Skip to content
2000
Volume 15, Issue 3
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Background: Diclofenac is a widely used nonsteroidal anti-inflammatory drug. Recent studies have shown that frequent consumption of this drug in high concentrations can cause heart diseases, so strict control of diclofenac’s quantity in commercial drugs is necessary. This paper presents the development of an optimized voltammetric methodology for the quantification of diclofenac, which offers some advantages over other electrochemical and accepted methods. Objective: Optimize with a Box-Behnken design the differential pulse voltammetry parameters towards the quantification of diclofenac in pharmaceutical samples. Methods: Diclofenac behavior in the working electrode was evaluated by cyclic voltammetry, in order to stablish the best conditions for diclofenac’s quantification. A Box-Behnken design was then used to optimize the differential pulse voltammetry parameters and stablish the analytical behavior of the proposed methodology. Commercial tablets were prepared for analysis according to the Pharmacopeia, the DPV optimized methodology was used to quantify diclofenac in the samples, and the results were statistically compared with those obtained with the official methodology. Results: After optimization, the analytical parameters found were: correlation coefficient of 0.998, detection limit of 0.001 μM, quantification limit of 0.0033 μM and sensitivity of 0.299 μA.μM-1. The statistical analysis showed there were no significant differences between the results obtained with the proposed methodology and those obtained with the official methodology. Conclusion: The statistical analysis showed that the proposed methodology is as reliable as the official spectrophotometric one for the quantification of diclofenac in commercial drugs, with very competitive analytical parameters, and even better to others found with more complex electrodes.

Loading

Article metrics loading...

/content/journals/cac/10.2174/1573411014666180423151749
2019-06-01
2025-05-04
Loading full text...

Full text loading...

/content/journals/cac/10.2174/1573411014666180423151749
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test