Skip to content
2000
image of Effects of Two Types of Biochars on Tungsten (W) Toxicity and Subcellular Distribution of W in Rice Plants (Oryza Sativa L.)

Abstract

Background

Soils in the vicinity of tungsten mining operations frequently experience contamination with multiple metals. Current literature indicates that remediation strategies have predominantly concentrated on the bioavailability of heavy metals within these soils. However, the bioavailability of tungsten itself has not been sufficiently addressed. Biochar has been shown to contribute to the stabilization of heavy metals; however, research on the bioavailability of tungsten (W) in soil is limited.

Methods

This study presents a pot experiment utilizing biochar produced from the corn straw (CB) and beef bone (BB) to investigate its impact on the growth of rice in W-contaminated soil and the bioavailability of W.

Results

The results indicated that biochar application enhanced the accumulation of W in rice tissue. Furthermore, the enhancement effect of biochar derived from BB on W in rice shoots and roots was greater than that of CB. This effect can be attributed to several factors. First, the application of biochar raised the soil pH, which in turn increased the mobility of W in alkaline conditions. Consequently, the concentrations of W in the acid-soluble and reducible fractions were elevated, improving the bioavailability of tungsten. Moreover, our study demonstrated that biochar significantly reduced the soil redox potential (Eh) ( < 0.01), with a pronounced negative correlation between the Eh values and the proportion of W in the acid-soluble and reducible fractions. This finding suggests that the reduction in soil Eh facilitated the mobilization of W. The W content in rice roots was positively correlated with the acid-soluble and reducible W in the soil, indicating that biochar application increased the root concentration of tungsten. Furthermore, biochar treatment resulted in a decrease in the proportion of tungsten bound to the root cell walls and an increase in its distribution within the vacuoles and cytoplasm. This redistribution promoted the translocation of tungsten from the roots to the shoots, thereby elevating the tungsten content in the aboveground plant biomass.

Conclusion

Biochar application enhanced the translocation of W from roots to shoots, resulting in an increased concentration of tungsten in the aboveground plant biomass. Notably, the biochar produced from beef bone exhibited a more pronounced effect on the accumulation of W in rice shoots and roots compared to that derived from corn straw. Thus, the application of biochar is not recommended for soils contaminated with multiple heavy metals surrounding tungsten mineral deposits, as it may potentially increase the risk of tungsten pollution in the soil. Conversely, biochars are valuable for enhancing the phytoextraction capacity of plants, offering potential strategies for the remediation of tungsten-contaminated soils.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110362251250213061420
2025-03-17
2025-03-29
Loading full text...

Full text loading...

References

  1. Shen L. Li X. Lindberg D. Taskinen P. Tungsten extractive metallurgy: A review of processes and their challenges for sustainability. Miner. Eng. 2019 142 105934 10.1016/j.mineng.2019.105934
    [Google Scholar]
  2. Xu H. Yu F. Feng J. Xu R. Huang J. Wang J.X. Zhou T. Selective metallization of polymer based on nanoscale tungsten oxide laser activators for advanced electronics. Chem. Eng. J. 2024 496 154079 10.1016/j.cej.2024.154079
    [Google Scholar]
  3. Shanmugapriya K. Rajagopal D. Karthikeyan S. An improvement in aluminium composites interface strength and microhardness through electroless cobalt coatings on tungsten carbide. Mater. Lett. 2023 352 135105 10.1016/j.matlet.2023.135105
    [Google Scholar]
  4. Koutsospyros A.D. Koutsospyros D.A. Strigul N. Braida W. Christodoulatos C. Tungsten: Environmental pollution and health effects. Encyclopedia of environmental health 2019 161 169
    [Google Scholar]
  5. Adamakis I.D.S. Panteris E. Eleftheriou E.P. The cortical microtubules are a universal target of tungsten toxicity among land plant taxa. J. Biol. Res. (Thessalon.) 2010 13 59 66
    [Google Scholar]
  6. Hadrup N. Sørli J.B. Sharma A.K. Pulmonary toxicity, genotoxicity, and carcinogenicity evaluation of molybdenum, lithium, and tungsten: A review. Toxicology 2022 467 153098 10.1016/j.tox.2022.153098 35026344
    [Google Scholar]
  7. Lu L. Lei M. Zhou Y. Cui H. Du H. In vitro tungsten bioaccessibility in Chinese residential soils: Implications for human health risk assessments and soil screening level derivation. J. Hazard. Mater. 2024 477 135368 10.1016/j.jhazmat.2024.135368 39079296
    [Google Scholar]
  8. Bolan S. Wijesekara H. Ireshika A. Zhang T. Pu M. Petruzzelli G. Pedron F. Hou D. Wang L. Zhou S. Zhao H. Siddique K.H.M. Wang H. Rinklebe J. Kirkham M.B. Bolan N. Tungsten contamination, behavior and remediation in complex environmental settings. Environ. Int. 2023 181 108276 10.1016/j.envint.2023.108276 39492254
    [Google Scholar]
  9. Wilson B. Pyatt F.B. Bio-availability of tungsten in the vicinity of an abandoned mine in the English Lake District and some potential health implications. Sci. Total Environ. 2006 370 2-3 401 408 10.1016/j.scitotenv.2006.07.026 16942791
    [Google Scholar]
  10. Clausen J.L. Korte N. Environmental fate of tungsten from military use. Sci. Total Environ. 2009 407 8 2887 2893 10.1016/j.scitotenv.2009.01.029 19217645
    [Google Scholar]
  11. Du H. Li Y. Wan D. Sun C. Sun J. Tungsten distribution and vertical migration in soils near a typical abandoned tungsten smelter. J. Hazard. Mater. 2022 429 128292 10.1016/j.jhazmat.2022.128292 35065311
    [Google Scholar]
  12. Petruzzelli G. Pedron F. The dynamics of tungsten in soil: An overview. Environments (Basel) 2021 8 7 66 10.3390/environments8070066
    [Google Scholar]
  13. Clausen J.L. Bostick B.C. Bednar A. Sun J. Landis J.D. Tungsten speciation in firing range soils. J. Rheumatol. 2011 1 51 10.1002/2013JC009579
    [Google Scholar]
  14. Datta S. Vero S.E. Hettiarachchi G.M. Johannesson K. Tungsten contamination of soils and sediments: Current state of science. Curr. Pollut. Rep. 2017 3 1 55 64 10.1007/s40726‑016‑0046‑0
    [Google Scholar]
  15. Bostick B.C. Sun J. Landis J.D. Clausen J.L. Tungsten speciation and solubility in munitions-impacted soils. Environ. Sci. Technol. 2018 52 3 1045 1053 10.1021/acs.est.7b05406 29307178
    [Google Scholar]
  16. Oburger E. Vergara Cid C. Schwertberger D. Roschitz C. Wenzel W.W. Response of tungsten (W) solubility and chemical fractionation to changes in soil pH and soil aging. Sci. Total Environ. 2020 731 139224 10.1016/j.scitotenv.2020.139224 32413664
    [Google Scholar]
  17. Oburger E. Cid C. Preiner J. Hu J. Hann S. Wanek W. Richter A. Richter, Bioavailability, speciation, and phytotoxicity of tungsten (W) in soil affect growth and molybdoenzyme activity of nodulated soybeans. Environ. Sci. Technol. 2018 52 11 6146 6156 10.1021/acs.est.7b06500 29701969
    [Google Scholar]
  18. Zheng X. Qiu S. Zhou B. Li Q. Chen M. Leaching of heavy metals from tungsten mining tailings: A case study based on static and kinetic leaching tests. Environ. Pollut. 2024 342 123055 10.1016/j.envpol.2023.123055 38065334
    [Google Scholar]
  19. Nguyen V.K. Ha M.G. Shin S. Seo M. Jang J. Jo S. Kim D. Lee S. Jung Y. Kang P. Shin C. Ahn Y. Electrochemical effect on bioleaching of arsenic and manganese from tungsten mine wastes using Acidithiobacillus spp. J. Environ. Manage. 2018 223 852 859 10.1016/j.jenvman.2018.06.040 29986334
    [Google Scholar]
  20. Lan X. Lin W. Ning Z. Su X. Chen Y. Jia Y. Xiao E. Arsenic shapes the microbial community structures in tungsten mine waste rocks. Environ. Res. 2023 216 Pt 2 114573 10.1016/j.envres.2022.114573 36243050
    [Google Scholar]
  21. Xu M. Ren M. Yao Y. Liu Q. Che J. Wang X. Xu Q. Biochar decreases cadmium uptake in indica and japonica rice (Oryza sativa L.): Roles of soil properties, iron plaque, cadmium transporter genes and rhizobacteria. J. Hazard. Mater. 2024 477 135402 10.1016/j.jhazmat.2024.135402 39096632
    [Google Scholar]
  22. Wang W. Chen G. tian Q. Liu C. Chen J. Biochar remediates cadmium and lead contaminated soil by stimulating beneficial fungus Aspergillus spp. Environ. Pollut. 2024 359 124601 10.1016/j.envpol.2024.124601 39047889
    [Google Scholar]
  23. Huang X. Li M. Hou Y. Huang P. Wen H. Li H. Ma C. Comparison of arsenic remediation effects between selenium-rich biochar and selenium-modified biochar. J. Environ. Chem. Eng. 2024 12 5 113488 10.1016/j.jece.2024.113488
    [Google Scholar]
  24. Phiri Z. Moja N.T. Nkambule T.T.I. de Kock L.A. Utilization of biochar for remediation of heavy metals in aqueous environments: A review and bibliometric analysis. Heliyon 2024 10 4 e25785 10.1016/j.heliyon.2024.e25785 38375270
    [Google Scholar]
  25. Shang X. Wu S. Liu Y. Zhang K. Guo M. Zhou Y. Zhu J. Li X. Miao R. Rice husk and its derived biochar assist phytoremediation of heavy metals and PAHs co-contaminated soils but differently affect bacterial community. J. Hazard. Mater. 2024 466 133684 10.1016/j.jhazmat.2024.133684 38310844
    [Google Scholar]
  26. Geng H. Wang F. Wu H. Qin Q. Ma S. Chen H. Zhou B. Yuan R. Luo S. Sun K. Biochar and nano-hydroxyapatite combined remediation of soil surrounding tailings area: Multi-metal(loid)s fixation and soybean rhizosphere soil microbial improvement. J. Hazard. Mater. 2024 469 133817 10.1016/j.jhazmat.2024.133817 38422730
    [Google Scholar]
  27. Yang J. Lei J. Zhang F. Li Y. Gao J. Deng L. Yang M. Biochar application induces different responses of bacterial and fungal communities to metabolic limitation. Land Degrad. Dev. 2024 35 5 1888 1901 10.1002/ldr.5029
    [Google Scholar]
  28. Meng Z. Huang S. Zhao Q. Xin L. Respective evolution of soil and biochar on competitive adsorption mechanisms for Cd(II), Ni(II), and Cu(II) after 2-year natural ageing. J. Hazard. Mater. 2024 469 133938 10.1016/j.jhazmat.2024.133938 38479140
    [Google Scholar]
  29. Zhou X. Zhang X. Ma C. Wu F. Jin X. Dini-Andreote F. Wei Z. Biochar amendment reduces cadmium uptake by stimulating cadmium-resistant PGPR in tomato rhizosphere. Chemosphere 2022 307 Pt 4 136138 10.1016/j.chemosphere.2022.136138 36002065
    [Google Scholar]
  30. Jackson M.L. Soil chemical analysis. 2nd ed Madison University of Wisconsin 1979
    [Google Scholar]
  31. Li H. Li Z. Huang L. Mao X. Dong Y. Fu S. Su R. Chang Y. Zhang C. Environmental factors influence the effects of biochar on the bioavailability of Cd and Pb in soil under flooding condition. Water Air Soil Pollut. 2023 234 100
    [Google Scholar]
  32. Li H. Yu Y. Chang Y. Li Z. Wang M. Wang G. Biochar reduced soil extractable Cd but increased its accumulation in rice (Oryza sativa L.) cultivated on contaminated soils. J Soil Sediment. 2019 19 862 871
    [Google Scholar]
  33. Rauret G. López-Sánchez J.F. Sahuquillo A. Barahona E. Lachica M. Ure A.M. Davidson C.M. Gomez A. Lück D. Bacon J. Yli-Halla M. Muntau H. Quevauviller P. Application of a modified BCR sequential extraction (three-step) procedure for the determination of extractable trace metal contents in a sewage sludge amended soil reference material (CRM 483), complemented by a three-year stability study of acetic acid and EDTA extractable metal content. J. Environ. Monit. 2000 2 3 228 233 10.1039/b001496f 11256704
    [Google Scholar]
  34. Xiao J. Hu R. Chen G. Micro-nano-engineered nitrogenous bone biochar developed with a ball-milling technique for high-efficiency removal of aquatic Cd(II), Cu(II) and Pb(II). J. Hazard. Mater. 2020 387 121980 10.1016/j.jhazmat.2019.121980 31927255
    [Google Scholar]
  35. Liu X. Yin H. Liu H. Cai Y. Qi X. Dang Z. Multicomponent adsorption of heavy metals onto biogenic hydroxyapatite: Surface functional groups and inorganic mineral facilitating stable adsorption of Pb(Ⅱ). J. Hazard. Mater. 2023 443 Pt A 130167 10.1016/j.jhazmat.2022.130167 36270188
    [Google Scholar]
  36. Jung K.W. Lee S.Y. Choi J.W. Lee Y.J. A facile one-pot hydrothermal synthesis of hydroxyapatite/biochar nanocomposites: Adsorption behavior and mechanisms for the removal of copper(II) from aqueous media. Chem. Eng. J. 2019 369 529 541 10.1016/j.cej.2019.03.102
    [Google Scholar]
  37. Li C. Knierim B. Manisseri C. Arora R. Scheller H.V. Auer M. Vogel K.P. Simmons B.A. Singh S. Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification. Bioresour. Technol. 2010 101 13 4900 4906 10.1016/j.biortech.2009.10.066
    [Google Scholar]
  38. Jones S. Bardos R.P. Kidd P.S. Mench M. de Leij F. Hutchings T. Cundy A. Joyce C. Soja G. Friesl-Hanl W. Herzig R. Menger P. Biochar and compost amendments enhance copper immobilisation and support plant growth in contaminated soils. J. Environ. Manage. 2016 171 101 112 10.1016/j.jenvman.2016.01.024 26850677
    [Google Scholar]
  39. Zhao M. Dai Y. Zhang M. Feng C. Qin B. Zhang W. Zhao N. Li Y. Ni Z. Xu Z. Tsang D.C.W. Qiu R. Mechanisms of Pb and/or Zn adsorption by different biochars: Biochar characteristics, stability, and binding energies. Sci. Total Environ. 2020 717 136894 10.1016/j.scitotenv.2020.136894 32084677
    [Google Scholar]
  40. Leng L. Yuan X. Huang H. Jiang H. Chen X. Zeng G. The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge. Bioresour. Technol. 2014 167 144 150 10.1016/j.biortech.2014.05.119 24976493
    [Google Scholar]
  41. Koutsospyros A. Braida W. Christodoulatos C. Dermatas D. Strigul N. A review of tungsten: From environmental obscurity to scrutiny. J. Hazard. Mater. 2006 136 1 1 19 10.1016/j.jhazmat.2005.11.007 16343746
    [Google Scholar]
  42. Petruzzelli G. Pedron F. Influence of increasing tungsten concentrations and soil characteristics on plant uptake: Greenhouse experiments with zea mays. Appl. Sci. (Basel) 2019 9 19 3998 10.3390/app9193998
    [Google Scholar]
  43. Zhang J.Y. Zhou H. Zeng P. Wang S.L. Yang W.J. Huang F. Huo Y. Yu S.N. Gu J.F. Liao B.H. Nano-Fe3O4-modified biochar promotes the formation of iron plaque and cadmium immobilization in rice root. Chemosphere 2021 276 130212 10.1016/j.chemosphere.2021.130212 33740654
    [Google Scholar]
  44. Wang X. Liu Y. Zeng G. Chai L. Song X. Min Z. Xiao X. Subcellular distribution and chemical forms of cadmium in Bechmeria nivea (L.) Gaud. Environ. Exp. Bot. 2008 62 3 389 395 10.1016/j.envexpbot.2007.10.014
    [Google Scholar]
  45. Xin J. Huang B. Yang Z. Yuan J. Zhang Y. Comparison of cadmium subcellular distribution in different organs of two water spinach (Ipomoea aquatica Forsk.) cultivars. Plant Soil 2013 372 1-2 431 444 10.1007/s11104‑013‑1729‑6
    [Google Scholar]
  46. Liu J. Duan C.Q. Zhang X.H. Zhu Y.N. Hu C. Subcellular distribution of chromium in accumulating plant Leersia hexandra Swartz. Plant Soil 2009 322 1-2 187 195 10.1007/s11104‑009‑9907‑2
    [Google Scholar]
  47. Allan D.L. Jarrell W.M. Proton and copper adsorption to maize and soybean root cell walls. Plant Physiol. 1989 89 3 823 832 10.1104/pp.89.3.823 16666628
    [Google Scholar]
/content/journals/cac/10.2174/0115734110362251250213061420
Loading
/content/journals/cac/10.2174/0115734110362251250213061420
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: subcellular ; Tungsten ; biochar ; bioavailability ; translocation ; rice plants
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test