Skip to content
2000
Volume 17, Issue 7
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Background: Dye contamination of natural water system is a severe problem due to the considerable enhancement in the industrial activities. As the dyes are highly visible, nonbiodegradable, and toxic in nature, they are considered as a severe source of water pollution. Therefore, it is imperative to develop an inexpensive, simple, effective, and easy technique for their elimination from wastewater. Methods: Luffa aegyptiaca peel (LuAP), kitchen waste was exploited as a low-priced biosorbent for the adsorptive elimination of cationic methylene blue (MB) dye. The influence of several batch parameters, i.e., adsorbent dose, pH of the solution, initial dye concentration, adsorbate/adsorbent contact time, and temperature were optimized for maximum adsorption of MB from aqueous media. Furthermore, thermodynamics, kinetics, and isotherm studies were also carried out in order to comprehend the dominant mechanism for the adsorptive elimination of MB. Results: The kinetic data for the adsorption of MB onto the LuAP followed closely by the pseudosecond- order (PSO) kinetics, and the adsorption equilibrium data were observed to be well demonstrated by Langmuir isotherm. The equilibrium was attained in 180 min with maximum sorption capacity of 52.63 mg/g at an adsorbent dose of 3 g/L, pH of 7, and temperature of 303 K. Thermodynamic study reveals that the removal of MB by LuAP is spontaneous and endothermic. Conclusion: It has been concluded that LuAP can be efficiently utilized for the confiscation of cationic MB dye from polluted water.

Loading

Article metrics loading...

/content/journals/cac/10.2174/1573411016666200120113034
2021-09-01
2025-04-24
Loading full text...

Full text loading...

/content/journals/cac/10.2174/1573411016666200120113034
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test