: Open-Source Cheminformatics Software.2016Available from: https://www.rdkit.org/ (accessed on 21-9-2024)
  42. LipinskiC.A. LombardoF. DominyB.W. FeeneyP.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3–25. 1.Adv. Drug Deliv. Rev.2001461-332610.1016/S0169‑409X(00)00129‑0 11259830
    [Google Scholar]
  43. SanderT. FreyssJ. von KorffM. RufenerC. DataWarrior: an open-source program for chemistry aware data visualization and analysis.J. Chem. Inf. Model.201555246047310.1021/ci500588j 25558886
    [Google Scholar]
  44. DainaA. MichielinO. ZoeteV. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep42717 28256516
    [Google Scholar]
  45. HanwellM.D. CurtisD.E. LonieD.C. VandermeerschT. ZurekE. HutchisonG.R. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform.J. Cheminform.2012411710.1186/1758‑2946‑4‑17 22889332
    [Google Scholar]
  46. PettersenE.F. GoddardT.D. HuangC.C. CouchG.S. GreenblattD.M. MengE.C. FerrinT.E. UCSF Chimera—A visualization system for exploratory research and analysis.J. Comput. Chem.200425131605161210.1002/jcc.20084 15264254
    [Google Scholar]
  47. BermanH.M. BattistuzT. BhatT.N. BluhmW.F. BourneP.E. BurkhardtK. FengZ. GillilandG.L. IypeL. JainS. FaganP. MarvinJ. PadillaD. RavichandranV. SchneiderB. ThankiN. WeissigH. WestbrookJ.D. ZardeckiC. The Protein Data Bank.Acta Crystallogr. D Biol. Crystallogr.200258689990710.1107/S0907444902003451 12037327
    [Google Scholar]
  48. KlopfensteinS.R. EvdokimovA.G. ColsonA.O. FairweatherN.T. NeumanJ.J. MaierM.B. GrayJ.L. GerweG.S. StakeG.E. HowardB.W. FarmerJ.A. PokrossM.E. DownsT.R. KasibhatlaB. PetersK.G. 1,2,3,4-Tetrahydroisoquinolinyl sulfamic acids as phosphatase PTP1B inhibitors.Bioorg. Med. Chem. Lett.20061661574157810.1016/j.bmcl.2005.12.051 16386905
    [Google Scholar]
  49. PuiusY.A. ZhaoY. SullivanM. LawrenceD.S. AlmoS.C. ZhangZ.Y. Identification of a second aryl phosphate-binding site in protein-tyrosine phosphatase 1B: A paradigm for inhibitor design.Proc. Natl. Acad. Sci. USA19979425134201342510.1073/pnas.94.25.13420 9391040
    [Google Scholar]
  50. GrovesM.R. YaoZ.J. RollerP.P. BurkeT.R.Jr BarfordD. Structural basis for inhibition of the protein tyrosine phosphatase 1B by phosphotyrosine peptide mimetics.Biochemistry19983751177731778310.1021/bi9816958 9922143
    [Google Scholar]
  51. AndersenH.S. IversenL.F. JeppesenC.B. BrannerS. NorrisK. RasmussenH.B. MøllerK.B. MøllerN.P.H. 2-(oxalylamino)-benzoic acid is a general, competitive inhibitor of protein-tyrosine phosphatases.J. Biol. Chem.2000275107101710810.1074/jbc.275.10.7101 10702277
    [Google Scholar]
  52. ZhangY. DuY. The development of protein tyrosine phosphatase1B inhibitors defined by binding sites in crystalline complexes.Future Med. Chem.201810192345236710.4155/fmc‑2018‑0089 30273014
    [Google Scholar]
  53. SinghT. BiswasD. JayaramB. AADS--an automated active site identification, docking, and scoring protocol for protein targets based on physicochemical descriptors.J. Chem. Inf. Model.201151102515252710.1021/ci200193z 21877713
    [Google Scholar]
  54. Valdés-TresancoM.S. Valdés-TresancoM.E. ValienteP.A. MorenoE. AMDock: a versatile graphical tool for assisting molecular docking with Autodock Vina and Autodock4.Biol. Direct20201511210.1186/s13062‑020‑00267‑2 32938494
    [Google Scholar]
  55. DebnathA. SharmaS. MazumderR. MazumderA. KumarR. KumarA. In Search of Novel SGLT2 Inhibitors by High-throughput Virtual Screening.Curr. Drug Discov. Technol.2023213203110.2174/0115701638267615231123160650
    [Google Scholar]
  56. DebnathA. MazumderR. Identification of novel CDK 4/6 inhibitors by high-throughput virtual screening.LDDD202421153229324610.2174/0115701808273043231130100833
    [Google Scholar]
  57. DebnathA. ChaudharyH. SharmaP. SinghR. SrivastavaS. A Deep Dive into PDE5 Inhibition: Innovative Discoveries via Virtual Screening.LDDD202421163425344210.2174/0115701808279586231221043744
    [Google Scholar]
  58. MorrisG.M. HueyR. LindstromW. SannerM.F. BelewR.K. GoodsellD.S. OlsonA.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility.J. Comput. Chem.200930162785279110.1002/jcc.21256 19399780
    [Google Scholar]
  59. LiH. LeungK.S. WongM.H. Idock: A multithreaded virtual screening tool for flexible ligand docking.2012 IEEE Symposium on Computational Intelligence and Computational Biology CIBCB 2012, 09-12 May 2012, San Diego, CA, USA, 2012, pp. 77-84.10.1109/CIBCB.2012.6217214
    [Google Scholar]
  60. LiuN. XuZ. Using LeDock as a docking tool for computational drug design.IOP Conf. Ser. Earth Environ. Sci.201921801214310.1088/1755‑1315/218/1/012143
    [Google Scholar]
  61. AlhossaryA. HandokoS.D. MuY. KwohC.K. Fast, accurate, and reliable molecular docking with QuickVina 2.Bioinformatics201531132214221610.1093/bioinformatics/btv082 25717194
    [Google Scholar]
  62. KoesD.R. BaumgartnerM.P. CamachoC.J. Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise.J. Chem. Inf. Model.20135381893190410.1021/ci300604z 23379370
    [Google Scholar]
  63. EberhardtJ. Santos-MartinsD. TillackA.F. ForliS. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings.J. Chem. Inf. Model.20216183891389810.1021/acs.jcim.1c00203 34278794
    [Google Scholar]
  64. TrottO. OlsonA.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.200931245546110.1002/jcc.21334
    [Google Scholar]
  65. NeeseF. WennmohsF. BeckerU. RiplingerC. The ORCA quantum chemistry program package.J. Chem. Phys.20201522222410810.1063/5.0004608 32534543
    [Google Scholar]
  66. KniziaG. KleinJ.E.M.N. Electron flow in reaction mechanisms--revealed from first principles.Angew. Chem. Int. Ed.201554185518552210.1002/anie.201410637 25737294
    [Google Scholar]
  67. KniziaG. Intrinsic Atomic Orbitals: An Unbiased Bridge between Quantum Theory and Chemical Concepts.J. Chem. Theory Comput.20139114834484310.1021/ct400687b 26583402
    [Google Scholar]
  68. Van Der SpoelD. LindahlE. HessB. GroenhofG. MarkA.E. BerendsenH.J.C. GROMACS: Fast, flexible, and free.J. Comput. Chem.200526161701171810.1002/jcc.20291 16211538
    [Google Scholar]
  69. BrooksB.R. BrooksC.L. MackerellA.D. NilssonL. PetrellaR.J. RouxB. CHARMM: Molecular dynamics simulation package.J. Comput. Chem.200930101545161410.1002/jcc.21287 19444816
    [Google Scholar]
  70. BerendsenH.J.C. van der SpoelD. van DrunenR. GROMACS: A message-passing parallel molecular dynamics implementation.Comput. Phys. Commun.1995911-3435610.1016/0010‑4655(95)00042‑E
    [Google Scholar]
  71. PillaiG.G. Jupyter Notebook for MD using Gromacs.2020Available from: https://github.com/giribio/MDNotebooks (accessed on 21-9-2024)
  72. HuangJ. RauscherS. NawrockiG. RanT. FeigM. de GrootB.L. GrubmüllerH. MacKerellA.D.Jr CHARMM36m: an improved force field for folded and intrinsically disordered proteins.Nat. Methods2017141717310.1038/nmeth.4067 27819658
    [Google Scholar]
  73. HuangJ. MacKerellA.D.Jr CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data.J. Comput. Chem.201334252135214510.1002/jcc.23354 23832629
    [Google Scholar]
  74. VanommeslaegheK. MacKerellA.D.Jr Automation of the CHARMM General Force Field (CGenFF) I: bond perception and atom typing.J. Chem. Inf. Model.201252123144315410.1021/ci300363c 23146088
    [Google Scholar]
  75. JorgensenW.L. ChandrasekharJ. MaduraJ.D. ImpeyR.W. KleinM.L. Comparison of simple potential functions for simulating liquid water.J. Chem. Phys.198379292693510.1063/1.445869
    [Google Scholar]
  76. WaalsD. Van der Waals Volumes and Radii.J. Phys. Chem.1964683441451
    [Google Scholar]
  77. BerendsenH.J.C. PostmaJ.P.M. van GunsterenW.F. DiNolaA. HaakJ.R. Molecular dynamics with coupling to an external bath.J. Chem. Phys.19848183684369010.1063/1.448118
    [Google Scholar]
  78. DebnathA. MazumderR. MazumderA. SinghR. SrivastavaS. In Silico Identification of HDAC Inhibitors for Multiple Myeloma: A Structure-based Virtual Screening, Drug Likeness, ADMET Profiling, Molecular Docking, and Molecular Dynamics Simulation Study.Lett. Drug Des. Discov.2023201
    [Google Scholar]
  79. Michaud-AgrawalN. DenningE.J. WoolfT.B. BecksteinO. MDAnalysis: A toolkit for the analysis of molecular dynamics simulations.J. Comput. Chem.201132102319232710.1002/jcc.21787 21500218
    [Google Scholar]
  80. BouyssetC. FiorucciS. ProLIF: a library to encode molecular interactions as fingerprints.J. Cheminform.20211317210.1186/s13321‑021‑00548‑6 34563256
    [Google Scholar]
  81. RoseA.S. BradleyA.R. ValasatavaY. DuarteJ.M. PrlićA. RoseP.W. NGL viewer: web-based molecular graphics for large complexes.Bioinformatics201834213755375810.1093/bioinformatics/bty419
    [Google Scholar]
  82. KumariR. KumarR. LynnA. g_mmpbsa--a GROMACS tool for high-throughput MM-PBSA calculations.J. Chem. Inf. Model.20145471951196210.1021/ci500020m 24850022
    [Google Scholar]
  83. The pandas development team. pandas-dev/pandas: Pandas2024Available from: https://zenodo.org/doi/10.5281/zenodo.3509134 (accessed on 21-9-2024)
  84. HunterJ.D. Matplotlib: A 2D Graphics Environment.Comput. Sci. Eng.200793909510.1109/MCSE.2007.55
    [Google Scholar]
  85. WaskomM. seaborn: statistical data visualization.J. Open Source Softw.2021660302110.21105/joss.03021
    [Google Scholar]
  86. Nhat PhuongD. FlowerD.R. ChattopadhyayS. ChattopadhyayA.K. Towards Effective Consensus Scoring in Structure-Based Virtual Screening.Interdiscip. Sci.2023151131145 36550341
    [Google Scholar]
  87. OchoaR. Palacio-RodriguezK. ClementeC.M. AdlerN.S. dockECR: Open consensus docking and ranking protocol for virtual screening of small molecules.J. Mol. Graph. Model.2021109August10802310.1016/j.jmgm.2021.108023 34555725
    [Google Scholar]
  88. Blanes-MiraC. Fernández-AguadoP. de Andrés-LópezJ. Fernández-CarvajalA. Ferrer-MontielA. Fernández-BallesterG. Comprehensive Survey of Consensus Docking for High-Throughput Virtual Screening.Molecules202228117510.3390/molecules28010175 36615367
    [Google Scholar]
  89. GoldsteinB.J. Protein-tyrosine phosphatase 1B (PTP1B): a novel therapeutic target for type 2 diabetes mellitus, obesity and related states of insulin resistance.Curr. Drug Targets Immune Endocr. Metabol. Disord.20011326527510.2174/1568008013341163 12477292
    [Google Scholar]
  90. ShindeR.N. KumarG.S. EqbalS. SobhiaM.E. Screening and identification of potential PTP1B allosteric inhibitors using in silico and in vitro approaches.PLOS ONE.2018136e0199020
    [Google Scholar]
  91. Campos-AlmazánM.I. Hernández-CamposA. CastilloR. Sierra-CamposE. Valdez-SolanaM. Avitia-DomínguezC. Téllez-ValenciaA. Computational methods in cooperation with experimental approaches to design protein tyrosine phosphatase 1b inhibitors in type 2 diabetes drug design: a review of the achievements of this century.Pharmaceuticals202215786610.3390/ph15070866 35890163
    [Google Scholar]
  92. HaM.T. ShresthaS. TranT.H. KimJ.A. WooM.H. ChoiJ.S. MinB.S. Inhibition of PTP1B by farnesylated 2-arylbenzofurans isolated from Morus alba root bark: unraveling the mechanism of inhibition based on in vitro and in silico studies.Arch. Pharm. Res.202043996197510.1007/s12272‑020‑01269‑4 32978714
    [Google Scholar]
  93. RaoG.S. RamachandranM.V. BajajJ.S. In silico structure-based design of a potent and selective small peptide inhibitor of protein tyrosine phosphatase 1B, a novel therapeutic target for obesity and type 2 diabetes mellitus: a computer modeling approach.J. Biomol. Struct. Dyn.200623437738410.1080/07391102.2006.10531233 16363874
    [Google Scholar]
  94. SzczepankiewiczB.G. LiuG. HajdukP.J. Abad-ZapateroC. PeiZ. XinZ. LubbenT.H. TrevillyanJ.M. StashkoM.A. BallaronS.J. LiangH. HuangF. HutchinsC.W. FesikS.W. JirousekM.R. Discovery of a potent, selective protein tyrosine phosphatase 1B inhibitor using a linked-fragment strategy.J. Am. Chem. Soc.2003125144087409610.1021/ja0296733 12670229
    [Google Scholar]
  95. ScapinG. PatelS.B. BeckerJ.W. WangQ. DespontsC. WaddletonD. SkoreyK. CromlishW. BaylyC. TherienM. GauthierJ.Y. LiC.S. LauC.K. RamachandranC. KennedyB.P. Asante-AppiahE. The structural basis for the selectivity of benzotriazole inhibitors of PTP1B.Biochemistry20034239114511145910.1021/bi035098j 14516196
    [Google Scholar]
  96. MacalaladM.A.B. GonzalesA.A.III In Silico Screening and Identification of Antidiabetic Inhibitors Sourced from Phytochemicals of Philippine Plants against Four Protein Targets of Diabetes (PTP1B, DPP-4, SGLT-2, and FBPase).Molecules20232814530110.3390/molecules28145301 37513175
    [Google Scholar]
  97. FriedmanA.J. PadgetteH.M. KramerL. LiechtyE.T. DonovanG.W. FoxJ.M. A biophysical rationale for the selective inhibition of PTP1B over TCPTP by nonpolar terpenoids.J. Phys. Chem. B202312783058316
    [Google Scholar]
  98. Irfan DarM. QureshiM.I. ZahiruddinS. AbassS. JanB. SultanA. AhmadS. In Silico Analysis of PTP1B Inhibitors and TLC-MS Bioautography-Based Identification of Free Radical Scavenging and α-Amylase Inhibitory Compounds from Heartwood Extract of Pterocarpus marsupium.ACS Omega2022750461564617310.1021/acsomega.2c04283 36570189
    [Google Scholar]
  99. CasertanoM. GenoveseM. PiazzaL. BalestriF. Del CorsoA. VitoA. PaoliP. SantiA. ImperatoreC. MennaM. Identifying Human PTP1B Enzyme Inhibitors from Marine Natural Products: Perspectives for Developing of Novel Insulin-Mimetic Drugs.Pharmaceuticals (Basel)202215332510.3390/ph15030325 35337123
    [Google Scholar]
  100. GenoveseM. NesiI. CaselliA. PaoliP. Natural α-Glucosidase and Protein Tyrosine Phosphatase 1B Inhibitors: A Source of Scaffold Molecules for Synthesis of New Multitarget Antidiabetic Drugs.Molecules20212616481810.3390/molecules26164818 34443409
    [Google Scholar]
  101. ZhaoD. ZhongS. Binding mechanisms of varic acid inhibitors on protein tyrosine phosphatase 1B and in silico design of the novel derivatives.Mol. Simul.202147977178410.1080/08927022.2021.1929970
    [Google Scholar]
  102. AlfarisiS. SantosoM. KristantiA.N. SiswantoI. PuspaningsihN.N.T. Synthesis, Antimicrobial Study, and Molecular Docking Simulation of 3,4-Dimethoxy-β-Nitrostyrene Derivatives as Candidate PTP1B Inhibitor.Sci. Pharm.20208833710.3390/scipharm88030037
    [Google Scholar]
  103. TibbittsJ. CanterD. GraffR. SmithA. KhawliL.A. Key factors influencing ADME properties of therapeutic proteins: A need for ADME characterization in drug discovery and development.MAbs20168222924510.1080/19420862.2015.1115937 26636901
    [Google Scholar]
  104. SunD. GaoW. HuH. ZhouS. Why 90% of clinical drug development fails and how to improve it?Acta Pharm. Sin. B20221273049306210.1016/j.apsb.2022.02.002 35865092
    [Google Scholar]
  105. MonariL. GalentinoK. CecchiniM. ChemFlow_py: a flexible toolkit for docking and rescoring.J. Comput. Aided Mol. Des.2023371156557210.1007/s10822‑023‑00527‑z 37620503
    [Google Scholar]
  106. ChilingaryanG. AbelyanN. SargsyanA. NazaryanK. SerobianA. ZakaryanH. Combination of consensus and ensemble docking strategies for the discovery of human dihydroorotate dehydrogenase inhibitors.Sci. Rep.20211111141710.1038/s41598‑021‑91069‑7 34075175
    [Google Scholar]
/content/journals/cad/10.2174/0115734099278007241004105500
Loading
/content/journals/cad/10.2174/0115734099278007241004105500
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test