Skip to content
2000
Volume 17, Issue 5
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Background: Nanomaterials-based cancer therapy plays a significant role in increasing the therapeutic efficiency of anticancer drugs, reducing side effects and targeted delivery of the drug payloads. The present study was aimed to enhance the anticancer effect of a novel dipeptide isolated from marine sponge-associated Bacillus pumilus AMK1 by formulating with Zinc oxide (ZnO) nanoparticles for the effective treatment against HepG2 liver cancer cells. Methods: ZnO nanoparticles were synthesized by chemical method and size of the nanoparticle was characterized by Scanning electron microscope, X-Ray diffraction and Fourier-transform infrared spectroscopy. Furthermore, ZnO nanoparticles were conjugated with the isolated dipeptide and evaluated for anticancer activity. In addition, distinct morphological changes were observed by performing apoptotic staining methods such as propidium iodide staining and acridine orange/ ethidium bromide staining. Furthermore, embryotoxic and teratogenic effects of conjugated dipeptide on the development of zebrafish embryo were investigated in this study. Results: It was observed that conjugated dipeptide showed enhanced cytotoxicity against HepG2 liver cancer cells without any toxic effect on normal liver cells. ZnO with dipeptide showed significant higher apoptosis of liver cancer cells, with around 19% in early apoptosis and 53% in late apoptosis stage. The obtained results suggest that ZnO nanoparticle conjugated dipeptide initiated cytotoxicity through apoptotic death in HepG2 cells. The embryotoxic studies in zebrafish embryos revealed the LC50 197.0 μg/mL. These findings suggest that conjugated dipeptide affected the development of zebrafish embryos only at relatively higher concentrations. Conclusion: The experimental results demonstrate that ZnO nanoparticle conjugated dipeptide has the potential to improve anticancer efficacy against liver cancer cells by inducing apoptosis in cancer cells without any effect on normal liver cells.

Loading

Article metrics loading...

/content/journals/cac/10.2174/1573411016666200106101109
2021-06-01
2025-07-13
Loading full text...

Full text loading...

/content/journals/cac/10.2174/1573411016666200106101109
Loading

  • Article Type:
    Research Article
Keyword(s): Anticancer; apoptosis; dipeptide; marine sponge; zebrafish embryotoxicity; ZnO nanoparticles
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test