Skip to content
2000
image of Microbial Communities in Coastal Salt Marshes Along the Southeast Coast of China and their Effects on Carbon Storage

Abstract

Background

Wetlands are vital carbon sinks, with coastal salt marshes being particularly effective in carbon sequestration. Understanding how different vegetation types influence soil carbon storage and microbial composition can enhance our knowledge of these ecosystems’ roles in global carbon cycling.

Methods

This study investigates soil physicochemical properties, soil carbon storage, and microbial community composition and diversity at three depths (10, 30, and 60 cm) in five salt marsh plots from five coastal salt marshes: Bare flat (a non-vegetated marsh) and plots dominated by , , , and . Carbon storage was evaluated by measuring soil organic carbon (SOC) content. At the same time, high-throughput sequencing was employed to analyze microbial communities, aiming to elucidate their relationships with soil carbon storage and wetland vegetation.

Results

The average SOC contents in the five plots were in the order of (13.33 g·kg–1) > Bare flat (11.45 g·kg–1) > (8.10 g·kg–1) > (6.15 g·kg–1) > (5.80 g·kg–1). and Bare flat marshes had the highest carbon content, which is mainly attributed to the presence of the most abundant carbon-fixation microbes, Fulvivirgaceae (family) and (genus), in the soil of these two plots. Both organic and dissolved organic carbon contents at 10 cm were higher than those at the other two depths for all five marshes.

Conclusion

The Bare flat exhibited strong carbon sequestration capability, second only to the invasive plot among the five plots surveyed. It also showed the highest microbial abundance and the greatest number of carbon-sequestration-related functional genes. The S. canadensis plot exhibited the lowest microbial community diversity and abundance despite having the highest carbon storage capacity. As an invasive species, should be removed to mitigate its ecological impact.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110356377250117155443
2025-01-22
2025-04-02
Loading full text...

Full text loading...

References

  1. Ouyang X. Kristensen E. Zimmer M. Thornber C. Yang Z. Lee S.Y. Response of macrophyte litter decomposition in global blue carbon ecosystems to climate change. Glob. Change Biol. 2023 29 13 3806 3820 10.1111/gcb.16693 36946867
    [Google Scholar]
  2. Yuan F. Zou X. Liao Q. Wang T. Zhang H. Xue Y. Chen H. Ding Y. Lu M. Song Y. Fu G. Insight into the bacterial community composition of the plastisphere in diverse environments of a coastal salt marsh. Environ. Pollut. 2024 357 124465 10.1016/j.envpol.2024.124465 38942280
    [Google Scholar]
  3. Meng Y. Gou R. Bai J. Moreno-Mateos D. Davis C.C. Wan L. Song S. Zhang H. Zhu X. Lin G. Spatial patterns and driving factors of carbon stocks in mangrove forests on Hainan Island, China. Glob. Ecol. Biogeogr. 2022 31 9 1692 1706 10.1111/geb.13549
    [Google Scholar]
  4. Chen C. Ma Y. Yu D. Hu Y. Ren L. Tracking annual dynamics of carbon storage of salt marsh plants in the Yellow River Delta national nature reserve of china based on sentinel-2 imagery during 2017–2022. Int. J. Appl. Earth Obs. Geoinf. 2024 130 103880 10.1016/j.jag.2024.103880
    [Google Scholar]
  5. Perera N. Lokupitiya E. Halwatura D. Udagedara S. Quantification of blue carbon in tropical salt marshes and their role in climate change mitigation. Sci. Total Environ. 2022 820 153313 10.1016/j.scitotenv.2022.153313 35066046
    [Google Scholar]
  6. Fu C. Li Y. Zeng L. Zhang H. Tu C. Zhou Q. Xiong K. Wu J. Duarte C.M. Christie P. Luo Y. Stocks and losses of soil organic carbon from Chinese vegetated coastal habitats. Glob. Change Biol. 2021 27 1 202 214 10.1111/gcb.15348 32920909
    [Google Scholar]
  7. Stagg C.L. Baustian M.M. Perry C.L. Carruthers T.J.B. Hall C.T. Direct and indirect controls on organic matter decomposition in four coastal wetland communities along a landscape salinity gradient. J. Ecol. 2018 106 2 655 670 10.1111/1365‑2745.12901
    [Google Scholar]
  8. Granse D. Wanner A. Stock M. Jensen K. Mueller P. Plant‐sediment interactions decouple inorganic from organic carbon stock development in salt marsh soils. Limnol. Oceanogr. Lett. 2024 9 4 469 477 10.1002/lol2.10382
    [Google Scholar]
  9. Hao Q. Song Z. Zhang X. He D. Guo L. van Zwieten L. Yu C. Wang Y. Wang W. Fang Y. Fang Y. Liu C-Q. Wang H. Organic blue carbon sequestration in vegetated coastal wetlands: Processes and influencing factors. Earth Sci. Rev. 2024 255 104853 10.1016/j.earscirev.2024.104853
    [Google Scholar]
  10. Xiao D. Deng L. Kim D.G. Huang C. Tian K. Carbon budgets of wetland ecosystems in China. Glob. Change Biol. 2019 25 6 2061 2076 10.1111/gcb.14621 30884086
    [Google Scholar]
  11. Shen X. Jiang M. Lu X. Liu X. Liu B. Zhang J. Wang X. Tong S. Lei G. Wang S. Tong C. Fan H. Tian K. Wang X. Hu Y. Xie Y. Ma M. Zhang S. Cao C. Wang Z. Aboveground biomass and its spatial distribution pattern of herbaceous marsh vegetation in China. Sci. China Earth Sci. 2021 64 7 1115 1125 10.1007/s11430‑020‑9778‑7
    [Google Scholar]
  12. Jezycki K.E. Rodriguez E. Craft C.B. Neubauer S.C. Morris J.T. Goldsmith S.T. Kremer P. Weston N.B. Metal accumulation in salt marsh soils along the East Coast of the United States. Sci. Total Environ. 2024 922 171025 10.1016/j.scitotenv.2024.171025 38387593
    [Google Scholar]
  13. Yarwood S.A. The role of wetland microorganisms in plant-litter decomposition and soil organic matter formation: a critical review. FEMS Microbiol. Ecol. 2018 94 11 fiy175 10.1093/femsec/fiy175 30169564
    [Google Scholar]
  14. Abdu N. Abdullahi A.A. Abdulkadir A. Heavy metals and soil microbes. Environ. Chem. Lett. 2017 15 1 65 84 10.1007/s10311‑016‑0587‑x
    [Google Scholar]
  15. Zhou J. Zhang J. Chen Y. Qin G. Cui B. Lu Z. Wu J. Huang X. Thapa P. Li H. Wang F. Blue carbon gain by plant invasion in saltmarsh overcompensated carbon loss by land reclamation. Carbon Research 2023 2 1 39 10.1007/s44246‑023‑00070‑4
    [Google Scholar]
  16. Wang W. Zhu Q. Dai S. Meng L. He M. Chen S. Zhao C. Dan X. Cai Z. Zhang J. Müller C. Effects of Solidago canadensis L. on mineralization-immobilization turnover enhance its nitrogen competitiveness and invasiveness. Sci. Total Environ. 2023 882 163641 10.1016/j.scitotenv.2023.163641 37080304
    [Google Scholar]
  17. Xin P. Wilson A. Shen C. Ge Z. Moffett K.B. Santos I.R. Chen X. Xu X. Yau Y.Y.Y. Moore W. Li L. Barry D.A. Surface Water and Groundwater Interactions in Salt Marshes and Their Impact on Plant Ecology and Coastal Biogeochemistry. Rev. Geophys. 2022 60 1 e2021RG000740 10.1029/2021RG000740
    [Google Scholar]
  18. Wang Y. Bai J. Zhang L. Liu H. Wang W. Liu Z. Zhang G. Advances in studies on the plant rhizosphere microorganisms in wetlands: A visualization analysis based on CiteSpace. Chemosphere 2023 317 137860 10.1016/j.chemosphere.2023.137860 36649898
    [Google Scholar]
  19. Ye X.Q. Yan Y.N. Wu M. Yu F. High Capacity of Nutrient Accumulation by Invasive Solidago canadensis in a Coastal Grassland. Front. Plant Sci. 2019 10 575 587 10.3389/fpls.2019.00575 31134115
    [Google Scholar]
  20. Cao C. Su F. Song F. Yan H. Pang Q. Distribution and disturbance dynamics of habitats suitable for Suaeda salsa. Ecol. Indic. 2022 140 108984 10.1016/j.ecolind.2022.108984
    [Google Scholar]
  21. Mustafa G. Hussain S. Liu Y. Ali I. Liu J. Bano H. Microbiology of wetlands and the carbon cycle in coastal wetland mediated by microorganisms. Sci. Total Environ. 2024 954 175734 10.1016/j.scitotenv.2024.175734 39244048
    [Google Scholar]
  22. Das N. Mandal S. Microbial populations regulate greenhouse gas emissions in Sundarban mangrove ecosystem, India. Acta Ecol. Sin. 2022 42 6 641 652 10.1016/j.chnaes.2021.07.011
    [Google Scholar]
  23. Yu F. Zhang W. Hou X. Li Y. Tong J. How nutrient loads influence microbial-derived carbon accumulation in wetlands: A new insight from microbial metabolic investment strategies. Environ. Res. 2023 217 114981 10.1016/j.envres.2022.114981 36460070
    [Google Scholar]
  24. Niu L. Zou G. Guo Y. Li Y. Wang C. Hu Q. Zhang W. Wang L. Eutrophication dangers the ecological status of coastal wetlands: A quantitative assessment by composite microbial index of biotic integrity. Sci. Total Environ. 2022 816 151620 10.1016/j.scitotenv.2021.151620 34780838
    [Google Scholar]
  25. Aralappanavar V.K. Mukhopadhyay R. Yu Y. Liu J. Bhatnagar A. Praveena S.M. Li Y. Paller M. Adyel T.M. Rinklebe J. Bolan N.S. Sarkar B. Effects of microplastics on soil microorganisms and microbial functions in nutrients and carbon cycling – A review. Sci. Total Environ. 2024 924 171435 10.1016/j.scitotenv.2024.171435 38438042
    [Google Scholar]
  26. Mason A.R.G. Salomon M.J. Lowe A.J. Cavagnaro T.R. Microbial solutions to soil carbon sequestration. J. Clean. Prod. 2023 417 137993 10.1016/j.jclepro.2023.137993
    [Google Scholar]
  27. Wang N. Quesada B. Xia L. Butterbach-Bahl K. Goodale C.L. Kiese R. Effects of climate warming on carbon fluxes in grasslands— A global meta‐analysis. Glob. Change Biol. 2019 25 5 1839 1851 10.1111/gcb.14603 30801860
    [Google Scholar]
  28. Liu Z. Sun Y. Zhang Y. Feng W. Lai Z. Fa K. Qin S. Metagenomic and 13C tracing evidence for autotrophic atmospheric carbon absorption in a semiarid desert. Soil Biol. Biochem. 2018 125 156 166 10.1016/j.soilbio.2018.07.012
    [Google Scholar]
  29. Zhang N. Chen K. Wang S. Qi D. Zhou Z. Xie C. Liu X. Dynamic Response of the cbbL Carbon Sequestration Microbial Community to Wetland Type in Qinghai Lake. Biology (Basel) 2023 12 12 1503 10.3390/biology12121503 38132329
    [Google Scholar]
  30. Zhao K. Kong W. Wang F. Long X.E. Guo C. Yue L. Yao H. Dong X. Desert and steppe soils exhibit lower autotrophic microbial abundance but higher atmospheric CO2 fixation capacity than meadow soils. Soil Biol. Biochem. 2018 127 230 238 10.1016/j.soilbio.2018.09.034
    [Google Scholar]
  31. Goyette J.O. Loiselle A. Mendes P. Cimon-Morin J. Pellerin S. Poulin M. Dupras J. Above and belowground carbon stocks among organic soil wetland types, accounting for peat bathymetry. Sci. Total Environ. 2024 946 174177 10.1016/j.scitotenv.2024.174177 38909805
    [Google Scholar]
  32. Xu Y. jie; Gong, Y. min; Bi, J. peng; Wang, Y.; Cheng, J. rui; Wang, K. Analysis of Rainwater Runoff Pollution Characteristics of Various Typical Underlying Surfaces in Ningbo. Environ. Sci. (Ruse) 2020 41 1 12 10.13227/j.hjkx.201911060 32608901
    [Google Scholar]
  33. Liu H. Ren H. Hui D. Wang W. Liao B. Cao Q. Carbon stocks and potential carbon storage in the mangrove forests of China. J. Environ. Manage. 2014 133 86 93 10.1016/j.jenvman.2013.11.037 24374165
    [Google Scholar]
  34. Viscarra Rossel R.A. Webster R. Zhang M. Shen Z. Dixon K. Wang Y.P. Walden L. How much organic carbon could the soil store? The carbon sequestration potential of Australian soil. Glob. Change Biol. 2024 30 1 e17053 10.1111/gcb.17053 38273544
    [Google Scholar]
  35. Richter S. Haase D. Thestorf K. Makki M. Carbon Pools of Berlin, Germany: Organic Carbon in Soils and Aboveground in Trees. Urban For. Urban Green. 2020 54 126777 10.1016/j.ufug.2020.126777
    [Google Scholar]
  36. Zhu D. Jia S. Influencing Factors of Soil Conductivity Measurement. Guangzhou Huagong 2021 49 85 87 10.3969/j.issn.1001‑9677.2021.07.028
    [Google Scholar]
  37. Liu J. Precision and Accuracy of Soil pH Determination by Potentiometry. Shanxi Chemical Industry 2023 43 54 56 10.16525/j.cnki.cn14‑1109/tq.2023.07.021
    [Google Scholar]
  38. Ye S. Laws E.A. Yuknis N. Ding X. Yuan H. Zhao G. Wang J. Yu X. Pei S. DeLaune R.D. Carbon Sequestration and Soil Accretion in Coastal Wetland Communities of the Yellow River Delta and Liaohe Delta, China. Estuaries Coasts 2015 38 1885 1897 10.1007/s12237‑014‑9927‑x
    [Google Scholar]
  39. Fang Y. Singh B.P. Collins D. Armstrong R. Van Zwieten L. Tavakkoli E. Nutrient stoichiometry and labile carbon content of organic amendments control microbial biomass and carbon-use efficiency in a poorly structured sodic-subsoil. Biol. Fertil. Soils 2020 56 2 219 233 10.1007/s00374‑019‑01413‑3
    [Google Scholar]
  40. Luo Z. Viscarra Rossel R.A. Shi Z. Distinct controls over the temporal dynamics of soil carbon fractions after land use change. Glob. Change Biol. 2020 26 8 4614 4625 10.1111/gcb.15157 32400933
    [Google Scholar]
  41. Murphy D.V. Macdonald A.J. Stockdale E.A. Goulding K.W.T. Fortune S. Gaunt J.L. Poulton P.R. Wakefield J.A. Webster C.P. Wilmer W.S. Soluble organic nitrogen in agricultural soils. Biol. Fertil. Soils 2000 30 5-6 374 387 10.1007/s003740050018
    [Google Scholar]
  42. Li T. Guo Z. Kou C. Lv J. Zhang X. YANG, X. Effects of Extraction Conditions on the Test Results of Soil Dissolved Organic Carbon. Shengtai Huanjing Xuebao 2017 26 1878 1883 10.16258/j.cnki.1674‑5906.2017.11.008
    [Google Scholar]
  43. Jiao S. Chen W. Wang J. Du N. Li Q. Wei G. Soil microbiomes with distinct assemblies through vertical soil profiles drive the cycling of multiple nutrients in reforested ecosystems. Microbiome 2018 6 1 146 10.1186/s40168‑018‑0526‑0 30131068
    [Google Scholar]
  44. Trivedi P. Delgado-Baquerizo M. Trivedi C. Hu H. Anderson I.C. Jeffries T.C. Zhou J. Singh B.K. Microbial regulation of the soil carbon cycle: evidence from gene–enzyme relationships. ISME J. 2016 10 11 2593 2604 10.1038/ismej.2016.65 27168143
    [Google Scholar]
  45. Gu J. van Ardenne L.B. Chmura G.L. Invasive Phragmites increases blue carbon stock and soil volume in a St. Lawrence estuary marsh. J Geophys Res-Biogeo 2020 125 e2019JG005473 10.1029/2019JG005473
    [Google Scholar]
  46. Dwivedi D. Riley W.J. Torn M.S. Spycher N. Maggi F. Tang J.Y. Mineral properties, microbes, transport, and plant-input profiles control vertical distribution and age of soil carbon stocks. Soil Biol. Biochem. 2017 107 244 259 10.1016/j.soilbio.2016.12.019
    [Google Scholar]
  47. Sun T. Wang Y. Hui D. Jing X. Feng W. Soil properties rather than climate and ecosystem type control the vertical variations of soil organic carbon, microbial carbon, and microbial quotient. Soil Biol. Biochem. 2020 148 107905 10.1016/j.soilbio.2020.107905
    [Google Scholar]
  48. Sun T. Wang Y. Lucas-Borja M.E. Jing X. Feng W. Divergent vertical distributions of microbial biomass with soil depth among groups and land uses. J. Environ. Manage. 2021 292 112755 10.1016/j.jenvman.2021.112755 33992868
    [Google Scholar]
  49. He L. Mazza Rodrigues J.L. Soudzilovskaia N.A. Barceló M. Olsson P.A. Song C. Tedersoo L. Yuan F. Yuan F. Lipson D.A. Xu X. Global biogeography of fungal and bacterial biomass carbon in topsoil. Soil Biol. Biochem. 2020 151 108024 10.1016/j.soilbio.2020.108024
    [Google Scholar]
  50. Siletti C.E. Zeiner C.A. Bhatnagar J.M. Distributions of fungal melanin across species and soils. Soil Biol. Biochem. 2017 113 285 293 10.1016/j.soilbio.2017.05.030
    [Google Scholar]
  51. Campbell T.P. Ulrich D.E.M. Toyoda J. Thompson J. Munsky B. Albright M.B.N. Bailey V.L. Tfaily M.M. Dunbar J. Microbial Communities Influence Soil Dissolved Organic Carbon Concentration by Altering Metabolite Composition. Front. Microbiol. 2022 12 799014 10.3389/fmicb.2021.799014 35126334
    [Google Scholar]
  52. Wang F. Liu J. Qin G. Zhang J. Zhou J. Wu J. Zhang L. Thapa P. Sanders C.J. Santos I.R. Li X. Lin G. Weng Q. Tang J. Jiao N. Ren H. Coastal blue carbon in China as a nature-based solution toward carbon neutrality. Innovation (Camb.) 2023 4 5 100481 10.1016/j.xinn.2023.100481 37636281
    [Google Scholar]
  53. Ritson J.P. Brazier R.E. Graham N.J.D. Freeman C. Templeton M.R. Clark J.M. The effect of drought on dissolved organic carbon (DOC) release from peatland soil and vegetation sources. Biogeosciences 2017 14 11 2891 2902 10.5194/bg‑14‑2891‑2017
    [Google Scholar]
  54. Liao Q. Lu C. Yuan F. Fan Q. Chen H. Yang L. Qiu P. Feng Z. Wang C. Zou X. Soil carbon-fixing bacterial communities respond to plant community change in coastal salt marsh wetlands. Appl. Soil Ecol. 2023 189 104918 10.1016/j.apsoil.2023.104918
    [Google Scholar]
  55. Fu G. Han J. Yu T. Huangshen L. Zhao L. The structure of denitrifying microbial communities in constructed mangrove wetlands in response to fluctuating salinities. J. Environ. Manage. 2019 238 1 9 10.1016/j.jenvman.2019.02.029 30836279
    [Google Scholar]
  56. Kangabam R.D. Silla Y. Goswami G. Barooah M. Bacterial Operational Taxonomic Units Replace the Interactive Roles of Other Operational Taxonomic Units Under Strong Environmental Changes. Curr. Genomics 2020 21 7 512 524 10.2174/1389202921999200716104355 33214767
    [Google Scholar]
  57. Zhou J. Wang Y. Lei Q. Using Bioinformatics to Quantify the Variability and Diversity of the Microbial Community Structure in Pond Ecosystems of a Subtropical Catchment. Curr. Bioinform. 2021 15 10 1178 1186 10.2174/1574893615999200422120819
    [Google Scholar]
  58. Hua G. Cheng Y. Kong J. Li M. Zhao Z. High-throughput sequencing analysis of bacterial community spatiotemporal distribution in response to clogging in vertical flow constructed wetlands. Bioresour. Technol. 2018 248 Pt B 104 112 10.1016/j.biortech.2017.07.061 28734588
    [Google Scholar]
  59. Zhou Z. Meng H. Liu Y. Gu J.D. Li M. Stratified Bacterial and Archaeal Community in Mangrove and Intertidal Wetland Mudflats Revealed by High Throughput 16S rRNA Gene Sequencing. Front. Microbiol. 2017 8 2148 10.3389/fmicb.2017.02148 29163432
    [Google Scholar]
  60. Zhao X. Yang J. Bai S. Ma F. Wang L. Microbial population dynamics in response to bioaugmentation in a constructed wetland system under 10°C. Bioresour. Technol. 2016 205 166 173 10.1016/j.biortech.2016.01.043 26826956
    [Google Scholar]
  61. Lu W.W. Fu T.X. Wang Q. Chen Y.L. Li T.Y. Wu G.L. The effect of total glucoside of paeony on gut microbiota in NOD mice with Sjögren’s syndrome based on high-throughput sequencing of 16SrRNA gene. Chin. Med. 2020 15 1 61 10.1186/s13020‑020‑00342‑w 32536964
    [Google Scholar]
  62. Jia F. Lai C. Chen L. Zeng G. Huang D. Liu F. Li X. Luo P. Wu J. Qin L. Zhang C. Cheng M. Xu P. Spatiotemporal and species variations in prokaryotic communities associated with sediments from surface-flow constructed wetlands for treating swine wastewater. Chemosphere 2017 185 1 10 10.1016/j.chemosphere.2017.06.132 28683331
    [Google Scholar]
  63. Elhaj Baddar Z. Bier R. Spencer B. Xu X. Microbial Community Changes across Time and Space in a Constructed Wetland. ACS Environ. Au 2024 2024 10.1021/acsenvironau.4c00021
    [Google Scholar]
  64. Lin Q. Wang S. Li Y. Riaz L. Yu F. Yang Q. Han S. Ma J. Effects and mechanisms of land-types conversion on greenhouse gas emissions in the Yellow River floodplain wetland. Sci. Total Environ. 2022 813 152406 10.1016/j.scitotenv.2021.152406 34921878
    [Google Scholar]
  65. Chen X. Lu J. Zhu J. Liu C. Characteristics of denitrifying bacteria in different habitats of the Yongding River wetland, China. J. Environ. Manage. 2020 275 111273 10.1016/j.jenvman.2020.111273 32919155
    [Google Scholar]
  66. Yan L. Kuang Y. Xie X. Peng K. Deng Y. Gan Y. Li Q. Zhang Y. Insights into nitrogen biogeochemical cycling in mangrove wetland from Genome-Resolved metagenomic sequencing. J. Hydrol. (Amst.) 2024 640 131741 10.1016/j.jhydrol.2024.131741
    [Google Scholar]
  67. Liao M. Xie X. Peng Y. Chai J. Chen N. Characteristics of soil microbial community functional and structure diversity with coverage of Solidago Canadensis L. J. Cent. South Univ. 2013 20 3 749 756 10.1007/s11771‑013‑1544‑5
    [Google Scholar]
  68. Dong L.J. Ma L.N. He W.M. Arbuscular mycorrhizal fungi help explain invasion success of Solidago canadensis. Appl. Soil Ecol. 2021 157 103763 10.1016/j.apsoil.2020.103763
    [Google Scholar]
  69. Soares M. Rousk J. Microbial growth and carbon use efficiency in soil: Links to fungal-bacterial dominance, SOC-quality and stoichiometry. Soil Biol. Biochem. 2019 131 195 205 10.1016/j.soilbio.2019.01.010
    [Google Scholar]
  70. Stone B.W. Li J. Koch B.J. Blazewicz S.J. Dijkstra P. Hayer M. Hofmockel K.S. Liu X.J.A. Mau R.L. Morrissey E.M. Pett-Ridge J. Schwartz E. Hungate B.A. Nutrients cause consolidation of soil carbon flux to small proportion of bacterial community. Nat. Commun. 2021 12 1 3381 10.1038/s41467‑021‑23676‑x 34099669
    [Google Scholar]
  71. Gan P. Liu F. Li R. Wang S. Luo J. Chloroplasts— Beyond Energy Capture and Carbon Fixation: Tuning of Photosynthesis in Response to Chilling Stress. Int. J. Mol. Sci. 2019 20 20 5046 10.3390/ijms20205046 31614592
    [Google Scholar]
  72. wang L. Liu G. Ma P. Cheng Z. Wang Y. Li Y. Wu X. Effects of thaw slump on soil bacterial communities on the Qinghai-Tibet Plateau. Catena 2023 232 107342 10.1016/j.catena.2023.107342
    [Google Scholar]
  73. Xu Z. Chen X. Wei Y. Zhang Q. Ji X. [Metagenomic analysis of the diversity of microbes in the Napahai plateau wetland and their carbon and nitrogen metabolisms]. Chin. J. Biotechnol. 2021 37 9 3276 3292 10.13345/j.cjb.200658 34622635
    [Google Scholar]
  74. Yang X.M. Drury C.F. Reynolds W.D. Yang J.Y. How do changes in bulk soil organic carbon content affect carbon concentrations in individual soil particle fractions? Sci. Rep. 2016 6 1 27173 10.1038/srep27173 27251365
    [Google Scholar]
  75. Guo W. Ye Z. Zhao Y. Lu Q. Shen B. Zhang X. Zhang W. Chen S.C. Li Y. Effects of different microplastic types on soil physicochemical properties, enzyme activities, and bacterial communities. Ecotoxicol. Environ. Saf. 2024 286 117219 10.1016/j.ecoenv.2024.117219 39427539
    [Google Scholar]
  76. Law S.R. Differences in pH influence the fate of CO 2 in plants. Physiol. Plant. 2019 165 3 445 447 10.1111/ppl.12924 30788844
    [Google Scholar]
  77. Zhang L. Han G. The effect of seed addition and litter removal on plant composition in a coastal marsh of the Yellow River Delta. J. Coast. Conserv. 2021 25 1 5 10.1007/s11852‑020‑00795‑z
    [Google Scholar]
  78. Amendola D. Mutema M. Rosolen V. Chaplot V. Soil hydromorphy and soil carbon: A global data analysis. Geoderma 2018 324 9 17 10.1016/j.geoderma.2018.03.005
    [Google Scholar]
  79. Guan B. Yu J. Hou A. Han G. Wang G. Qu F. Xia J. Wang X. The ecological adaptability of Phragmites australis to interactive effects of water level and salt stress in the Yellow River Delta. Aquat. Ecol. 2017 51 1 107 116 10.1007/s10452‑016‑9602‑3
    [Google Scholar]
  80. Grüneberg E. Schöning I. Hessenmöller D. Schulze E.D. Weisser W.W. Organic layer and clay content control soil organic carbon stocks in density fractions of differently managed German beech forests. For. Ecol. Manage. 2013 303 1 10 10.1016/j.foreco.2013.03.014
    [Google Scholar]
  81. Li J. Nie M. Powell J.R. Bissett A. Pendall E. Soil physico-chemical properties are critical for predicting carbon storage and nutrient availability across Australia. Environ. Res. Lett. 2020 15 9 094088 10.1088/1748‑9326/ab9f7e
    [Google Scholar]
  82. Luo Z. Viscarra-Rossel R.A. Qian T. Similar importance of edaphic and climatic factors for controlling soil organic carbon stocks of the world. Biogeosciences 2021 18 6 2063 2073 10.5194/bg‑18‑2063‑2021
    [Google Scholar]
/content/journals/cac/10.2174/0115734110356377250117155443
Loading
/content/journals/cac/10.2174/0115734110356377250117155443
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test