Skip to content
2000
image of Assessing the Removal of Ciprofloxacin from Aqueous Solutions by Basil Seed

Abstract

Introduction

This study introduces basil seeds as a novel, low-cost, and environmentally friendly adsorbent for the removal of ciprofloxacin from aqueous solutions. The primary innovation of this work lies in the use of readily available basil seeds, which have not been widely explored for this purpose, to achieve high adsorption capacity and efficiency.

Method

The adsorption process was systematically optimized by adjusting parameters such as time, temperature, pH, and ciprofloxacin concentration, with results showing maximum adsorption at 40 minutes, 70°C, and pH 7. Additionally, the study investigates the influence of interfering factors like competing ions and organic matter in water, providing a more realistic assessment of the material’s effectiveness.

Result

The findings demonstrate that basil seeds offer a promising alternative to conventional adsorbents, presenting both environmental and economic advantages for water treatment applications.

Conclusion

This work significantly advances current knowledge by proposing a sustainable solution for pharmaceutical pollutant removal from contaminated water.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110364506250108074320
2025-01-23
2025-04-02
Loading full text...

Full text loading...

References

  1. Punyapalakul P. Sitthisorn T. Removal of ciprofloxacin and carbamazepine by adsorption on functionalized mesoporous silicates. Worl. Acad. Sci. Eng. Tech. 2010 69
    [Google Scholar]
  2. Ding X. Ahmad W. Wu J. Rong Y. Ouyang Q. Chen Q. Bipyridine-mediated fluorescence charge transfer process based on copper ion grafted upconversion nanoparticle platform for ciprofloxacin sensing in aquatic products. Food Chem. 2023 404 Pt B 134761 10.1016/j.foodchem.2022.134761 36332581
    [Google Scholar]
  3. Gudimella K.K. Appidi T. Wu H.F. Battula V. Jogdand A. Rengan A.K. Gedda G. Sand bath assisted green synthesis of carbon dots from citrus fruit peels for free radical scavenging and cell imaging. Colloids Surf. B Biointerfaces 2021 197 111362 10.1016/j.colsurfb.2020.111362 33038604
    [Google Scholar]
  4. Yang D.D. Shi Y.S. Xiao T. Fang Y.H. Zheng X.J. Three-dimensional viologen-based lanthanide–organic frameworks: Photochromism and fluorescence detection of quinolone antibiotics. Inorg. Chem. 2023 62 15 6084 6091 10.1021/acs.inorgchem.3c00065 37016496
    [Google Scholar]
  5. Singh H. Thakur B. Bhardwaj S.K. Khatri M. Kim K.H. Bhardwaj N. Nanomaterial-based fluorescent biosensors for the detection of antibiotics in foodstuffs: A review. Food Chem. 2023 426 136657 10.1016/j.foodchem.2023.136657 37393822
    [Google Scholar]
  6. Uzunovic A. Vranic E. Influence of type and neutralization capacity of antacids on dissolution rate of ciprofloxacin and moxifloxacin from tablet. J. Environ. Earth Sci. 2018 10 5 2181 2197
    [Google Scholar]
  7. Zhong W. Wang L. Qin D. Zhou J. Duan H. Two novel fluorescent probes as systematic sensors for multiple metal ions: focus on detection of Hg2+. ACS Omega 2020 5 38 24285 24295 10.1021/acsomega.0c02481 33015445
    [Google Scholar]
  8. Nerthigan Y. Sharma A.K. Pandey S. Wu H.F. Cysteine capped copper/molybdenum bimetallic nanoclusters for fluorometric determination of methotrexate via the inner filter effect. Mikrochim. Acta 2019 186 3 130 10.1007/s00604‑019‑3230‑2 30707295
    [Google Scholar]
  9. Mathivanan J. Liu H. Gan J. Chandrasekaran A.R. Sheng J. Fluorescent aptaswitch for detection of lead ions. ACS Appl. Bio Mater. 2022 5 11 5089 5093 10.1021/acsabm.2c00368 35652916
    [Google Scholar]
  10. Kailasa S.K. Koduru J.R. Park T.J. Wu H.F. Lin Y.C. Progress of electrospray ionization and rapid evaporative ionization mass spectrometric techniques for the broad-range identification of microorganisms. Analyst (Lond.) 2019 144 4 1073 1103 10.1039/C8AN02034E 30698588
    [Google Scholar]
  11. Belkum A. Welker M. Pincus D. Charrier J.P. Girard V. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry in clinical microbiology: What are the current issues? Ann. Lab. Med. 2017 37 6 475 483 10.3343/alm.2017.37.6.475 28840984
    [Google Scholar]
  12. Sharma N. Chi C.H. Swaminathan N. Dabur D. Wu H.F. Introducing Stanene oxyboride nanosheets as white light emitting probe for selectively identifying <5 µm microplastic pollutants. Sens. Actuators B Chem. 2021 348 130617 10.1016/j.snb.2021.130617
    [Google Scholar]
  13. Gedda G. Wu H.F. Fabrication of surface modified ZnO nanorod array for MALDI-MS analysis of bacteria in a nanoliter droplet: A multiple function biochip. Sens. Actuators B Chem. 2019 288 667 677 10.1016/j.snb.2019.02.011
    [Google Scholar]
  14. Swaminathan N. Sharma N. Nerthigan Y. Wu H.F. Self-assembled diphenylalanine-zinc oxide hybrid nanostructures as a highly selective luminescent biosensor for trypsin detection. Appl. Surf. Sci. 2021 554 149600 10.1016/j.apsusc.2021.149600
    [Google Scholar]
  15. Meng S. Liu J. Yang Y. Mao S. Li Z. Lanthanide MOFs based portable fluorescence sensing platform: Quantitative and visual detection of ciprofloxacin and Al3+. Sci. Total Environ. 2024 922 171115 10.1016/j.scitotenv.2024.171115 38401730
    [Google Scholar]
  16. Amouzgar P. Salamatinia B. Advanced material for pharmaceutical removal from wastewater. Mishra A.K. Smart Materials for Waste Water Application Scrivener Publishing LLC 2016 179 212 10.1002/9781119041214.ch7
    [Google Scholar]
  17. Sharma N. Wu H.F. The emergence of red fluorescence from two-dimensional nitrogenated-stanene oxide nanosheets. Nanoscale 2020 12 19 10505 10510 10.1039/D0NR02292F 32393944
    [Google Scholar]
  18. Sharma N. Swaminathan N. Chi C.H. Gurung R.B. Wu H.F. Efficient solar steam generator using black SnOx cored PANI polymeric mesh under one Sun illumination. J. Ind. Eng. Chem. 2022 107 45 52 10.1016/j.jiec.2021.11.037
    [Google Scholar]
  19. Etebu E. Arikekp I. Antibiotics: Classification and mechanisms of action with emphasis on molecular perspective. Int. J. Appl. Microbiol. Biotechnol. Res. 2016 4 90 101
    [Google Scholar]
  20. Zhao L. Ahmed F. Zeng Y. Xu W. Xiong H. Recent developments in G-quadruplex binding ligands and specific beacons on smart fluorescent sensor for targeting metal ions and biological analytes. ACS Sens. 2022 7 10 2833 2856 10.1021/acssensors.2c00992 36112358
    [Google Scholar]
  21. Dissanayake M. Wu D. Wu H.F. Synthesis of Fluorescent Titanium Nanoclusters at ambient temperature for highly sensitive and selective detection of Creatine Kinase MM in myocardial infarction. Colloids Surf. B Biointerfaces 2022 217 112594 10.1016/j.colsurfb.2022.112594 35671572
    [Google Scholar]
  22. Jumaa S. Karaman R. Antibiotics classification and mechanisms. Int. Res. J. Environ. Sci. 2014 3 11 78 81
    [Google Scholar]
  23. Ahmad F. Salem-Bekhit M.M. Khan F. Alshehri S. Khan A. Ghoneim M.M. Wu H.F. Taha E.I. Elbagory I. Unique properties of surface-functionalized nanoparticles for bio-application: Functionalization mechanisms and importance in application. Nanomaterials (Basel) 2022 12 8 1333 10.3390/nano12081333 35458041
    [Google Scholar]
  24. Wu H.F. Chen C.H. Wu M.T. Observation of self‐ion–molecule reactions during collisionally activated dissociation in an ion‐trap mass spectrometer. J. Mass Spectrom. 2004 39 4 396 401 10.1002/jms.601 15103653
    [Google Scholar]
  25. Dabur D. Chan Y.T. Wu H.F. Two-dimensional ion–molecule chelation reaction (2D-IMCRs) to form a two-dimensional dual optical sensor (2D-DOS): Synthesis and application of Phen-SnO 2 nanosheets for the fluorometric and colorimetric sensing of nitroaromatic explosives. Environ. Sci. Nano 2023 10 11 3208 3219 10.1039/D3EN00475A
    [Google Scholar]
  26. Swaminathan N. Nerthigan Y. Wu H.F. Polyaniline stabilized Silver (I) Oxide nanocubes for sensitive and selective detection of hemoglobin in urine for hematuria evaluation. Microchem. J. 2020 155 104723 10.1016/j.microc.2020.104723
    [Google Scholar]
  27. Goel S. Antibiotics in the environment: A review. In Emerging micro-pollutants in the environment: Occurrence, fate, and distribution. Amer. Chem. Soc. 2015 19 42
    [Google Scholar]
  28. Kumarihamy M. Wu H.F. A rapid, cost-free, and disposable solar steam generator for sea/wastewater purification based on 2D titanium oxide nanosheets via ultrasound synthesis. Materials Today Sustainability 2023 22 100377 10.1016/j.mtsust.2023.100377
    [Google Scholar]
  29. Borghi A. Sergio M. Palma A. Tetracycline: Production, waste treatment and environmental impact assessment. Braz. J. Pharm. Sci. 2014 50 1 10.1590/S1984‑82502011000100003
    [Google Scholar]
  30. Martínez M. Flores H.I. Amoxicillin in the aquatic environment, Its Fate and environmental risk. Environ. Toxicol. Chem. 2011 30 12 2786 2792 21919043
    [Google Scholar]
  31. Danner M.C. Robertson A. Behrends V. Reiss J. Antibiotic pollution in surface fresh waters: Occurrence and effects. J. Sld. Earth 2017 7 334 347
    [Google Scholar]
  32. Kadhum M.A.R. Alkhazrajy O.S. Adsorption of Ciprofloxacin hydrochloride from aqueous solution by Iraqi porcelinaite adsorbent. J. Al-Nahrain Univ 2014 17 1
    [Google Scholar]
  33. Drlica K. Malik M. Fluoroquinolones: Action and resistance. Curr. Top. Med. Chem. 2003 3 3 249 282 10.2174/1568026033452537 12570763
    [Google Scholar]
  34. Pignatello R. Leonardi A. Fuochi V. Petronio Petronio G. Greco A.S. Furneri P.M. A Method for efficient loading of Ciprofloxacin hydrochloride in cationic solid lipid nanoparticles: Formulation and microbiological evaluation. Nanomaterials (Basel) 2018 8 5 304 10.3390/nano8050304 29734771
    [Google Scholar]
  35. Sharma P. Jain A. Jain S. Pahwa R. Yar M.S. Ciprofloxacin: Review on developments in synthetic, analytical, and medicinal aspects. Int. J. Appl. Microbiol. Biotechnol. Res. 2016 4 90 101
    [Google Scholar]
  36. Sharma P.C. Jain A. Jain S. Pahwa R. Yar M.S. Ciprofloxacin: Review on developments in synthetic, analytical, and medicinal aspects. J Enzyme Inhib Med Chem 2010 25 4 577 589 10.3109/14756360903373350 20235755
    [Google Scholar]
  37. Wu Q. Li Z. Hong H. Yin K. Tie L. Adsorption and intercalation of ciprofloxacin on montmorillonite. Applied Clay Science 2010 50 2 204 211 10.1016/j.clay.2010.08.001
    [Google Scholar]
  38. Kumar S. Sorptive removal of ciprofloxacin hydrochloride from simulated wastewater using sawdust: Kinetic study and effect of pH”. Int. Res. J. Environ. Sci. 2014 3 11 78 81
    [Google Scholar]
  39. Tosif M.M. Najda A. Bains A. Kaushik R. Dhull S.B. Chawla P. Walasek-Janusz M. A comprehensive review on plant-derived mucilage: Characterization, functional properties, applications, and its utilization for nanocarrier fabrication. Polymers (Basel) 2021 13 7 1066 10.3390/polym13071066 33800613
    [Google Scholar]
  40. Firoozbahr M. Kingshott P. Palombo E.A. Zaferanloo B. Recent advances in using natural antibacterial additives in bioactive wound dressings. Pharmaceutics 2023 15 2 644 10.3390/pharmaceutics15020644 36839966
    [Google Scholar]
  41. Kučuk N. Primožič M. Knez Ž. Leitgeb M. Sustainable biodegradable biopolymer-based nanoparticles for healthcare applications. Int. J. Mol. Sci. 2023 24 4 3188 10.3390/ijms24043188 36834596
    [Google Scholar]
  42. Haroon K. Kherb J. Jeyaseelan C. Sen M. Recent advances and sustainable approaches towards efficient wastewater treatment using natural waste derived nanocomposites: A review. Nature Environment and Pollution Technology 2023 22 3 1643 1653 10.46488/NEPT.2023.v22i03.051
    [Google Scholar]
  43. Swain S.S. Paidesetty S.K. Padhy R.N. Hussain T. Nano-technology platforms to increase the antibacterial drug suitability of essential oils: A drug prospective assessment. OpenNano 2023 9 100115 10.1016/j.onano.2022.100115
    [Google Scholar]
  44. Gebremeskel A.F. Ngoda P.N. Kamau-Mbuthia E.W. Mahungu S.M. The effect of roasting, storage temperature, and ethanoic basil ( Ocimum basilicum L.) extract on the oxidative stability of crude sesame ( Sesamum indicum L.) oil. Food Sci. Nutr. 2022 10 8 2736 2748 10.1002/fsn3.2877 35959257
    [Google Scholar]
  45. Singh R. Soni S.K. Patel R.P. Kalra A. Technology for improving essential oil yield of Ocimum basilicum L. (sweet basil) by application of bioinoculant colonized seeds under organic field conditions. Ind. Crops Prod. 2013 45 335 342 10.1016/j.indcrop.2013.01.003
    [Google Scholar]
/content/journals/cac/10.2174/0115734110364506250108074320
Loading
/content/journals/cac/10.2174/0115734110364506250108074320
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test