Skip to content
2000
Volume 1, Issue 1
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

After the fields of liquid- and solid-state NMR spectroscopy have developed largely independently of each other over the past 50 years, materials of current interest call for new approaches which combine and merge spectroscopic techniques from either side. A particular possibility to promote NMR spectroscopy into this direction is provided by magic-angle sample spinning (MAS), which can be performed either at high speeds in solid-state NMR or at moderate speeds in combination with high-resolution NMR. In this way, new NMR methods and experiments have recently been developed, as will be discussed in this review. In solid-state NMR, new and versatile experiments are based on coherent spin-states and coherent transfer mechanisms, provided that fast MAS ensures efficient averaging of anisotropic interactions, and recoupling schemes selectively re-introduce the interactions of interest. In high-resolution NMR, MAS can be borrowed from solid-state NMR in order to ensure sufficient spectral resolution for samples with residual anisotropies or heterogeneities (so-called HRMAS). In such HRMAS studies, recoupling techniques become applicable and provide fully quantitative information on molecular structure and dynamics.

Loading

Article metrics loading...

/content/journals/cac/10.2174/1573411052948415
2005-01-01
2024-11-23
Loading full text...

Full text loading...

/content/journals/cac/10.2174/1573411052948415
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test