Skip to content
2000
Volume 17, Issue 9
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Background: Electrochemical methods in drug analysis have a lot of advantages, including simplicity, speed, low-cost instrumentation, informing about the drug mechanism, and nonaffection by excipients in dosage forms. Electrochemical techniques utilize the advantages of nanomaterials to increase sensitivity and, in some cases, selectivity. Among these nanomaterials, metal oxide nanoparticles are also preferred by researchers because of their unique properties such as biocompatibility, stability, non-toxicity, and catalytic characteristic. Objective: This review provided brief information about metal oxide nanoparticles used in electrochemical sensors and summarized applications for drug analysis with these sensors in tables showing the studies in the literature during the last decade. Results: In the last decade, metal oxides are frequently used in electrochemical drug analysis as electrode modifier individually and with other nanomaterials especially carbon-based ones. All these studies showed that metal oxide nanoparticles increase the active surface area of the electrode and the catalytic activity. Conclusion: When metal oxide nanoparticles and carbon-based nanomaterials are used together, they create a synergistic effect that further increases catalytic activity and thus lowers detection limits to be obtained in nM even pM levels.

Loading

Article metrics loading...

/content/journals/cac/10.2174/1573411016999200729113252
2021-11-01
2025-01-10
Loading full text...

Full text loading...

/content/journals/cac/10.2174/1573411016999200729113252
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test