Skip to content
2000
Volume 15, Issue 7
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Background: Designing an analytical methodology for complicated matrices, such as biological and environmental samples, is difficult since the sample preparation procedure is the most demanding step affecting the whole analytical process. Nowadays, this step has become more challenging by the legislations and environmental concerns since it is a prerequisite to eliminate or minimize the use of hazardous substances in traditional procedures by replacing with green techniques suitable for the sample matrix. Methods: In addition to the matrix, the nature of the analyte also influence the ease of creating green analytical techniques. Recent developments in the chemical analysis provide us new methodologies introducing microextraction techniques and among them, solid phase microextraction (SPME) has emerged as a simple, fast, low cost, reliable and portable sample preparation technique that minimizes solvent consumption. Results: The use of home-made fibers is popular in the last two decades since the selectivity can be tuned by changing the surface characteristics through chemical and electrochemical modifications. Latter technique is preferred since the electroactive polymers can be coated onto the fiber under controlled electrochemical conditions and the film thicknesses can be adjusted by simply changing the deposition parameters. Thermal resistance and mechanical strength can be readily increased by incorporating different dopant ions into the polymeric structure and selectivity can be tuned by inserting functional groups and nanostructures. A vast number of analytes with wide range of polarities extracted by this means can be determined with a suitable chromatographic detector coupled to the system. Therefore, the main task is to improve the physicochemical properties of the fiber along with the extraction efficiency and selectivity towards the various analytes by adjusting the electrochemical preparation conditions. Conclusion: This review covers the fine tuning conditions practiced in electrochemical preparation of SPME fibers and in-tube systems and their applications in environmental, food and clinical analysis.

Loading

Article metrics loading...

/content/journals/cac/10.2174/1573411015666190314155440
2019-12-01
2025-01-01
Loading full text...

Full text loading...

/content/journals/cac/10.2174/1573411015666190314155440
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test