Skip to content
2000
image of Investigation of Norfloxacin Adsorption and Detection in Wastewater Utilizing Hyaluronic Acid and Dopamine-modified Mesoporous Carbon

Abstract

Objective

The increasing environmental pollution from antibiotics poses a significant threat to public health, and this is a critical issue that requires immediate attention.

Methods

In this study, a simple and effective surface modification technique was presented using hyaluronic acid-dopamine conjugate (HA-DA) to impart anti-biofouling properties to basin-concave mesoporous carbon (BCMC). The synthesized materials were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, nitrogen physisorption, and thermogravimetric analysis (TGA). The optimum adsorption performance of the synthesized materials was investigated adsorption isotherms and kinetics experiments. Afterward, the obtained particles were used as solid-phase extraction subjects for Norfloxacin (Nor) analysis in wastewater.

Results

After being quantified by high-performance liquid chromatography (SPE-HPLC), the synthesized BCMC@HA-DA demonstrated an impressive binding capacity of 14.80 mg/g for Nor. Following six adsorption-desorption cycles, the adsorption revercory remained at 81.65%.

Conclusion

The prepared BCMC@HA-DA could successfully be concentrated Nor from wastewater, indicating significant potential for addressing environmental biofouling issues.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110364328250121234405
2025-02-04
2025-03-29
Loading full text...

Full text loading...

References

  1. Liu S. Sinharoy A. Lee G.Y. Lee M.J. Lee B.C. Chung C.M. Synergistic effects of ionizing radiation process in the integrated coagulation-sedimentation, fenton oxidation, and biological process for treatment of leachate wastewater. Catalysts 2023 13 10 1376 10.3390/catal13101376
    [Google Scholar]
  2. Duan S. Dong H. Jiang C. Liang H. Jiang L. Xu Q. Cheng X. Qiang Z. Removal of particulate matter and dissolved organic matter from sedimentation sludge water during pre-sedimentation process: Performances and mechanisms. J. Environ. Sci. (China) 2025 148 409 419 10.1016/j.jes.2023.11.026 39095176
    [Google Scholar]
  3. Zhang L. Shang W. Gu M. Sun Y. Zhang Y. Chen Y. Ozonation and granular activated carbon adsorption for the removal of refractory organic matter and decolorization during wastewater tertiary treatment. Environ. Eng. Sci. 2023 40 5 187 195 10.1089/ees.2022.0175
    [Google Scholar]
  4. Sessink P. Tans B. Devolder D. Schrijvers R. Spriet I. Evaluation of environmental antibiotic contamination by surface wipe sampling in a large care centre. J. Antimicrob. Chemother. 2024 79 7 1637 1644 10.1093/jac/dkae159 38828950
    [Google Scholar]
  5. Yang L. Zhao F. Yen H. Feng Q. Li M. Wang X. Tang J. Bu Q. Chen L. Urbanization and land use regulate soil vulnerability to antibiotic contamination in urban green spaces. J. Hazard. Mater. 2024 465 133363 10.1016/j.jhazmat.2023.133363 38157809
    [Google Scholar]
  6. Stennett C.A. O’Hara N.N. Sprague S. Petrisor B. Jeray K.J. Leekha S. Yimgang D.P. Joshi M. O’Toole R.V. Bhandari M. Slobogean G.P. Effect of extended prophylactic antibiotic duration in the treatment of open fracture wounds differs by level of contamination. J. Orthop. Trauma 2020 34 3 113 120 10.1097/BOT.0000000000001715 32084088
    [Google Scholar]
  7. He C. Li H. Meng W. Li J. Liu W. Xiao N. Enhanced and rapid electro-oxidation degradation for highly concentrated tetracycline by Mn nanoparticle-doped NiAl-LDHs. ChemNanoMat 2023 9 6 e202300125 10.1002/cnma.202300125
    [Google Scholar]
  8. Zhang C. Dong S. Chen C. Zhang Q. Zhou D. Co-substrate addition accelerated amoxicillin degradation and detoxification by up-regulating degradation related enzymes and promoting cell resistance. J. Hazard. Mater. 2020 394 122574 10.1016/j.jhazmat.2020.122574 32278124
    [Google Scholar]
  9. Russell J.N. Yost C.K. Alternative, environmentally conscious approaches for removing antibiotics from wastewater treatment systems. Chemosphere 2021 263 128177 10.1016/j.chemosphere.2020.128177 33297145
    [Google Scholar]
  10. Phoon B.L. Ong C.C. Mohamed Saheed M.S. Show P.L. Chang J.S. Ling T.C. Lam S.S. Juan J.C. Conventional and emerging technologies for removal of antibiotics from wastewater. J. Hazard. Mater. 2020 400 122961 10.1016/j.jhazmat.2020.122961 32947727
    [Google Scholar]
  11. Xu Z. Jia Y. Huang B. Zhao D. Long X. Hu S. Li C. Dao G. Chen B. Pan X. Spatial distribution, pollution characteristics, and health risks of antibiotic resistance genes in China: A review. Environ. Chem. Lett. 2023 21 4 2285 2309 10.1007/s10311‑023‑01605‑2
    [Google Scholar]
  12. Feng L. Cheng Y. Zhang Y. Li Z. Yu Y. Feng L. Zhang S. Xu L. Distribution and human health risk assessment of antibiotic residues in large-scale drinking water sources in Chongqing area of the Yangtze River. Environ. Res. 2020 185 109386 10.1016/j.envres.2020.109386 32222632
    [Google Scholar]
  13. Liu C. Li B. Liu M. Mao S. Demand, status, and prospect of antibiotics detection in the environment. Sens. Actuators B Chem. 2022 369 132383 10.1016/j.snb.2022.132383
    [Google Scholar]
  14. Grehs B.W.N. Linton M.A.O. Clasen B. de Oliveira Silveira A. Carissimi E. Antibiotic resistance in wastewater treatment plants: Understanding the problem and future perspectives. Arch. Microbiol. 2021 203 3 1009 1020 10.1007/s00203‑020‑02093‑6 33112995
    [Google Scholar]
  15. G B. Banat F. Abu Haija M. Photoelectrochemical advanced oxidation processes for simultaneous removal of antibiotics and heavy metal ions in wastewater using 2D-on-2D WS2@CoFe2O4 heteronanostructures. Environ. Pollut. 2023 339 122753 10.1016/j.envpol.2023.122753 37852314
    [Google Scholar]
  16. Homlok R. Kiskó G. Kovács A. Tóth T. Takács E. Mohácsi-Farkas C. Wojnárovits L. Szabó L. Antibiotics in a wastewater matrix at environmentally relevant concentrations affect coexisting resistant/sensitive bacterial cultures with profound impact on advanced oxidation treatment. Sci. Total Environ. 2021 754 142181 10.1016/j.scitotenv.2020.142181 33254869
    [Google Scholar]
  17. Zhang L. Zhang C. Lian K. Liu C. Effects of chronic exposure of antibiotics on microbial community structure and functions in hyporheic zone sediments. J. Hazard. Mater. 2021 416 126141 10.1016/j.jhazmat.2021.126141 34492930
    [Google Scholar]
  18. Xiang S. Wang X. Ma W. Liu X. Zhang B. Huang F. Liu F. Guan X. Response of microbial communities of karst river water to antibiotics and microbial source tracking for antibiotics. Sci. Total Environ. 2020 706 135730 10.1016/j.scitotenv.2019.135730 31791761
    [Google Scholar]
  19. Gao M. Liang H. Bao S. Xu T. Zhang Y. Bai J. Li C. Bifunctional BiOCl/TiO2 decorated membrane for antibiotic photodegradation and oil-water emulsion separation. Appl. Surf. Sci. 2022 578 151960 10.1016/j.apsusc.2021.151960
    [Google Scholar]
  20. Guo X. Zhao B. Wang L. Zhang Z. Li J. Gao Z. High flux nanofiltration membrane via surface modification using spirocyclic quaternary ammonium diamine for efficient antibiotics/salt separation. Separ. Purif. Tech. 2023 325 124736 10.1016/j.seppur.2023.124736
    [Google Scholar]
  21. Berges J. Moles S. Ormad M.P. Mosteo R. Gómez J. Antibiotics removal from aquatic environments: Adsorption of enrofloxacin, trimethoprim, sulfadiazine, and amoxicillin on vegetal powdered activated carbon. Environ. Sci. Pollut. Res. Int. 2021 28 7 8442 8452 10.1007/s11356‑020‑10972‑0 33063209
    [Google Scholar]
  22. Yu H. Zheng K. Xu X. Liu X. Zhao B. Ding H. Yu Z. Deng C. Preparation of β-cyclodextrin/dopamine hydrochloride-graphene oxide and its adsorption properties for sulfonamide antibiotics. Environ. Sci. Pollut. Res. Int. 2022 29 46 70192 70201 10.1007/s11356‑022‑20828‑4 35583764
    [Google Scholar]
  23. Fu J. Zhao Y. Yao Q. Addo-Bankas O. Ji B. Yuan Y. Wei T. Esteve-Núñez A. A review on antibiotics removal: Leveraging the combination of grey and green techniques. Sci. Total Environ. 2022 838 Pt 3 156427 10.1016/j.scitotenv.2022.156427 35660594
    [Google Scholar]
  24. Samadi-Maybodi A. Rahmati A. One-step fabrication of three metals Zif and its application for adsorption of levofloxacin in aqueous solution. Curr. Anal. Chem. 2020 16 7 933 946 10.2174/1573411015666191116120818
    [Google Scholar]
  25. Mukhtar A. Ullah S. Al-Sehemi A.G. Assiri M.A. Saqib S. Amen R. Babar M. Bustam M.A. Ahmad T. Synthesis and stability of metal-organic frameworks (MOFs) photocatalysts for the removal of persistent organic pollutants (POPs) from wastewater. Curr. Anal. Chem. 2020 17 1 61 81 10.2174/1573411016999200507121320
    [Google Scholar]
  26. Mirizadeh S. Al Arni S. Elwaheidi M. Salih A.A.M. Converti A. Casazza A.A. Adsorption of tetracycline and ciprofloxacin from aqueous solution on raw date palm waste. Chem. Eng. Technol. 2023 46 9 1957 1964 10.1002/ceat.202300193
    [Google Scholar]
  27. Lin X. Su M. Fang F. Hong J. Zhang Y. Zhou S.F. Hierarchically annular mesoporous carbon derived from phenolic resin for efficient removal of antibiotics in wastewater. Molecules 2022 27 19 6735 10.3390/molecules27196735 36235269
    [Google Scholar]
  28. Vafaeezadeh M. Saynisch R. Lösch A. Kleist W. Thiel W.R. Fast and selective aqueous-phase oxidation of styrene to acetophenone using a mesoporous Janus-type palladium catalyst. Molecules 2021 26 21 6450 10.3390/molecules26216450 34770859
    [Google Scholar]
  29. Díez P. Lucena-Sánchez E. Escudero A. Llopis-Lorente A. Villalonga R. Martínez-Máñez R. Ultrafast directional Janus Pt-mesoporous silica nanomotors for smart drug delivery. ACS Nano 2021 15 3 4467 4480 10.1021/acsnano.0c08404 33677957
    [Google Scholar]
  30. Kankala R.K. Han Y.H. Xia H.Y. Wang S.B. Chen A.Z. Nanoarchitectured prototypes of mesoporous silica nanoparticles for innovative biomedical applications. J. Nanobiotechnology 2022 20 1 126 10.1186/s12951‑022‑01315‑x 35279150
    [Google Scholar]
  31. Liu C.G. Han Y.H. Zhang J.T. Kankala R.K. Wang S.B. Chen A.Z. Rerouting engineered metal-dependent shapes of mesoporous silica nanocontainers to biodegradable Janus-type (sphero-ellipsoid) nanoreactors for chemodynamic therapy. Chem. Eng. J. 2019 370 1188 1199 10.1016/j.cej.2019.03.272
    [Google Scholar]
  32. Guo Y. Jin Z. Li X. Wang F. Yan Y. Feng L. Nitrogen-doped carbon derived from reindeer manure for tetracycline hydrochloride removal: Synergetic effects of adsorption and catalysis. J. Environ. Chem. Eng. 2022 10 5 108286 10.1016/j.jece.2022.108286
    [Google Scholar]
  33. Alsuhaibani A.M. Refat M.S. Adam A.M.A. El-Desouky M.G. El-Bindary A.A. 2023 https://doi.org/
  34. Essa H.L. Farghal H.H. Madkour T.M. El-Sayed M.M.H. Environmentally safe biopolymer-clay composite for efficient adsorption of ciprofloxacin in fresh and saline solutions. Heliyon 2024 10 7 e28641 10.1016/j.heliyon.2024.e28641 38571597
    [Google Scholar]
  35. Zou J. Shao Y. Hu X. Zhang H. Ye S. Li J. Pore structure-dependent sieving effect of mesoporous carbon to mitigate the interference of natural organic matter for selective sulfamethoxazole removal from wastewater. Chem. Eng. J. 2024 484 149337 10.1016/j.cej.2024.149337
    [Google Scholar]
  36. Gopi S. Al-Mohaimeed A.M. Elshikh M.S. Yun K. Facile fabrication of bifunctional SnO–NiO heteromixture for efficient electrocatalytic urea and water oxidation in urea-rich waste water. Environ. Res. 2021 201 111589 10.1016/j.envres.2021.111589 34214560
    [Google Scholar]
  37. Xiong T. Gao F. Wen J. Yi H. Zhao S. Zhou Y. Tang X. Advances in flexible material catalysts for environmental applications. J. Clean. Prod. 2024 484 144269 10.1016/j.jclepro.2024.144269
    [Google Scholar]
  38. Liu Y. Xu H.Y. Komarneni S. The piezoelectric and piezo-photoelectric effects: Emerging strategies for catalytic performance enhancement of low-dimensional nanostructures. Appl. Catal. A Gen. 2024 670 119550 10.1016/j.apcata.2023.119550
    [Google Scholar]
  39. Sun D. Iqbal N. Liao W. Lu Y. He X. Wang K. Ma B. Zhu Y. Sun K. Sun Z. Li T. Efficient degradation of MB dye by 1D FeWO4 nanomaterials through the synergistic effect of piezo-Fenton catalysis. Ceram. Int. 2022 48 17 25465 25473 10.1016/j.ceramint.2022.05.225
    [Google Scholar]
  40. Kim S. Jang Y. Jang L.K. Sunwoo S.H. Kim T. Cho S.W. Lee J.Y. Electrochemical deposition of dopamine–hyaluronic acid conjugates for anti-biofouling bioelectrodes. J. Mater. Chem. B Mater. Biol. Med. 2017 5 23 4507 4513 10.1039/C7TB00028F 32263977
    [Google Scholar]
  41. Wang S. Ren K. Zhang M. Shen L. Zhou G. Ding Y. Xin Q. Luo J. Xie J. Li J. Self-adhesive, strong antifouling, and mechanically reinforced methacrylate hyaluronic acid cross-linked carboxybetaine zwitterionic hydrogels. Biomacromolecules 2024 25 1 474 485 10.1021/acs.biomac.3c01088 38114427
    [Google Scholar]
  42. Lee S. Kim S. Park J. Lee J.Y. Universal surface modification using dopamine-hyaluronic acid conjugates for anti-biofouling. Int. J. Biol. Macromol. 2020 151 1314 1321 10.1016/j.ijbiomac.2019.10.177 31751701
    [Google Scholar]
  43. Sinolits A.V. Chernysheva M.G. Popov A.G. Egorov A.V. Badun G.A. Hyaluronic acid adsorption on nanodiamonds: Quantitative characteristics and mechanism. Colloids Surf. A Physicochem. Eng. Asp. 2021 618 126461 10.1016/j.colsurfa.2021.126461
    [Google Scholar]
  44. Luo X. Liu Y. Zheng C. Huo Q. Liu X. Development of novel hyaluronic acid/human-like collagen bio-composite membranes: A facile “surface modification-assembly” approach. Int. J. Biol. Macromol. 2021 193 Pt A 378 386 10.1016/j.ijbiomac.2021.10.091 34699897
    [Google Scholar]
  45. Kwon I.S. Tang G. Chiang P.J. Bettinger C.J. Texture-dependent adhesion in polydopamine nanomembranes. ACS Appl. Mater. Interfaces 2018 10 9 7681 7687 10.1021/acsami.7b15608 29376629
    [Google Scholar]
  46. Nam H.J. Kim B. Ko M.J. Jin M. Kim J.M. Jung D.Y. A new mussel-inspired polydopamine sensitizer for dye-sensitized solar cells: Controlled synthesis and charge transfer. Chemistry 2012 18 44 14000 14007 10.1002/chem.201202283 23001762
    [Google Scholar]
  47. Caniglia G. Teuber A. Barth H. Mizaikoff B. Kranz C. Atomic force and infrared spectroscopic studies on the role of surface charge for the anti-biofouling properties of polydopamine films. Anal. Bioanal. Chem. 2023 415 11 2059 2070 10.1007/s00216‑022‑04431‑7 36434170
    [Google Scholar]
  48. Zhou M. An X. Liu Z. Chen J. Biosafe polydopamine-decorated MnO2 nanoparticles with hemostasis and antioxidative properties for postoperative adhesion prevention. ACS Biomater. Sci. Eng. 2024 10 2 1031 1039 10.1021/acsbiomaterials.3c01413 38215215
    [Google Scholar]
  49. Li J. Chen L. Zhang X. Guan S. Enhancing biocompatibility and corrosion resistance of biodegradable Mg-Zn-Y-Nd alloy by preparing PDA/HA coating for potential application of cardiovascular biomaterials. Mater. Sci. Eng. C 2020 109 110607 10.1016/j.msec.2019.110607 32228927
    [Google Scholar]
  50. Zhang S. Hou J. Yuan Q. Xin P. Cheng H. Gu Z. Wu J. Arginine derivatives assist dopamine-hyaluronic acid hybrid hydrogels to have enhanced antioxidant activity for wound healing. Chem. Eng. J. 2020 392 123775 10.1016/j.cej.2019.123775
    [Google Scholar]
  51. Zhang L. Yin H.B. Luo J.J. Yang P.H. Cai J.Y. Construction of electrochemical sensor based on poly dopamine-hyaluronic acid composite membrane for detection of hydrogen peroxide. Chin. J. Anal. Chem. 2013 41 4 534 539 10.1016/S1872‑2040(13)60644‑1
    [Google Scholar]
  52. Liu Y. Liu S. Tian Y. Wang X. Tian.; Y, Wang, X.F. Dual/triple template-induced evolved emulsion for controllable construction of anisotropic carbon nanoparticles from concave to convex. Adv. Mater. 2023 35 10 2210963 10.1002/adma.202210963 36591699
    [Google Scholar]
  53. Kim H.H. Park J.B. Kang M.J. Park Y.H. Surface-modified silk hydrogel containing hydroxyapatite nanoparticle with hyaluronic acid–dopamine conjugate. Int. J. Biol. Macromol. 2014 70 516 522 10.1016/j.ijbiomac.2014.06.052 24999272
    [Google Scholar]
  54. Ge Y. Zhao S. Yuan B. Gao Y. Liu R. In-situ growth of metal coordination-synergistic imprinted polymer onto shrimp shell-derived magnetic FeNi biochar for specific recognition of monocrotaline in herbal medicine. Materials Today Sustainability 2023 24 100599 10.1016/j.mtsust.2023.100599
    [Google Scholar]
  55. a Guo P. Xu M. Zhong F. Liu C. Cui X. Zhang J. Zhao M. Yang Z. Jia L. Yang C. Xue W. Fan D. Molecularly imprinted solid-phase extraction combined with non-ionic hydrophobic deep eutectic solvents dispersed liquid-liquid microextraction for efficient enrichment and determination of the estrogens in serum samples. Talanta 2024 269 125480 125480 10.1016/j.talanta.2023.125480 38039681
    [Google Scholar]
  56. b Ge Y. Guo P. Xu X. Chen G. Zhang X. Shu H. Zhang B. Luo Z. Chang C. Fu Q. Selective analysis of aristolochic acid I in herbal medicines by dummy molecularly imprinted solid‐phase extraction and HPLC. J. Sep. Sci. 2017 40 13 2791 2799 10.1002/jssc.201700116 28520091
    [Google Scholar]
  57. Xu X. Guo P. Shu H. Qu K. Ge Y. Chen G. Luo Z. Du W. Chang C. Liu R. Fu Q. Preparation of biocompatible molecularly imprinted film on biowaste-derived magnetic pomegranate rind carbon for protein recognition in biological sample. Mater. Sci. Eng. C 2020 115 111063 10.1016/j.msec.2020.111063 32600689
    [Google Scholar]
  58. Saleh Medina L.M. Cánneva A. Molinari F.N. D’Accorso N. Negri R.M. High removal of chlorinated solvents by reusable polydimethylsiloxane based absorbents. Polym. Eng. Sci. 2023 63 2 366 378 10.1002/pen.26211
    [Google Scholar]
  59. Qiu N. Wang H. Tang R. Yang Y. Kong X. Hu Z. Zhong F. Tan H. Synthesis of phenothiazine-based porous organic polymer and its application to iodine adsorption. Microporous Mesoporous Mater. 2024 363 112833 10.1016/j.micromeso.2023.112833
    [Google Scholar]
  60. Zakutevskyy O. Khalameida S. Sydorchuk V. Kovtun M. The effect of hydrothermal, microwave, and mechanochemical treatments of tin phosphate on sorption of some cations. Materials (Basel) 2023 16 13 4788 10.3390/ma16134788 37445102
    [Google Scholar]
  61. Du J. Wang Y. Wang Y. Li R. In situ recrystallization of mesoporous carbon-silica composite for the synthesis of hierarchically porous zeolites. Materials (Basel) 2020 13 7 1640 10.3390/ma13071640 32252258
    [Google Scholar]
  62. Xu X. Guo P. Luo Z. Ge Y. Zhou Y. Chang R. Du W. Chang C. Fu Q. Preparation and characterization of surface molecularly imprinted films coated on multiwall carbon nanotubes for recognition and separation of lysozyme with high binding capacity and selectivity. RSC Advances 2017 7 30 18765 18774 10.1039/C6RA28063C
    [Google Scholar]
  63. Xu X. Liu R. Guo P. Luo Z. Cai X. Shu H. Ge Y. Chang C. Fu Q. Fabrication of a novel magnetic mesoporous molecularly imprinted polymer based on pericarpium granati-derived carrier for selective absorption of bromelain. Food Chem. 2018 256 91 97 10.1016/j.foodchem.2018.02.118 29606477
    [Google Scholar]
  64. Shu H. Chen G. Wang L. Cui X. Wang Q. Li W. Chang C. Guo Q. Luo Z. Fu Q. Adenine-coated magnetic multiwalled carbon nanotubes for the selective extraction of aristolochic acids based on multiple interactions. J. Chromatogr. A 2020 1627 461382 10.1016/j.chroma.2020.461382 32823094
    [Google Scholar]
  65. Maleki A. Mohammad M. Emdadi Z. Asim N. Azizi M. Safaei J. Adsorbent materials based on a geopolymer paste for dye removal from aqueous solutions. Arab. J. Chem. 2020 13 1 3017 3025 10.1016/j.arabjc.2018.08.011
    [Google Scholar]
  66. Ge Y. Ding L. Liu Y. Li X. Synthesis, characterization and evaluation of a pH-responsive molecular imprinted polymer for Matrine as an intelligent drug delivery system. E-Polymers 2024 24 1 20230184 10.1515/epoly‑2023‑0184
    [Google Scholar]
  67. Wu N. Luo Z. Ge Y. Guo P. Du K. Tang W. Du W. Zeng A. Chang C. Fu Q. A novel surface molecularly imprinted polymer as the solid-phase extraction adsorbent for the selective determination of ampicillin sodium in milk and blood samples. J. Pharm. Anal. 2016 6 3 157 164 10.1016/j.jpha.2016.01.004 29403976
    [Google Scholar]
  68. Ge Y.H. Shu H. Xu X.Y. Guo P.Q. Liu R.L. Luo Z.M. Chang C. Fu Q. Combined magnetic porous molecularly imprinted polymers and deep eutectic solvents for efficient and selective extraction of aristolochic acid I and II from rat urine. Mater. Sci. Eng. C 2019 97 650 657 10.1016/j.msec.2018.12.057 30678952
    [Google Scholar]
  69. Hou X. Yu H. Zhu F. Li Z. Yang Q. [Determination of organophosphorus pesticides based on graphene oxide aerogel solid phase extraction column]. Se Pu 2022 40 1 10 16 10.3724/SP.J.1123.2021.03032 34985211
    [Google Scholar]
  70. Bashir K. Guo P. Chen G. Li Y. Ge Y. Shu H. Fu Q. Synthesis, characterization, and application of griseofulvin surface molecularly imprinted polymers as the selective solid phase extraction sorbent in rat plasma samples. Arab. J. Chem. 2020 13 2 4082 4091 10.1016/j.arabjc.2019.06.007
    [Google Scholar]
  71. Arputharaj E. Singh S. Pasupuleti R.R. Kuo C.A. Ya W.J. Huang Y.H. Wu Y.R. Chao Y.Y. Huang Y.L. A phosphonium ionic liquid conjugated magnetic graphitic carbon nitride nanocomposite: An effective sample pretreatment tool for selenium separation and determination. Anal. Methods 2023 15 47 6531 6540 10.1039/D3AY01312J 37990560
    [Google Scholar]
  72. Li G. Zha J. Niu M. Hu F. Hui X. Tang T. Fizir M. He H. Bifunctional monomer molecularly imprinted sol-gel polymers based on the surface of magnetic halloysite nanotubes as an effective extraction approach for norfloxacin. Appl. Clay Sci. 2018 162 409 417 10.1016/j.clay.2018.06.003
    [Google Scholar]
  73. Springer V. Jacksén J. Ek P. Lista A.G. Emmer Å. Determination of fluoroquinolones in bovine milk samples using a pipette-tip SPE step based on multiwalled carbon nanotubes prior to CE separation. J. Sep. Sci. 2014 37 1-2 158 164 10.1002/jssc.201300980 24227292
    [Google Scholar]
  74. Vybíralová Z. Nobilis M. Zoulova J. Květina J. Petr P. High-performance liquid chromatographic determination of ciprofloxacin in plasma samples. J. Pharm. Biomed. Anal. 2005 37 5 851 858 10.1016/j.jpba.2004.09.034 15862658
    [Google Scholar]
  75. Bagheri N. Al Lawati H.A.J. Al Sharji N.A. Hassanzadeh J. Magnetic zinc based 2D-metal organic framework as an efficient adsorbent for simultaneous determination of fluoroquinolones using 3D printed microchip and liquid chromatography tandem mass spectrometry. Talanta 2021 224 121796 10.1016/j.talanta.2020.121796 33379024
    [Google Scholar]
/content/journals/cac/10.2174/0115734110364328250121234405
Loading
/content/journals/cac/10.2174/0115734110364328250121234405
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: norfloxacin ; Basin-concave mesoporous carbon ; environmental biofouling ; wastewater
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test