Skip to content
2000
image of A Review of the Mechanisms of Heavy Metal Adsorption and Migration in Algae

Abstract

In recent years, the substantial influx of heavy metal pollutants into aquatic environments due to human activities has emerged as a critical issue. Heavy metals are characterized by their high toxicity, persistence, and resistance to degradation, which not only result in significant economic losses but also exert severe impacts on ecosystems and human health. Microalgae, due to their adsorption capacity for heavy metals, have become a new avenue for the biological remediation of heavy metal pollution in aquatic environments. With the advantages of low cost, renewability, environmental friendliness, and strong adaptability, microalgae showed broad application prospects in the management of heavy metal pollution. This manuscript provides a comprehensive review of microalgae-based remediation of heavy metal pollution in aquatic environments. It examines the factors influencing heavy metal adsorption by microalgal cells, compares the adsorption capacities of different algal species, and evaluates the adsorption effectiveness of live versus dead algal cells. The review also summarizes the mechanisms of heavy metal accumulation and transfer in microalgae and identifies future research priorities and directions for enhancing the heavy metal enrichment capabilities of microalgae.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110363448250224105106
2025-03-06
2025-04-02
Loading full text...

Full text loading...

References

  1. Yuan J. Lu Y. Wang C. Cao X. Chen C. Cui H. Zhang M. Wang C. Li X. Johnson A.C. Sweetman A.J. Du D. Ecology of industrial pollution in China. Ecosyst. Health Sust. 2020 6 1 10.1080/20964129.2020.1779010
    [Google Scholar]
  2. Dutta D. Arya S. Kumar S. Industrial wastewater treatment: Current trends, bottlenecks, and best practices. Chemosphere 2021 285 131245 10.1016/j.chemosphere.2021.131245 34246094
    [Google Scholar]
  3. Zamora-Ledezma C. Negrete-Bolagay D. Figueroa F. Zamora-Ledezma E. Ni M. Alexis F. Guerrero V.H. Heavy metal water pollution: A fresh look about hazards, novel and conventional remediation methods. Environ. Technol. Innovation. 2021 22 101504 10.1016/j.eti.2021.101504
    [Google Scholar]
  4. Chowdhury S. Mazumder M.A.J. Al-Attas O. Husain T. Heavy metals in drinking water: Occurrences, implications, and future needs in developing countries. Sci. Total Environ. 2016 569-570 476 488 10.1016/j.scitotenv.2016.06.166 27355520
    [Google Scholar]
  5. Fang T. Yang K. Lu W. Cui K. Li J. Liang Y. Hou G. Zhao X. Li H. An overview of heavy metal pollution in Chaohu Lake, China: Enrichment, distribution, speciation, and associated risk under natural and anthropogenic changes. Environ. Sci. Pollut. Res. Int. 2019 26 29 29585 29596 10.1007/s11356‑019‑06210‑x 31440974
    [Google Scholar]
  6. Hu H. Jin Q. Kavan P. A study of heavy metal pollution in china: Current status, pollution-control policies and countermeasures. Sustainability 2014 6 9 5820 5838 10.3390/su6095820
    [Google Scholar]
  7. Liu Q. Xu X. Lin L. Bai L. Yang M. Wang W. Wu X. Wang D. A retrospective analysis of heavy metals and multi elements in the Yangtze river basin: Distribution characteristics, migration tendencies and ecological risk assessment. Water Res. 2024 254 121385 10.1016/j.watres.2024.121385 38452525
    [Google Scholar]
  8. Zhang Z. Yu N. Liu D. Zhang Y. Assessment and source analysis of heavy metal contamination in water and surface sediment in Dongping Lake, China. Chemosphere 2022 307 Pt 3 136016 10.1016/j.chemosphere.2022.136016 35970210
    [Google Scholar]
  9. Lin Y. Luo K. Su Z. Wu Y. Xiao W. Qin M. Lin J. Zhang S. Zhang Y. Jiang Y. Peng B. Guo Y. Wang X. Wang Y. Imposed by urbanization on soil heavy metal content of lake wetland and evaluation of ecological risks in East Dongting lake. Urban Clim. 2022 42 101117 10.1016/j.uclim.2022.101117
    [Google Scholar]
  10. Zhou Q. Ren B. Li Y. Niu Y. Ding X. Yao X. Bian H. Trends and sources of dissolved heavy metal pollution in water of rivers and lakes in China. Environ. Chem. 2020 8 2044 2054 10.7524/j.issn.0254‑6108.2019060403
    [Google Scholar]
  11. Ma Y. Egodawatta P. McGree J. Liu A. Goonetilleke A. Human health risk assessment of heavy metals in urban stormwater. Sci. Total Environ. 2016 557-558 764 772 10.1016/j.scitotenv.2016.03.067 27046140
    [Google Scholar]
  12. Hao W. Liu H. Hao S. Mao K. Characterization of heavy metal contamination in groundwater of typical mining area in Hunan Province. Sci. Rep. 2024 14 1 13054 10.1038/s41598‑024‑63460‑7 38844525
    [Google Scholar]
  13. Zhu M. Li B. Liu G. Groundwater risk assessment of abandoned mines based on pressure-state-response: The example of an abandoned mine in southwest China. Energy Rep. 2022 8 10728 10740 10.1016/j.egyr.2022.08.171
    [Google Scholar]
  14. Rehman K. Fatima F. Waheed I. Akash M.S.H. Prevalence of exposure of heavy metals and their impact on health consequences. J. Cell. Biochem. 2018 119 1 157 184 10.1002/jcb.26234 28643849
    [Google Scholar]
  15. Noman M.A. Feng W. Zhu G. Hossain M.B. Chen Y. Zhang H. Sun J. Bioaccumulation and potential human health risks of metals in commercially important fishes and shellfishes from Hangzhou Bay, China. Sci. Rep. 2022 12 1 10.1038/s41598‑022‑08471‑y
    [Google Scholar]
  16. Rai P.K. Lee S.S. Zhang M. Tsang Y.F. Kim K.H. Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environ. Int. 2019 125 365 385 10.1016/j.envint.2019.01.067 30743144
    [Google Scholar]
  17. Han R. Zhou B. Huang Y. Lu X. Li S. Li N. Bibliometric overview of research trends on heavy metal health risks and impacts in 1989–2018. J. Clean. Prod. 2020 276 123249 10.1016/j.jclepro.2020.123249
    [Google Scholar]
  18. Puga A.P. Melo L.C.A. de Abreu C.A. Coscione A.R. Paz-Ferreiro J. Leaching and fractionation of heavy metals in mining soils amended with biochar. Soil Tillage Res. 2016 164 25 33 10.1016/j.still.2016.01.008
    [Google Scholar]
  19. He L. Zhong H. Liu G. Dai Z. Brookes P.C. Xu J. Remediation of heavy metal contaminated soils by biochar: Mechanisms, potential risks and applications in China. Environ. Pollut. 2019 252 846 855 10.1016/j.envpol.2019.05.151
    [Google Scholar]
  20. Haidar Z. Fatema K. Shoily S.S. Sajib A.A. Disease-associated metabolic pathways affected by heavy metals and metalloid. Toxicol. Rep. 2023 10 554 570 10.1016/j.toxrep.2023.04.010 37396849
    [Google Scholar]
  21. Pan Z. Gong T. Liang P. Heavy metal exposure and cardiovascular disease. Circ. Res. 2024 134 9 1160 1178 10.1161/CIRCRESAHA.123.323617 38662861
    [Google Scholar]
  22. Ijomone O.M. Ifenatuoha C.W. Aluko O.M. Ijomone O.K. Aschner M. The aging brain: Impact of heavy metal neurotoxicity. Crit. Rev. Toxicol. 2020 50 9 801 814 10.1080/10408444.2020.1838441 33210961
    [Google Scholar]
  23. Wu W. Wang J. Yu Y. Jiang H. Liu N. Bi J. Liu M. Optimizing critical source control of five priority-regulatory trace nlms from industrial wastewater in China: Implications for health management. Environ. Pollut. 2018 235 apr 761 770 10.1016/j.envpol.2018.01.005 29339345
    [Google Scholar]
  24. Brüger A. Fafilek G. Restrepo B O.J. Rojas-Mendoza L. On the volatilisation and decomposition of cyanide contaminations from gold mining. Sci. Total Environ. 2018 627 1167 1173 10.1016/j.scitotenv.2018.01.320 30857081
    [Google Scholar]
  25. Kennedy C. Yard E. Dignam T. Buchanan S. Condon S. Brown M.J. Raymond J. Rogers H.S. Sarisky J. de Castro R. Arias I. Breysse P. Blood lead levels among children aged <6 Years — Flint, Michigan, 2013–2016. MMWR Morb. Mortal. Wkly. Rep. 2016 65 25 650 654 10.15585/mmwr.mm6525e1 27359350
    [Google Scholar]
  26. Kumar M. Seth A. Singh A.K. Rajput M.S. Sikandar M. Remediation strategies for heavy metals contaminated ecosystem: A review. Environ. Sustain. Indic. 2021 12 100155 10.1016/j.indic.2021.100155
    [Google Scholar]
  27. Khalid S. Shahid M. Niazi N.K. Murtaza B. Bibi I. Dumat C. A comparison of technologies for remediation of heavy metal contaminated soils. J. Geochem. Explor. 2017 182 247 268 10.1016/j.gexplo.2016.11.021
    [Google Scholar]
  28. Xiang H. Min X. Tang C.J. Sillanpää M. Zhao F. Recent advances in membrane filtration for heavy metal removal from wastewater: A mini review. J. Water Process Eng. 2022 49 103023 10.1016/j.jwpe.2022.103023
    [Google Scholar]
  29. Vo T.S. Hossain M.M. Jeong H.M. Kim K. Heavy metal removal applications using adsorptive membranes. Nano Converg. 2020 7 1 36 10.1186/s40580‑020‑00245‑4 33191443
    [Google Scholar]
  30. Zhou S. Jiao Y. Zou J. Zheng Z. Zhu G. Deng R. Wang C. Peng Y. Wang J. Adsorption of Sb(III) from solution by immobilized Microcystis aeruginosa microspheres loaded with magnetic Nano-Fe3O4. Water 2024 16 5 681 10.3390/w16050681
    [Google Scholar]
  31. Jioui I. Abrouki Y. Aboul Hrouz S. Sair S. Dânoun K. Zahouily M. Efficient removal of Cu2+ and methylene blue pollutants from an aqueous solution by applying a new hybrid adsorbent based on alginate-chitosan and HAP derived from Moroccan rock phosphate. Environ. Sci. Pollut. Res. Int. 2023 30 49 107790 107810 10.1007/s11356‑023‑29890‑y 37740159
    [Google Scholar]
  32. Loukili H. Mabrouki J. Anouzla A. Kouzi Y. Younssi S.A. Digua K. Abrouki Y. Pre-treated Moroccan natural clays: Application to the wastewater treatment of textile industry. Desalination Water Treat. 2021 240 124 136 10.5004/dwt.2021.27644
    [Google Scholar]
  33. Chen M. Long A. Zhang W. Wang Z. Xiao X. Gao Y. Zhou L. Li Y. Wang J. Sun S. Tang M. Peng Y. Wang H. Recent advances in alginate-based hydrogels for the adsorption–desorption of heavy metal ions from water: A review. Sep. Purif. Technol. 2025 353 128265 10.1016/j.seppur.2024.128265
    [Google Scholar]
  34. Chen H. Pan Y. Zhang W. Long A. Chen M. Xiao X. Wang Z. Tang M. Peng Y. Sun S. Zhang H. He Q. Adsorption-desorption of copper(II) by temperature-sensitive nano-biochar@PNIPAM/alginate double-network composite hydrogel: Enhanced mechanisms and application potentials. Chem. Eng. J. 2024 495 153356 10.1016/j.cej.2024.153356
    [Google Scholar]
  35. Zhang W. Wu Y. Chen H. Gao Y. Zhou L. Wan J. Li Y. Tang M. Peng Y. Wang B. Wang H. Sun S. Efficient phosphate removal from water by multi-engineered PVA/SA matrix double network hydrogels: Influencing factors and removal mechanism Sep. Purif. Technol 2024 336 10.1016/j.seppur.2023.126261
    [Google Scholar]
  36. Bali M. Tlili H. Removal of heavy metals from wastewater using infiltration-percolation process and adsorption on activated carbon. Int. J. Environ. Sci. Technol. 2019 16 1 249 258 10.1007/s13762‑018‑1663‑5
    [Google Scholar]
  37. Benalia M.C. Youcef L. Bouaziz M.G. Achour S. Menasra H. Removal of heavy metals from industrial wastewater by chemical precipitation: Mechanisms and sludge characterization. Arab. J. Sci. Eng. 2022 47 5 5587 5599 10.1007/s13369‑021‑05525‑7
    [Google Scholar]
  38. Tran T.K. Chiu K.F. Lin C.Y. Leu H.J. Electrochemical treatment of wastewater: Selectivity of the heavy metals removal process. Int. J. Hydrogen Energy 2017 42 45 27741 27748 10.1016/j.ijhydene.2017.05.156
    [Google Scholar]
  39. Chen Q. Yao Y. Li X. Lu J. Zhou J. Huang Z. Comparison of heavy metal removals from aqueous solutions by chemical precipitation and characteristics of precipitates. J. Water Process Eng. 2018 26 289 300 10.1016/j.jwpe.2018.11.003
    [Google Scholar]
  40. Reddy K.V. Ranjit P. Priyanka E. Maddela N.R. Prasad R. Bioremediation of heavy metals-contaminated sites by microbial extracellular polymeric substances: A critical view. J. Environ. Chem. Ecotoxicol 2024 6 408 421
    [Google Scholar]
  41. Zeraatkar A.K. Ahmadzadeh H. Talebi A.F. Moheimani N.R. McHenry M.P. Potential use of algae for heavy metal bioremediation, a critical review. J. Environ. Manage. 2016 181 817 831 10.1016/j.jenvman.2016.06.059 27397844
    [Google Scholar]
  42. Xie P. Zahoor F. Iqbal S.S. Elimination of toxic heavy metals from industrial polluted water by using hydrophytes. J. Clean. Prod. 2022 352 131358 10.1016/j.jclepro.2022.131358
    [Google Scholar]
  43. Ponton D.E. Graves S.D. Fortin C. Janz D. Amyot M. Schiavon M. Selenium interactions with algae: Chemical processes at biological uptake sites, bioaccumulation, and intracellular metabolism. Plants 2020 9 4 528 10.3390/plants9040528 32325841
    [Google Scholar]
  44. Shruthi S. Hemavathy R.V. Myco-remediation of chromium heavy metal from industrial wastewater: A review. Toxicol. Rep. 2024 13 101740 10.1016/j.toxrep.2024.101748
    [Google Scholar]
  45. Karnwal A. Unveiling the promise of biosorption for heavy metal removal from water sources. Desalination Water Treat. 2024 319 100523 10.1016/j.dwt.2024.100523
    [Google Scholar]
  46. Anastopoulos I. Kyzas G.Z. Progress in batch biosorption of heavy metals onto algae. J. Mol. Liq. 2015 209 77 86 10.1016/j.molliq.2015.05.023
    [Google Scholar]
  47. Kumar P. Perumal P.K. Sumathi Y. Singhania R.R. Chen C.W. Dong C.D. Patel A.K. Nano-enabled microalgae bioremediation: Advances in sustainable pollutant removal and value-addition. Environ. Res. 2024 263 Pt 1 120011 10.1016/j.envres.2024.120011 39284486
    [Google Scholar]
  48. Ahmad A. Banat F. Alsafar H. Hasan S.W. Algae biotechnology for industrial wastewater treatment, bioenergy production, and high-value bioproducts. Sci. Total Environ. 2022 806 Pt 2 150585 10.1016/j.scitotenv.2021.150585 34597562
    [Google Scholar]
  49. Chugh M. Kumar L. Shah M.P. Bharadvaja N. Algal Bioremediation of heavy metals: An insight into removal mechanisms, recovery of by-products, challenges, and future opportunities. Energy Nexus 2022 7 100129 10.1016/j.nexus.2022.100129
    [Google Scholar]
  50. Faruque M.O. Uddin S. Hossain M.M. Hossain S.M.Z. Shafiquzzaman M. Razzak S.A. A comprehensive review on microalgae-driven heavy metals removal from industrial wastewater using living and nonliving microalgae. J. Hazard. Mater. 2024 16 100492 10.1016/j.hazadv.2024.100492
    [Google Scholar]
  51. Xiao X. Li W. Jin M. Zhang L. Qin L. Geng W. Responses and tolerance mechanisms of microalgae to heavy metal stress: A review. Mar. Environ. Res. 2023 183 105805 10.1016/j.marenvres.2022.105805 36375224
    [Google Scholar]
  52. Maurya R. Zhu X. Valverde-Pérez B. Ravi Kiran B. General T. Sharma S. Kumar Sharma A. Thomsen M. Venkata Mohan S. Mohanty K. Angelidaki I. Advances in microalgal research for valorization of industrial wastewater. Bioresour. Technol. 2022 343 126128 10.1016/j.biortech.2021.126128 34655786
    [Google Scholar]
  53. Yan C. Qu Z. Wang J. Cao L. Han Q. Microalgal bioremediation of heavy metal pollution in water: Recent advances, challenges, and prospects. Chemosphere 2022 286 Pt 3 131870 10.1016/j.chemosphere.2021.131870 34403898
    [Google Scholar]
  54. Urrutia C. Yañez-Mansilla E. Jeison D. Bioremoval of heavy metals from metal mine tailings water using microalgae biomass. Algal Res. 2019 43 101659 10.1016/j.algal.2019.101659
    [Google Scholar]
  55. Wang J. Chen R. Fan L. Cui L. Zhang Y. Cheng J. Wu X. Zeng W. Tian Q. Shen L. Construction of fungi-microalgae symbiotic system and adsorption study of heavy metal ions. Sep. Purif. Technol 2021 268 10.1016/j.seppur.2021.118689
    [Google Scholar]
  56. Akmukhanova N.R. Zayadan B.K. Sadvakasova A.K. Bolatkhan K. Bauenova M.O. Consortium of higher aquatic plants and microalgae designed to purify sewage of heavy metal ions. Russ. J. Plant Physiol. 2018 65 1 143 149 10.1134/S1021443718010028
    [Google Scholar]
  57. Touliabah H.E.S. El-Sheekh M.M. Ismail M.M. El-Kassas H. A review of microalgae- and cyanobacteria-based biodegradation of organic pollutants. Molecules 2022 27 3 1141 10.3390/molecules27031141 35164405
    [Google Scholar]
  58. Gül Ü.D. Şenol Z.M. Ertit Taştan B. Treatment of the Allura red food colorant contaminated water by a novel cyanobacterium Desertifilum tharense. Water Sci. Technol. 2022 85 1 279 290 10.2166/wst.2021.615 35050883
    [Google Scholar]
  59. Deng J. Fu D. Hu W. Lu X. Wu Y. Bryan H. Physiological responses and accumulation ability of Microcystis aeruginosa to zinc and cadmium: Implications for bioremediation of heavy metal pollution. Bioresour. Technol. 2020 303 122963 10.1016/j.biortech.2020.122963 32050124
    [Google Scholar]
  60. Qin Y. Tao Y. Pollution status of heavy metals and metalloids in Chinese lakes: Distribution, bioaccumulation and risk assessment. Ecotoxicol. Environ. Saf. 2022 248 114293 10.1016/j.ecoenv.2022.114293 36403301
    [Google Scholar]
  61. Hu M. Ma R. Xue K. Cao Z. Xiong J. Loiselle S.A. Shen M. Hou X. Eutrophication evolution of lakes in China: Four decades of observations from space. J. Hazard. Mater. 2024 470 134225 10.1016/j.jhazmat.2024.134225 38583204
    [Google Scholar]
  62. Guan Q. Feng L. Hou X. Schurgers G. Zheng Y. Tang J. Eutrophication changes in fifty large lakes on the Yangtze Plain of China derived from MERIS and OLCI observations. Remote Sens. Environ. 2020 246 111890 10.1016/j.rse.2020.111890
    [Google Scholar]
  63. Peng Y. Xiao X. Ren B. Zhang Z. Luo J. Yang X. Zhu G. Biological activity and molecular mechanism of inactivation of Microcystis aeruginosa by ultrasound irradiation. J. Hazard. Mater. 2024 468 133742 10.1016/j.jhazmat.2024.133742 38367436
    [Google Scholar]
  64. Peng Y. Xiao X. Ren B. Zhang Z. Shi X. Wang C. Zhang W. Removal of Anabaena by ultrasonic pretreatment enhancing-coagulation and water treatment processes. J. Clean. Prod. 2024 447 141521 10.1016/j.jclepro.2024.141521
    [Google Scholar]
  65. xiao X. Peng Y. Zhang W. Yang X. Zhang Z. ren B. Zhu G. Zhou S. Current status and prospects of algal bloom early warning technologies: A Review. J. Environ. Manage. 2024 349 119510 10.1016/j.jenvman.2023.119510 37951110
    [Google Scholar]
  66. Jia Y. Chen W. Zuo Y. Lin L. Song L. Heavy metal migration and risk transference associated with cyanobacterial blooms in eutrophic freshwater. Sci. Total Environ. 2018 613-614 1324 1330 10.1016/j.scitotenv.2017.09.180 28968935
    [Google Scholar]
  67. Priya A.K. Jalil A.A. Vadivel S. Dutta K. Rajendran S. Fujii M. Soto-Moscoso M. Heavy metal remediation from wastewater using microalgae: Recent advances and future trends. Chemosphere 2022 305 135375 10.1016/j.chemosphere.2022.135375 35738200
    [Google Scholar]
  68. Cheng S.Y. Show P.L. Lau B.F. Chang J.S. Ling T.C. New prospects for modified algae in heavy metal adsorption. Trends. Biotechnol. 2019 37 11 1255 1268 10.1016/j.tibtech.2019.04.007 31174882
    [Google Scholar]
  69. Machado A.A. Valiaparampil J.G. M L. Unlocking the potential of algae for heavy metal remediation. Water. Air. Soil. Pollut. 2024 235 10 629 10.1007/s11270‑024‑07436‑3
    [Google Scholar]
  70. Lin Z. Li J. Luan Y. Dai W. Application of algae for heavy metal adsorption: A 20-year meta-analysis. Ecotoxicol. Environ. Saf. 2020 190 110089 10.1016/j.ecoenv.2019.110089 31896472
    [Google Scholar]
  71. Sultana N. Hossain S.M.Z. Mohammed M.E. Irfan M.F. Haq B. Faruque M.O. Razzak S.A. Hossain M.M. Experimental study and parameters optimization of microalgae based heavy metals removal process using a hybrid response surface methodology-crow search algorithm. Sci. Rep. 2020 10 1 15068 10.1038/s41598‑020‑72236‑8 32934284
    [Google Scholar]
  72. Leong Y.K. Chang J.S. Bioremediation of heavy metals using microalgae: Recent advances and mechanisms. Bioresour. Technol. 2020 303 122886 10.1016/j.biortech.2020.122886 32046940
    [Google Scholar]
  73. Saavedra R. Muñoz R. Taboada M.E. Vega M. Bolado S. Comparative uptake study of arsenic, boron, copper, manganese and zinc from water by different green microalgae. Bioresour. Technol. 2018 263 49 57 10.1016/j.biortech.2018.04.101 29729541
    [Google Scholar]
  74. Spain O. Plöhn M. Funk C. The cell wall of green microalgae and its role in heavy metal removal. Physiol. Plant. 2021 173 2 526 535 10.1111/ppl.13405 33764544
    [Google Scholar]
  75. Murphy V. Hughes H. McLoughlin P. Comparative study of chromium biosorption by red, green and brown seaweed biomass. Chemosphere 2008 70 6 1128 1134 10.1016/j.chemosphere.2007.08.015 17884133
    [Google Scholar]
  76. Romera E. González F. Ballester A. Blázquez M.L. Muñoz J.Á. Biosorption of Cd, Ni, and Zn with mixtures of different types of algae. Environ. Eng. Sci. 2008 25 7 999 1008 10.1089/ees.2007.0122
    [Google Scholar]
  77. Shukla P.S. Mantin E.G. Adil M. Bajpai S. Critchley A.T. Prithiviraj B. Ascophyllum nodosum-based biostimulants: Sustainable applications in agriculture for the stimulation of plant growth, stress tolerance, and disease management. Front. Plant Sci. 2019 10 655 10.3389/fpls.2019.00655 31191576
    [Google Scholar]
  78. Rugnini L. Costa G. Congestri R. Bruno L. Testing of two different strains of green microalgae for Cu and Ni removal from aqueous media. Sci. Total Environ. 2017 601-602 959 967 10.1016/j.scitotenv.2017.05.222 28582741
    [Google Scholar]
  79. Abbas S.H. Evaluation of biomass type blue Cyanophyta algae for the sorption of Cr (III), Zn (II) and Ni (II) from aqueous solution using batch operation system: Kinetics and thermodynamic studies. Glob. NEST J. 2017 20 1 69 82 10.30955/gnj.002282
    [Google Scholar]
  80. v R M. y A R L. Lange L.C. L v S S. V.R Simultaneous biosorption of Cd(II), Ni(II) and Pb(II) onto a brown macroalgae Fucus vesiculosus: Mono- and multi-component isotherms, kinetics and thermodynamics. J. Environ. Manage. 2019 251 109587 10.1016/j.jenvman.2019.109587 31561142
    [Google Scholar]
  81. Cid H. Ortiz C. Pizarro J. Barros D. Castillo X. Giraldo L. Moreno-Piraján J.C. Characterization of copper (II) biosorption by brown algae Durvillaea antarctica dead biomass. Adsorption 2015 21 8 645 658 10.1007/s10450‑015‑9715‑3
    [Google Scholar]
  82. Tavana M. Pahlavanzadeh H. Zarei M.J. The novel usage of dead biomass of green algae of Schizomeris leibleinii for biosorption of copper(II) from aqueous solutions: Equilibrium, kinetics and thermodynamics. J. Environ. Chem. Eng. 2020 8 5 104272 10.1016/j.jece.2020.104272
    [Google Scholar]
  83. Cheng J. Yin W. Chang Z. Lundholm N. Jiang Z. Biosorption capacity and kinetics of cadmium(II) on live and dead Chlorella vulgaris J. Appl. Phycol. 2017 29 1 211 221 10.1007/s10811‑016‑0916‑2
    [Google Scholar]
  84. Jayakumar V. Govindaradjane S. Rajamohan N. Rajasimman M. Biosorption potential of brown algae, Sargassum polycystum for the removal of toxic metals, cadmium and zinc. Environ. Sci. Pollut. Res. Int. 2022 29 28 41909 41922 10.1007/s11356‑021‑15185‑7 34275071
    [Google Scholar]
  85. Mirghaffari N. Moeini E. Farhadian O. Biosorption of Cd and Pb ions from aqueous solutions by biomass of the green microalga, Scenedesmus quadricauda. J. Appl. Phycol. 2015 27 1 311 320 10.1007/s10811‑014‑0345‑z
    [Google Scholar]
  86. Priyadarshini E. Priyadarshini S.S. Pradhan N. Heavy metal resistance in algae and its application for metal nanoparticle synthesis. Appl. Microbiol. Biotechnol. 2019 103 8 3297 3316 10.1007/s00253‑019‑09685‑3 30847543
    [Google Scholar]
  87. León-Vaz A. León R. Giráldez I. Vega J.M. Vigara J. Impact of heavy metals in the microalga Chlorella sorokiniana and assessment of its potential use in cadmium bioremediation. Aquat. Toxicol. 2021 239 105941 10.1016/j.aquatox.2021.105941 34469852
    [Google Scholar]
  88. Shah N. Dubey V.K. Thakkar S. Doshi H. Mahawar P. Bioaccumulation of arsenic(V) from wastewater by live and dead Spirogyra sp. J. Basic. Microbiol. 2022 62 3-4 489 497 10.1002/jobm.202100353 34850417
    [Google Scholar]
  89. Wilde K.L. Stauber J.L. Markich S.J. Franklin N.M. Brown P.L. The effect of pH on the uptake and toxicity of copper and zinc in a tropical freshwater alga (Chlorella sp.) Arch. Environ. Contam. Toxicol. 2006 51 2 174 185 10.1007/s00244‑004‑0256‑0 16583260
    [Google Scholar]
  90. Yang J. Cao J. Xing G. Yuan H. Lipid production combined with biosorption and bioaccumulation of cadmium, copper, manganese and zinc by oleaginous microalgae Chlorella minutissima UTEX2341. Bioresour. Technol. 2015 175 537 544 10.1016/j.biortech.2014.10.124 25459865
    [Google Scholar]
  91. Fawzy M.A. Phycoremediation and adsorption isotherms of cadmium and copper ions by Merismopedia tenuissima and their effect on growth and metabolism. Environ. Toxicol. Pharmacol. 2016 46 116 121 10.1016/j.etap.2016.07.008 27458699
    [Google Scholar]
  92. Gao C. Gao L. Duan P. Wu H. Li M. Evaluating combined toxicity of binary heavy metals to the cyanobacterium Microcystis: A theoretical non-linear combined toxicity assessment method. Ecotoxicol. Environ. Saf. 2020 187 109809 10.1016/j.ecoenv.2019.109809 31654861
    [Google Scholar]
  93. Nawaz A. Šotek P.E. Molnárová M. Reciprocal effects of metal mixtures on phytoplankton. Phycology 2024 4 1 117 138 10.3390/phycology4010007
    [Google Scholar]
  94. Tchounwou P.B. Yedjou C.G. Patlolla A.K. Sutton D.J.J.E. Heavy metal toxicity and the environment. Experientia. Suppl. 2012 101 133 164 22945569
    [Google Scholar]
  95. Nayana K. Vidya D. Soorya K. Dineshan A. Menon A.S. Mambad R. Arunkumar K. Effect of volume and surface area on growth and productivity of microalgae in culture system. BioEnergy Res. 2023 16 2 1013 1025 10.1007/s12155‑022‑10498‑y
    [Google Scholar]
  96. Carreira A.R.F. Passos H. Coutinho J.A.P. Metal biosorption onto non-living algae: A critical review on metal recovery from wastewater. Green Chem. 2023 25 15 5775 5788 10.1039/D3GC01993D
    [Google Scholar]
  97. Liu F. Tan Q.G. Weiss D. Crémazy A. Fortin C. Campbell P.G.C. Unravelling metal speciation in the microenvironment surrounding phytoplankton cells to improve predictions of metal bioavailability. Environ. Sci. Technol. 2020 54 13 8177 8185 10.1021/acs.est.9b07773 32539359
    [Google Scholar]
  98. Monteiro C.M. Castro P.M.L. Malcata F.X. Metal uptake by microalgae: Underlying mechanisms and practical applications. Biotechnol. Prog. 2012 28 2 299 311 10.1002/btpr.1504 22228490
    [Google Scholar]
  99. Bibak M. Sattari M. Tahmasebi S. Investigation of biosorption capacity of algae: Selection of most efficient biosorbent for metal removal. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 2024 94 1 217 226 10.1007/s40011‑023‑01524‑w
    [Google Scholar]
  100. Ahemad M. Kibret M. Recent trends in microbial biosorption of heavy metals: A review. Biochem. Mol. Biol 2013 1 1 19 10.12966/bmb.06.02.2013
    [Google Scholar]
  101. Ibrahim W.M. S Abdel Aziz Y. Hamdy S.M. Gad N.S. Comparative study for biosorption of heavy metals from synthetic wastewater by different types of marine algae. J. Bioremediat. Biodegrad. 2018 9 1 10.4172/2155‑6199.1000425
    [Google Scholar]
  102. Vilar V. Botelho C. Boaventura R. Copper removal by algae Gelidium, agar extraction algal waste and granulated algal waste: Kinetics and equilibrium. Bioresour. Technol. 2008 99 4 750 762 10.1016/j.biortech.2007.01.042 17376672
    [Google Scholar]
  103. Vilar V.J.P. Botelho C.M.S. Boaventura R.A.R. Lead uptake by algae Gelidium and composite material particles in a packed bed column. Chem. Eng. J. 2008 144 3 420 430 10.1016/j.cej.2008.02.020
    [Google Scholar]
  104. Bakatula E.N. Cukrowska E.M. Weiersbye I.M. Mihaly-Cozmuta L. Peter A. Tutu H. Biosorption of trace nlms from aqueous systems in gold mining sites by the filamentous green algae (Oedogonium sp.). J. Geochem. Explor. 2014 144 492 503 10.1016/j.gexplo.2014.02.017
    [Google Scholar]
  105. Chen W. Teng C.Y. Qian C. Yu H.Q. Characterizing properties and environmental behaviors of dissolved organic matter using two-dimensional correlation spectroscopic analysis. Environ. Sci. Technol. 2019 53 9 4683 4694 10.1021/acs.est.9b01103 30998320
    [Google Scholar]
  106. Xu Y. Zhang Y. Qiu L. Zhang M. Yang J. Ji R. Vione D. Chen Z. Gu C. Photochemical behavior of dissolved organic matter in environmental surface waters: A review. Eco.Environ. Health 2024 3 4 529 10.1016/j.eehl.2024.06.002
    [Google Scholar]
  107. Zhang H. Zheng Y. Wang X.C. Wang Y. Dzakpasu M. Characterization and biogeochemical implications of dissolved organic matter in aquatic environments. J. Environ. Manage. 2021 294 113041 10.1016/j.jenvman.2021.113041 34126535
    [Google Scholar]
  108. Tong M. Li X. Luo Q. Yang C. Lou W. Liu H. Du C. Nie L. Zhong Y. Effects of humic acids on biotoxicity of tetracycline to microalgae Coelastrella sp. Algal Res. 2020 50 101962 10.1016/j.algal.2020.101962
    [Google Scholar]
  109. Adusei-Gyamfi J. Ouddane B. Rietveld L. Cornard J.P. Criquet J. Natural organic matter-cations complexation and its impact on water treatment: A critical review. Water Res. 2019 160 130 147 10.1016/j.watres.2019.05.064 31136847
    [Google Scholar]
  110. Bai H. Wei S. Jiang Z. He M. Ye B. Liu G. Pb (II) bioavailability to algae (Chlorella pyrenoidosa) in relation to its complexation with humic acids of different molecular weight. Ecotoxicol. Environ. Saf. 2019 167 1 9 10.1016/j.ecoenv.2018.09.114 30292970
    [Google Scholar]
  111. Ni L. Su L. Li S. Wang P. Li D. Ye X. Li Y. Li Y. Li Y. Wang C. The characterization of dissolved organic matter extracted from different sources and their influence on cadmium uptake by Microcystis aeruginosa. Environ. Toxicol. Chem. 2017 36 7 1856 1863 10.1002/etc.3728 28042892
    [Google Scholar]
  112. McIntyre A.M. Guéguen C. Binding interactions of algal-derived dissolved organic matter with metal ions. Chemosphere 2013 90 2 620 626 10.1016/j.chemosphere.2012.08.057 23022170
    [Google Scholar]
  113. Kumar A. Sidharth S. Kandasubramanian B. A review on algal biosorbents for heavy metal remediation with different adsorption isotherm models. Environ. Sci. Pollut. Res. Int. 2023 30 14 39474 39493 10.1007/s11356‑023‑25710‑5 36780087
    [Google Scholar]
  114. Shanmugam D. Alagappan M. Rajan R.K. Bench-scale packed bed sorption of Cibacron blue F3GA using lucrative algal biomass. Alex. Eng. J. 2016 55 3 2995 3003 10.1016/j.aej.2016.05.012
    [Google Scholar]
  115. Syafiuddin A. Boopathy R. Effect of algal cells on water pollution control. Curr. Pollut. Rep. 2021 7 2 213 226 10.1007/s40726‑021‑00185‑5
    [Google Scholar]
  116. Tang C.C. Hu Y.R. Zhang M. Chen S.L. He Z.W. Li Z.H. Tian Y. Wang X.C. Role of phosphate in microalgal-bacterial symbiosis system treating wastewater containing heavy metals. Environ. Pollut. 2024 349 123951 10.1016/j.envpol.2024.123951 38604305
    [Google Scholar]
  117. Ordóñez J.I. Cortés S. Maluenda P. Soto I. Biosorption of heavy metals with algae: Critical review of its application in real effluents. Sustainability 2023 15 6 5521 10.3390/su15065521
    [Google Scholar]
  118. Aravind M.K. Vignesh N.S. Gayathri S. Anjitha N. Athira K.M. Gunaseelan S. Arunkumar M. Sanjaykumar A. Karthikumar S. Ganesh Moorthy I.M. Ashokkumar B. Pugazhendhi A. Varalakshmi P. Review on rewiring of microalgal strategies for the heavy metal remediation: A metal specific logistics and tactics. Chemosphere 2023 313 137310 10.1016/j.chemosphere.2022.137310
    [Google Scholar]
  119. Gu S. Lan C.Q. Biosorption of heavy metal ions by green alga Neochloris oleoabundans: Effects of metal ion properties and cell wall structure. J. Hazard. Mater 2021 418 15 10.1016/j.jhazmat.2021.126336
    [Google Scholar]
  120. Yu R.Q. Wang W.X. Biokinetics of cadmium, selenium, and zinc in freshwater alga Scenedesmus obliquus under different phosphorus and nitrogen conditions and metal transfer to Daphnia magna. Environ. Pollut. 2004 129 3 443 456 10.1016/j.envpol.2003.11.013 15016465
    [Google Scholar]
  121. Xiao R. Zheng Y. Overview of microalgal extracellular polymeric substances (EPS) and their applications. Biotechnol. Adv. 2016 34 7 1225 1244 10.1016/j.biotechadv.2016.08.004 27576096
    [Google Scholar]
  122. Verhage L. Tear down that wall-cell wall remodeling in charophyte algae. Plant J. 2021 108 1 5 6 10.1111/tpj.15504 34664342
    [Google Scholar]
  123. Zeng G. He S. Wu J. Sun D. Lin M. Fu X. Tang L. He Y. Adsorption of heavy metal ions copper, cadmium and nickel by Microcystis aeruginosa. IOP Conf. Ser. Earth Environ. Sci. 2021 770 1 012046 10.1088/1755‑1315/770/1/012046
    [Google Scholar]
  124. Akl F.M.A. Ahmed S.I. El-Sheekh M.M. Makhlof M.E.M. Bioremediation of n-alkanes, polycyclic aromatic hydrocarbons, and heavy metals from wastewater using seaweeds. Environ. Sci. Pollut. Res. Int. 2023 30 47 104814 104832 10.1007/s11356‑023‑29549‑8 37713082
    [Google Scholar]
  125. Aude-Garcia C. Villiers F. Collin-Faure V. Pernet-Gallay K. Jouneau P.H. Sorieul S. Mure G. Gerdil A. Herlin-Boime N. Carrière M. Rabilloud T. Different in vitro exposure regimens of murine primary macrophages to silver nanoparticles induce different fates of nanoparticles and different toxicological and functional consequences. Nanotoxicology 2016 10 5 586 596 10.3109/17435390.2015.1104738 26554598
    [Google Scholar]
  126. Danouche M. El Ghachtouli N. El Arroussi H. Phycoremediation mechanisms of heavy metals using living green microalgae: Physicochemical and molecular approaches for enhancing selectivity and removal capacity. Heliyon 2021 7 7 e07609 10.1016/j.heliyon.2021.e07609 34355100
    [Google Scholar]
  127. Ghorbani E. Nowruzi B. Nezhadali M. Hekmat A. Metal removal capability of two cyanobacterial species in autotrophic and mixotrophic mode of nutrition. BMC Microbiol. 2022 22 1 58 10.1186/s12866‑022‑02471‑8 35176992
    [Google Scholar]
  128. Shen L. Li Z. Wang J. Liu A. Li Z. Yu R. Wu X. Liu Y. Li J. Zeng W. Characterization of extracellular polysaccharide/protein contents during the adsorption of Cd(II) by Synechocystis sp. PCC6803. Environ. Sci. Pollut. Res. Int. 2018 25 21 20713 20722 10.1007/s11356‑018‑2163‑3 29754298
    [Google Scholar]
  129. Cui L. Fan L. Li Z. Wang J. Chen R. Zhang Y. Cheng J. Wu X. Li J. Yin H. Zeng W. Shen L. Characterization of extracellular polymeric substances from Synechocystis sp. PCC6803 under Cd (II), Pb (II) and Cr (VI) stress. J. Environ. Chem. Eng. 2021 9 4 105347 10.1016/j.jece.2021.105347
    [Google Scholar]
  130. Zhou K. Hu Y. Zhang L. Yang K. Lin D. The role of exopolymeric substances in the bioaccumulation and toxicity of Ag nanoparticles to algae. Sci. Rep. 2016 6 1 32998 10.1038/srep32998 27615743
    [Google Scholar]
  131. Li C. Li P. Fu H. Chen J. Ye M. Zhai S. Hu F. Zhang C. Ge Y. Fortin C. A comparative study of the accumulation and detoxification of copper and zinc in Chlamydomonas reinhardtii: The role of extracellular polymeric substances. Sci. Total Environ. 2023 871 161995 10.1016/j.scitotenv.2023.161995 36739008
    [Google Scholar]
  132. Danouche M. El Ghatchouli N. Arroussi H. Overview of the management of heavy metals toxicity by microalgae. J. Appl. Phycol. 2022 34 1 475 488 10.1007/s10811‑021‑02668‑w
    [Google Scholar]
  133. Tamaki S. Mochida K. Suzuki K. Diverse biosynthetic pathways and protective functions against environmental stress of antioxidants in microalgae. Plants 2021 10 6 1250 10.3390/plants10061250 34205386
    [Google Scholar]
  134. Salam K.A. Towards sustainable development of microalgal biosorption for treating effluents containing heavy metals. Biofuel Res. J. 2019 6 2 948 961 10.18331/BRJ2019.6.2.2
    [Google Scholar]
  135. Ubando A.T. Africa A.D.M. Maniquiz-Redillas M.C. Culaba A.B. Chen W.H. Chang J.S. Microalgal biosorption of heavy metals: A comprehensive bibliometric review. J. Hazard. Mater. 2021 402 123431 10.1016/j.jhazmat.2020.123431 32745872
    [Google Scholar]
  136. Davis T.A. Volesky B. Mucci A. A review of the biochemistry of heavy metal biosorption by brown algae. Water Res. 2003 37 18 4311 4330 10.1016/S0043‑1354(03)00293‑8 14511701
    [Google Scholar]
  137. Priatni S. Ratnaningrum D. Warya S. Audina E. Phycobiliproteins production and heavy metals reduction ability of Porphyridium sp. IOP Conf. Ser. Earth Environ. Sci. 2018 160 012006 10.1088/1755‑1315/160/1/012006
    [Google Scholar]
  138. Balaji S. Kalaivani T. Sushma B. Pillai C.V. Shalini M. Rajasekaran C. Characterization of sorption sites and differential stress response of microalgae isolates against tannery effluents from ranipet industrial area: An application towards phycoremediation. Int. J. Phytoremediation 2016 18 8 747 753 10.1080/15226514.2015.1115960 26587690
    [Google Scholar]
  139. Giordano M. Kansiz M. Heraud P. Beardall J. Wood B. McNaughton D. Fourier transform infrared spectroscopy as a novel tool to investigate changes in intracellular macromolecular pools in the marine microalga Chaetoceros Muellerii (Bacillariophyceae). J. Phycol. 2001 37 2 271 279 10.1046/j.1529‑8817.2001.037002271.x
    [Google Scholar]
  140. Zhang L. Wang J. Shao R. Chuai X. Wang S. Yue Z. Detoxification and removal of heavy metal by an acid-tolerant microalgae, Graesiella sp. MA1. J. Water Process Eng. 2024 64 105579 10.1016/j.jwpe.2024.105579
    [Google Scholar]
  141. Wang J. Tian Q. Zhou H. Kang J. Yu X. Qiu G. Shen L. Physiological regulation of microalgae under cadmium stress and response mechanisms of time-series analysis using metabolomics. Sci. Total Environ. 2024 916 170278 10.1016/j.scitotenv.2024.170278 38262539
    [Google Scholar]
  142. Ahmad A. Bhat A.H. Buang A. Biosorption of transition metals by freely suspended and Ca-alginate immobilised with Chlorella vulgaris: Kinetic and equilibrium modeling. J. Clean. Prod. 2018 171 1361 1375 10.1016/j.jclepro.2017.09.252
    [Google Scholar]
  143. Blaby-Haas C.E. Merchant S.S. The ins and outs of algal metal transport. Biochim. Biophys. Acta Mol. Cell Res. 2012 1823 9 1531 1552 10.1016/j.bbamcr.2012.04.010 22569643
    [Google Scholar]
  144. Chakravorty M. Nanda M. Bisht B. Sharma R. Kumar S. Mishra A. Vlaskin M.S. Chauhan P.K. Kumar V. Heavy metal tolerance in microalgae: Detoxification mechanisms and applications. Aquat. Toxicol. 2023 260 106555 10.1016/j.aquatox.2023.106555 37196506
    [Google Scholar]
  145. Zhang Y. Li M. Chang F. Yi M. Ge H. Fu J. Dang C. The distinct resistance mechanisms of cyanobacteria and green algae to sulfamethoxazole and its implications for environmental risk assessment. Sci. Total Environ. 2023 854 158723 10.1016/j.scitotenv.2022.158723 36108830
    [Google Scholar]
  146. Samadani M. Dewez D. Effect of mercury on the polyphosphate level of alga Chlamydomonas reinhardtii. Environ. Pollut. 2018 240 506 513 10.1016/j.envpol.2018.04.141 29754100
    [Google Scholar]
  147. Jasso-Chávez R. Campos-García M.L. Vega-Segura A. Pichardo-Ramos G. Silva-Flores M. Santiago-Martínez M.G. Feregrino-Mondragón R.D. Sánchez-Thomas R. García-Contreras R. Torres-Márquez M.E. Moreno-Sánchez R. Microaerophilia enhances heavy metal biosorption and internal binding by polyphosphates in photosynthetic Euglena gracilis. Algal Res. 2021 58 102384 10.1016/j.algal.2021.102384
    [Google Scholar]
  148. Rangsayatorn N. Upatham E.S. Kruatrachue M. Pokethitiyook P. Lanza G.R. Phytoremediation potential of Spirulina (Arthrospira) platensis: Biosorption and toxicity studies of cadmium. Environ. Pollut. 2002 119 1 45 53 10.1016/S0269‑7491(01)00324‑4 12125728
    [Google Scholar]
  149. Kulakovskaya T. Inorganic polyphosphates and heavy metal resistance in microorganisms. World J. Microb. Biot. 2018 34 9 10.1007/s11274‑018‑2523‑7
    [Google Scholar]
  150. Hossain M.A. Hoque M.A. Burritt D.J. Fujita M. Proline protects plants against abiotic oxidative stress: Biochemical and molecular mechanisms. Oxidative Damage to Plants: Antioxidant Networks and Signaling Academic Press 2014 477 522 10.1016/B978‑0‑12‑799963‑0.00016‑2
    [Google Scholar]
  151. Papirio S. Frunzo L. Mattei M.R. Ferraro A. Esposito G. Heavy metal removal from wastewaters by biosorption: Mechanisms and modeling. Sustainable Heavy Metal Remediation Springer 2017 25 63 10.1007/978‑3‑319‑58622‑9_2
    [Google Scholar]
  152. Kanamarlapudi S.L.R.K. Chintalpudi V.K. Muddada S. Application of biosorption for removal of heavy metals from wastewater. Biosorption 2018 18 69 70 116 10.5772/intechopen.77315
    [Google Scholar]
  153. Ahmed S.F. Mofijur M. Parisa T.A. Islam N. Kusumo F. Inayat A. Le V.G. Badruddin I.A. Khan T.M.Y. Ong H.C. Progress and challenges of contaminate removal from wastewater using microalgae biomass. Chemosphere 2015 2022 286 34325255
    [Google Scholar]
  154. Bhuyar P. Sundararaju S. Rahim M.H.A. Maniam G.P. Govindan N. Enhanced productivity of lipid extraction by urea stress conditions on marine microalgae Coelastrum sp. for improved biodiesel production. Bioresour. Technol. Rep. 2021 15 1 100696 10.1016/j.biteb.2021.100696
    [Google Scholar]
  155. Nowicka B. Heavy metal–induced stress in eukaryotic algae—mechanisms of heavy metal toxicity and tolerance with particular emphasis on oxidative stress in exposed cells and the role of antioxidant response. Environ. Sci. Pollut. Res. Int. 2022 29 12 16860 16911 10.1007/s11356‑021‑18419‑w 35006558
    [Google Scholar]
  156. Puente-Sánchez F. Díaz S. Penacho V. Aguilera A. Olsson S. Basis of genetic adaptation to heavy metal stress in the acidophilic green alga Chlamydomonas acidophila. Aquat. Toxicol. 2018 200 62 72 10.1016/j.aquatox.2018.04.020 29727772
    [Google Scholar]
  157. Zhang B. Tang Y. Yu F. Peng Z. Yao S. Deng X. Long H. Wang X. Huang K. Translatomics and physiological analyses of the detoxification mechanism of green alga Chlamydomonas reinhardtii to cadmium toxicity. J. Hazard. Mater. 2023 448 130990 10.1016/j.jhazmat.2023.130990 36860060
    [Google Scholar]
  158. Tripathi S. Poluri K.M. Heavy metal detoxification mechanisms by microalgae: Insights from transcriptomics analysis. Environ. Pollut. 2021 285 117443 10.1016/j.envpol.2021.117443 34090077
    [Google Scholar]
  159. Wang Y. Gu W. Liu X. Liu H. Tang G. Yang C. Combined impacts of algae-induced variations in water soluble organic matter and heavy metals on bacterial community structure in sediment from Chaohu Lake, a eutrophic shallow lake. Sci. Total Environ. 2023 874 162481 10.1016/j.scitotenv.2023.162481 36858233
    [Google Scholar]
  160. Lin H. Zhou M. Li B. Dong Y. Mechanisms, application advances and future perspectives of microbial-induced heavy metal precipitation: A review. Int. Biodeterior. Biodegradation 2023 178 105544 10.1016/j.ibiod.2022.105544
    [Google Scholar]
  161. Chen D. Wang G. Chen C. Feng Z. Jiang Y. Yu H. Li M. Chao Y. Tang Y. Wang S. Qiu R. The interplay between microalgae and toxic metal(loid)s: Mechanisms and implications in AMD phycoremediation coupled with Fe/Mn mineralization. J. Hazard. Mater. 2023 454 131498 10.1016/j.jhazmat.2023.131498 37146335
    [Google Scholar]
  162. Xue S.M. Jiang S.Q. Li R.Z. Jiao Y.Y. Kang Q. Zhao L.Y. Li Z. Chen M. The decomposition of algae has a greater impact on heavy metal transformation in freshwater lake sediments than that of macrophytes. Sci. Total Environ. 2024 906 167752 10.1016/j.scitotenv.2023.167752 37838060
    [Google Scholar]
/content/journals/cac/10.2174/0115734110363448250224105106
Loading
/content/journals/cac/10.2174/0115734110363448250224105106
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: enrich ; adsorption ; heavy metals ; Microalgae cells
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test