Skip to content
2000
Volume 18, Issue 3
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Background: Rapid escalation in textile, paper, pesticides, pharmaceuticals and several other chemical-based manufacturing industries due to amplification in human requirements have proportionately contributed to the extreme contamination of the water ecosystem, resulted from the discharge of toxic pollutants from industries. Effluents from textile industries are comprised of coloured dyes like Rhodamine B, Methyl Orange, Methylene Blue and phenolic compounds, which deserve special mention owing to their non-biodegradable, carcinogenic and severe detrimental nature. Urgent needs to ameliorate this fast declining environmental situation are of immense necessity in the current scenario. Objectives: In this regard, graphitic carbon nitride (GCN) is a distinguished material for water purification- based applications because of its exclusive characteristics, making it highly prospective for the degradation of toxic dyes from water by catalysis and adsorption techniques. GCN has been a material of conspicuous interest in recent times owing to its two-dimensional sheets like structure with favourable surface area, and cost-effective synthesis approaches along with high production yield. This article presents a detailed study of different aspects of GCN as a material of potential for water purification. Through extensive literature surveys, it has been shown that GCN is an effective material to be used in the fields of application. Several effective procedures like catalysis or adsorption for removal of dyes from water have been discussed with their basic science behind. Conclusion: This systematic effort shows that GCN can be considered to be one of the most efficient water purifiers with further advantages arising from its easy and cost-effective large scale synthesis.

Loading

Article metrics loading...

/content/journals/cac/10.2174/1573411017666210108092850
2022-03-01
2024-12-29
Loading full text...

Full text loading...

/content/journals/cac/10.2174/1573411017666210108092850
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test