Skip to content
2000
image of Comparative Analysis of Essential Oil Composition in Pinus sylvestris, Leucadendron argenteum, Impatiens balsamina and Abies sibirica

Abstract

Background

Essential oil components play an important role in food flavoring industries and chemical industries. Essential oil from (pine oil, scotch pine oil, Turpentine Oil), (silver fir needle oil), (balsam fir needle oil), and (siberianfirn needle oil) contains numerous active ingredients that help to develop drug preparation.

Objective

To compare the phytoconstituents present in the essential oil of (wood, cone, needle), (needle), (needle) and (needle).

Methods

This study concentrates on analyzing the natural flavor in six essential oils of (wood, cone, needle), (needle), (needle), and (needle) subjected to gas chromatography analysis with the condition of 40ºC for 2 min, 40ºC to 180ºC @ rate 15 ºC; 180ºC to 230ºC at 10ºC/min and final hold at 230ºC for 2 min. AFID detector was used.

Results

The results showed the presence of several organic flavoring compounds, especially terpenes and terpenoids. Alpha pinene are the major flavoring molecules present in all the selected oils with a higher percentage. Alpha pinene (60.25% and 50.37%) was found to be highest in turpentine and scotch pine oils respectively. Alpha terpineol (51.73%), limonene (34.33%), beta-pinene (36.12%), and bornyl acetate (35.94%) were found higher levels in and respectively. Alpha-pinene, beta-pinene, alpha terpineol, beta phellandrene, alphafenchene, borneol, limonene, camphene, bornyl acetate, myrcene, and delta 3 carene are the most common phytocompounds found in the essential oils.

Conclusion

Alpha pinene, beta pinene, and limonene were present in all four plants and and also utilized in aromatherapy and the perfume industry.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110355898250116025343
2025-01-24
2025-04-02
Loading full text...

Full text loading...

References

  1. Sokołowska J. Fuchs H. Celiński K. Assessment of ITS2 region relevance for taxa discrimination and phylogenetic inference among Pinaceae. Plants 2022 11 8 1078 10.3390/plants11081078 35448806
    [Google Scholar]
  2. Singh A. Pandey S. Srivastava R.P. Devkota H.P. Singh L. Saxena G. Helianthus annuus L.: traditional uses, phytochemistry, and pharmacological activities. In medicinal plants of the asteraceae family: Traditional uses, phytochemistry and pharmacological activities. Singapore: Springer. Nat. Singap. 2022 2 197 212
    [Google Scholar]
  3. Sharma S.K. Alam A. Ethnomedicinal importance of common weeds of the family asteraceae in the tribal belt of rajasthan, India. Medicinal and aromatic plants of India Cham Springer International Publishing 2023 2 37 62
    [Google Scholar]
  4. Esteban G.L. Palacios D.P. Iruela G.A. Fernández G.F. Esteban G.L. de Vega G.D. Comparative wood anatomy in Pinaceae with reference to its systematic position. Forests 2021 12 12 1706 10.3390/f12121706
    [Google Scholar]
  5. Rundel P.W. A neogene heritage: Conifer distributions and endemism in mediterranean-climate ecosystems. Front. Ecol. Evol. 2019 7 364 10.3389/fevo.2019.00364
    [Google Scholar]
  6. Abers M. Schroeder S. Goelz L. Sulser A. Rose S.T. Puchalski K. Langland J. Antimicrobial activity of the volatile substances from essential oils. BMC Complement. Med. Ther. 2021 21 1 124 10.1186/s12906‑021‑03285‑3 33865375
    [Google Scholar]
  7. Singh S. Singh B. Surmal O. Bhat M.N. Singh B. Musarella C.M. Fragmented forest patches in the Indian Himalayas preserve unique components of biodiversity: investigation of the floristic composition and phytoclimate of the unexplored Bani Valley. Sustainability 2021 13 11 6063 10.3390/su13116063
    [Google Scholar]
  8. Aimad A. Sanae R. Anas F. Abdelfattah E.M. Bourhia M. Salamatullah M.A. Alzahrani A. Alyahya H.K. Albadr N.A. Abdelkrim A. Barnossi E.A. Noureddine E. Chemical characterization and antioxidant, antimicrobial, and insecticidal properties of essential oil from Mentha pulegium L. Evid. Based Complement. Alternat. Med. 2021 2021 1 12 10.1155/2021/1108133 34691201
    [Google Scholar]
  9. do Nascimento D.L. Moraes A.A.B. Costa K.S. Galúcio P.J.M. Taube P.S. Costa C.M.L. Cruz N.J. Andrade A.E.H. Faria L.J.G. Bioactive natural compounds and antioxidant activity of essential oils from spice plants: New findings and potential applications. Biomolecules 2020 10 7 988 10.3390/biom10070988 32630297
    [Google Scholar]
  10. Jamil S. Dastagir G. Foudah A.I. Alqarni M.H. Yusufoglu H.S. Alkreathy H.M. Ertürk Ö. Shah M.A.R. Khan R.A. Carduus edelbergii Rech. f. Mediated fabrication of gold nanoparticles; Characterization and evaluation of antimicrobial, antioxidant and antidiabetic potency of the synthesized AuNPs. Molecules 2022 27 19 6669 10.3390/molecules27196669 36235206
    [Google Scholar]
  11. Blanco S.B. Herbal glycosides in healthcare. Herbal biomolecules in healthcare applications. Academic Press 2022 239 282 10.1016/B978‑0‑323‑85852‑6.00021‑4
    [Google Scholar]
  12. Mouffouk C. Mouffouk S. Mouffouk S. Haba H. Traditional use, phytochemistry and pharmacological properties of the genus onopordum. Curr. Chem. Biol. 2023 17 2 124 139 10.2174/2212796817666230102092008
    [Google Scholar]
  13. Kim Y.J. Hong G.L. Kim K.H. Lee H.J. Cho S.P. Joung D. Pack B.J. Jung J.Y. Effects of phytoncide extracts on antibacterial activity, immune responses, and stress in dogs. J. People Plants Envir. 2023 26 2 181 189 10.11628/ksppe.2023.26.2.181
    [Google Scholar]
  14. Aziz A.N.M. Hifnawy M.S. Lotfy R.A. Younis I.Y. LC/MS/MS and GC/MS/MS metabolic profiling of Leontodon hispidulus, in vitro and in silico anticancer activity evaluation targeting hexokinase 2 enzyme. Sci. Rep. 2024 14 1 6872 10.1038/s41598‑024‑57288‑4 38519553
    [Google Scholar]
  15. Kültür Ş. Gürdal B. Sari A. Meli̇koğlu G. Traditional herbal remedies used in kidney diseases in Turkey: an overview. Turk. J. Bot. 2021 45 4 269 287 10.3906/bot‑2011‑32
    [Google Scholar]
  16. Snafi A.A.E. Constituents and pharmacology of Onopordum acanthium. IOSR J. Pharm. 2020 10 3 7 14 10.9790/3013‑0703010720
    [Google Scholar]
  17. Anand B.P. Saravanan C.G. Srinivasan C.A. Performance and exhaust emission of turpentine oil powered direct injection diesel engine. Renew. Energy 2010 35 6 1179 1184 10.1016/j.renene.2009.09.010
    [Google Scholar]
  18. Suman L.N. De S. Sharma G. Mandal U. Bhattacherjee R. Banerjee D. Suman D.S. Field larvicidal and oviposition repellent efficacy of three essential oil formulations for the control of filaria vector mosquito Culex quinquefasciatus Say (Diptera: Culicidae): A kill and push concept. J. Asia Pac. Entomol. 2022 25 3 101963 10.1016/j.aspen.2022.101963
    [Google Scholar]
  19. Namshir J. Shatar A. Khandaa O. Tserennadmid R. Shiretorova V.G. Nguyen M.C. Antimicrobial, antioxidant and cytotoxic activity on human breast cancer cells of essential oil from Pinus sylvestris. var mongolica needle. Mongolian J. Chem. 2020 21 47 19 26 10.5564/mjc.v21i47.1428
    [Google Scholar]
  20. Essaidi I. Dhen N. Lassoued G. Kouki R. Haouala F. Alhudhaibi A.M. Alrudayni H.A. Almohandes D.B. Onopordum nervosum ssp. Platylepis flowers as a promising source of antioxidant and clotting milk agents: Behavior of spontaneous and cultivated plants under different drying methodologies. Processes 2023 11 10 2962 10.3390/pr11102962
    [Google Scholar]
  21. Baştürk A. Peker S. Antioxidant capacity, fatty acid profile and volatile components of the onopordumanatolicum and onopordumheteracanthum species seeds grown in van, Turkey. J. Instit. Sci. Technol. 2021 11 4 2810 2822
    [Google Scholar]
  22. Gürdal B. Traditional uses of turkish asteraceae species. Medicinal and aromatic plants of Turkey. Cham Springer International Publishing 2023 283 305 10.1007/978‑3‑031‑43312‑2_13
    [Google Scholar]
  23. Alper M. Özay C. Güneş H. Mammadov R. Assessment of antioxidant and cytotoxic activities and identification of phenolic compounds of centaurea solstitialis and urospermumpicroides from Turkey. Braz. Arch. Biol. Technol. 2021 64 e21190530 10.1590/1678‑4324‑2021190530
    [Google Scholar]
  24. Caliskan U.K. Medicinal plants of Turkey. CRC Press 2023 10.1201/9781003146971
    [Google Scholar]
  25. Butnaru E. Pamfil D. Stoleru E. Brebu M. Characterization of bark, needles and cones from silver fir (Abies alba mill.) towards valorization of biomass forestry residues. Biomass Bioenergy 2022 159 106413 10.1016/j.biombioe.2022.106413
    [Google Scholar]
  26. Albanese L. Bonetti A. D’Acqui L. Meneguzzo F. Zabini F. Affordable production of antioxidant aqueous solutions by hydrodynamic cavitation processing of silver fir (Abies alba Mill.) needles. Foods 2019 8 2 65 10.3390/foods8020065 30759809
    [Google Scholar]
  27. Ahmad S. Saba S. Hafiz M.A. Phytochemical analysis, antimicrobial, antioxidant and enzyme inhibitory activities of ethanolic extract of Centaureasolstitialis L. and its different fractions. Indian J. Exp. Biol. 2022 58 06 396 403
    [Google Scholar]
  28. Tauchen J. Natural products and their (semi-) synthetic forms in the treatment of migraine: history and current status. Curr. Med. Chem. 2020 27 23 3784 3808 10.2174/0929867326666190125155947 30686246
    [Google Scholar]
  29. Ungerer JT Grow, gather, heal: unleashing the power of feverfew: an in-depth exploration of feverfew's history, folk and traditional uses, medicinal benefits, and cultivating your own at home. John T. Ungerer 2024
    [Google Scholar]
  30. Adamo S.A. Nabbout E.A. Ferguson L.V. Zbarsky J.S. Faraone N. Balsam fir (Abies balsamea) needles and their essential oil kill overwintering ticks (Ixodes scapularis) at cold temperatures. Sci. Rep. 2022 12 1 12999 10.1038/s41598‑022‑15164‑z 35906288
    [Google Scholar]
  31. Romanov A.S. Olesov E.E. Tsarev V.N. Olesova V.N. Glazkova E.V. Effect of the oil-ether complex of Siberian fir on the fungal and periodontopathogenic flora of the mouth (microbiological study). Russian J. Dent. 2022 26 2 89 94 10.17816/1728‑2802‑2022‑26‑2‑89‑94
    [Google Scholar]
  32. Romanenko E.P. Domrachev D.V. Tkachev A.V. Variations in essential oils from south siberian conifers of the Pinaceae family: New data towards identification and quality control. Chem. Biodivers. 2022 19 2 e202100755 10.1002/cbdv.202100755 34918866
    [Google Scholar]
  33. Jahromi B. Pirvulescu I. Candido K.D. Knezevic N.N. Herbal medicine for pain management: efficacy and drug interactions. Pharmaceutics 2021 13 2 251 10.3390/pharmaceutics13020251 33670393
    [Google Scholar]
  34. Sangle C.K. Use of herbal medication & home remedies in the management of migraine: a comprehensive review. Int. J. Pharma Sci. 2023 1 11 1
    [Google Scholar]
  35. Ferrara L. Nutrition and phytotherapy: a winning combination against headache. Int. J. Med. Rev. 2019 6 1 6 13 10.29252/IJMR‑060102
    [Google Scholar]
  36. Kumar N. Ashaq M. Safety and toxicity of botanical medicines: a critical appraisal. Int. J. All Res. Educ. Sci. Methods. 2021 9 2455 6211
    [Google Scholar]
  37. Kopustinskiene D.M. Bernatonyte U. Maslii Y. Herbina N. Bernatoniene J. Natural herbal non-opioid topical pain relievers—comparison with traditional therapy. Pharmaceutics 2022 14 12 2648 10.3390/pharmaceutics14122648 36559142
    [Google Scholar]
  38. Řebíčková K. Bajer T. Šilha D. Ventura K. Bajerová P. Comparison of chemical composition and biological properties of essential oils obtained by hydrodistillation and steam distillation of Laurus nobilis L. Plant Foods Hum. Nutr. 2020 75 4 495 504 10.1007/s11130‑020‑00834‑y 32710382
    [Google Scholar]
  39. Parveen A Perveen S Naz F Ahmad M Khalid M. Chamomile. In essentials of medicinal and aromatic crops Cham Springer International Publishing 2023 1009 1040
    [Google Scholar]
  40. Wali A.F. Jabnoun S. Razmpoor M. Najeeb F. Shalabi H. Akbar I. Account of some important edible medicinal plants and their socio-economic importance. Edible plants in health and diseases. Cultural, Practical and Economic Value 2022 1 325 367
    [Google Scholar]
  41. Hu Y. Qi L. Feng S. Bassi A. Xu C.C. Comparative studies on liquefaction of low-lipid microalgae into bio-crude oil using varying reaction media. Fuel 2019 238 240 247 10.1016/j.fuel.2018.10.124
    [Google Scholar]
  42. Patil DN Keshamma E Prathibha KY Pandya JB Pharmacognosy: A science of natural products. Book Saga Publications 2022
    [Google Scholar]
  43. Rajamani K. Nalina L. Hegde L. Medicinal and aromatic crops. AgriMoon 2019 1 95
    [Google Scholar]
  44. Gnanaselvan S. Yadav S.A. Manoharan S.P. Structure-based virtual screening of anti-breast cancer compounds from Artemisia absinthium—insights through molecular docking, pharmacokinetics, and molecular dynamic simulations. J. Biomol. Struct. Dyn. 2024 42 6 3267 3285 37194295
    [Google Scholar]
  45. Ghalem BR Essential oils as antimicrobial agents against some important plant pathogenic bacteria and fungi. Plant-microbe interaction: An approach to sustainable agriculture 2016 271 296 10.1007/978‑981‑10‑2854‑0_13
    [Google Scholar]
  46. Ju J. Xie Y. Guo Y. Cheng Y. Qian H. Yao W. The inhibitory effect of plant essential oils on foodborne pathogenic bacteria in food. Crit. Rev. Food Sci. Nutr. 2019 59 20 3281 3292 10.1080/10408398.2018.1488159 29902072
    [Google Scholar]
  47. Ham Y. Yang J. Choi W.S. Ahn B.J. Park M.J. Antibacterial activity of essential oils from Pinaceae leaves against fish pathogens. Mogjae Gonghag 2020 48 4 527 547 10.5658/WOOD.2020.48.4.527
    [Google Scholar]
  48. Yang J. Choi W.S. Kim J.W. Lee S.S. Park M.J. Anti-inflammatory effect of essential oils extracted from wood of four coniferous tree species. Mogjae Gonghag 2019 47 6 674 691 10.5658/WOOD.2019.47.6.674
    [Google Scholar]
  49. Razavi R. Amiri M. Alshamsi H.A. Eslaminejad T. Niasari S.M. Green synthesis of Ag nanoparticles in oil-in-water nano-emulsion and evaluation of their antibacterial and cytotoxic properties as well as molecular docking. Arab. J. Chem. 2021 14 9 103323 10.1016/j.arabjc.2021.103323
    [Google Scholar]
  50. Wierdak N.R. Sałata A. Kniaziewicz M. Tansy (Tanacetum vulgare L.)—A wild-growing aromatic medicinal plant with a variable essential oil composition. Agronomy 2022 12 2 277 10.3390/agronomy12020277
    [Google Scholar]
  51. Mamatkulov ZU Kayumova GG Pharmaceutical properties of flores tanaceti. Model. Meth. Modern Sci. 2023 2 10 43 44
    [Google Scholar]
  52. Ijaz F Nawaz H Hanif MA Ferreira PM In medicinal plants of South Asia Elsevier 2020 685 697
    [Google Scholar]
  53. Far F.B. Behzad G. Khalili H. Achillea millefolium: Mechanism of action, pharmacokinetic, clinical drug-drug interactions and tolerability. Heliyon 2023 9 12 e22841 10.1016/j.heliyon.2023.e22841 38076118
    [Google Scholar]
  54. Ruggles Z. Wilson T.M. Abad A. Packer C. Trunk wood essential oil profile comparison of Abies concolor (Pinaceae) and Abies grandis (Pinaceae) from northern Idaho (USA). Phytologia 2022 104 4 66 73
    [Google Scholar]
  55. Akdağ A. Öztürk E. Distillation methods of essential oils. Selçuk Univ. Facul. Sci. Sci. J. 2019 45 1 22 31
    [Google Scholar]
  56. Allenspach M. Steuer C. α-Pinene: A never-ending story. Phytochemistry 2021 190 112857 10.1016/j.phytochem.2021.112857 34365295
    [Google Scholar]
  57. Salehi B. Upadhyay S. Orhan E.I. Jugran K.A. Therapeutic potential of α-and β-pinene: A miracle gift of nature. Biomolecules 2019 9 11 738 10.3390/biom9110738 31739596
    [Google Scholar]
  58. Mohammed M.S. Babeanu N. Limonene-a biomolecule with potential applications in regenerative medicine. Sci. Bull. Ser. F Biotechnol. 2022 26 2 12
    [Google Scholar]
  59. Hachlafi N.E.L. Aanniz T. Menyiy N.E. Baaboua A.E. Omari N.E. Balahbib A. Shariati M.A. Zengin G. Benbrahim F.K. Bouyahya A. In vitro and in vivo biological investigations of camphene and its mechanism insights: a review. Food Rev. Int. 2023 39 4 1799 1826 10.1080/87559129.2021.1936007
    [Google Scholar]
  60. Oliveira S.D.D.S. Silva D.O.A.M. Blank A.F. Nogueira P.C.D.L. Nizio D.A.D.C. Pereira A.C.S. Pereira R.O. Sá M.T.S.A. Santana M.H.D.S. Blank A.M.D.F. Blank A.M.D. Radical scavenging activity of the essential oils from Croton grewioides Baill accessions and the major compounds eugenol, methyl eugenol and methyl chavicol. J. Essent. Oil Res. 2021 33 1 94 103 10.1080/10412905.2020.1779139
    [Google Scholar]
  61. Ashmawy A. Mostafa N. Eldahshan O. GC/MS analysis and molecular profiling of lemon volatile oil against breast cancer. J. Essent. Oil-Bear. Plants 2019 22 4 903 916 10.1080/0972060X.2019.1667877
    [Google Scholar]
  62. Jiao Y.L. Juan L.X. Lan X. Min L.G. Si T.L. Hong N.C. Authentication of two different chemical types of cinnamomum camphora leaves by microscopic technique with GC-MS and GC analysis. Pharm. Chem. J. 2020 54 2 154 161 10.1007/s11094‑020‑02173‑3
    [Google Scholar]
  63. Zhao Z. Sun Y. Ruan X. Bornyl acetate: A promising agent in phytomedicine for inflammation and immune modulation. Phytomedicine 2023 114 154781 10.1016/j.phymed.2023.154781 37028250
    [Google Scholar]
  64. Figuêiredo S.D.N.F.R. Monteiro Á.B. Menezes A.I.R. Sales V.S. do Nascimento P.E. Rodrigues K.S.C. Primo B.A.J. da Cruz P.L. Amaro É.N. Delmondes A.G. Nóbrega L.O.S.J.P. Lopes P.M.J. da Costa M.J.G. Felipe B.C.F. Kerntopf M.R. Effects of the Hyptis martiusii Benth. leaf essential oil and 1,8-cineole (eucalyptol) on the central nervous system of mice. Food Chem. Toxicol. 2019 133 110802 10.1016/j.fct.2019.110802 31493462
    [Google Scholar]
  65. Freitas P.R. Araújo D.A.C.J. Barbosa S.C.R. Muniz D.F. Silva D.A.C.A. Rocha J.E. Tintino M.O.C.D. Filho R.J. Silva D.L.E. Confortin C. Amaral D.W. Deschamps C. Filho B.J.M. Lima D.N.T.R. Tintino S.R. Coutinho M.H.D. GC-MS-FID and potentiation of the antibiotic activity of the essential oil of Baccharis reticulata (ruiz & pav.) pers. and α-pinene. Ind. Crops Prod. 2020 145 112106 10.1016/j.indcrop.2020.112106
    [Google Scholar]
  66. Chintalchere J.M. Dar M.A. Raut K.D. Pandit R.S. Bioefficacy of lemongrass and tea tree essential oils against house fly, Musca domestica. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 2021 91 2 307 318 10.1007/s40011‑020‑01220‑z 33619421
    [Google Scholar]
  67. Guimarães B.A. Silva R.C. Andrade E.H.A. Setzer W.N. Silva D.J.K. Figueiredo P.L.B. Seasonality, composition, and antioxidant capacity of limonene/δ-3-carene/(E)-caryophyllene Schinusterebinthifolia essential oil chemotype from the brazilian Amazon: a chemometric approach. Plants 2023 12 13 2497 10.3390/plants12132497 37447058
    [Google Scholar]
  68. Chintalchere J.M. Dar M.A. Shaha C. Pandit R.S. Impact of essential oils on Musca domestica larvae: oxidative stress and antioxidant responses. Int. J. Trop. Insect Sci. 2021 41 1 821 830 10.1007/s42690‑020‑00272‑y
    [Google Scholar]
  69. Chintalchere J.M. Dar M.A. Pandit R.S. Biocontrol efficacy of bay essential oil against housefly, Musca domestica (Diptera: Muscidae). J. Basic Appl. Zool. 2020 81 1 2
    [Google Scholar]
  70. Rajput A. Kasar A. Thorat S. Kulkarni M. Borneol: A plant-sourced terpene with a variety of promising pharmacological effects. Nat. Prod. J. 2023 13 1 13 28
    [Google Scholar]
/content/journals/cac/10.2174/0115734110355898250116025343
Loading
/content/journals/cac/10.2174/0115734110355898250116025343
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test