Skip to content
2000
image of Sorption Preconcentration of Heavy Metals on Graphene Oxide for Analysis of Waters by Electrothermal Vaporization ICP-OES

Abstract

Background

Heavy metals (HMs) such as Cr, Hg, Pb, ., are major threats to human health due to their toxic and carcinogenic properties. So, the determination of HMs concentrations in waters is an actual and important task.

Methods

In this paper, the method includes a preliminary concentration of HMs and other analytes (Ag, Au, Ba, Be, Bi, Cr, Hg, In, Pb, Sn, and Zn) from water solutions on the graphene oxide and subsequent analysis of slurries of sorbent by electrothermal vaporization inductively coupled plasma optical emission spectrometry (ETV-ICP-OES) is developed for the first time.

Results

The high efficiency of analytes sorption on graphene oxide made it possible to significantly increase the sensitivity of the analysis. The limits of detection of Ag, Au, Ba, Be, Bi, Cr, Hg, In, Pb, Sn, and Zn from 0.7 to 300 ng L-1 are achieved for ETV-ICP-OES analysis. The use of electrothermal vaporization for sample introduction allows the analysis of sorbent suspensions and avoids the desorption stage, reduces sample dilution, increases the preconcentration factor, and improves limits of detection (LODs) of analytes by 2-33 times compared to routine inductively coupled plasma optical emission spectrometry analysis (ICP-OES) with sorption preconcentration.

Conclusion

For Ba, Be, Bi, Cr, In, Pb, Sn, and Zn ETV-ICP-OES provides LODs from 2 to 33 times lower compared to conventional ICP-OES analysis with sorption preconcentration due to higher preconcentration factor and transport efficiency of introducing of the analytes concentrates into the ICP. The developed method was applied to the analysis of real tap and mineral water samples. The results of analysis by ETV-ICP-OES with preconcentration of trace elements and ICP-OES were in good agreement. As a result of lower LODs of analytes, ETV-ICP-OES analysis provides the determination of concentrations of Ba, Bi, Sn, and Pb in tap and mineral water samples.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110354995241226204921
2025-01-20
2025-04-02
Loading full text...

Full text loading...

References

  1. Tchounwou P.B. Yedjou C.G. Patlolla A.K. Sutton D.J. Heavy metal toxicity and the environment. EXS 2012 101 133 164 10.1007/978‑3‑7643‑8340‑4_6 22945569
    [Google Scholar]
  2. Fu Z. Xi S. The effects of heavy metals on human metabolism. Toxicol. Mech. Methods 2020 30 3 167 176 10.1080/15376516.2019.1701594 31818169
    [Google Scholar]
  3. Al osman M. Yang F. Massey I.Y. Exposure routes and health effects of heavy metals on children. Biometals 2019 32 4 563 573 10.1007/s10534‑019‑00193‑5 30941546
    [Google Scholar]
  4. Rahman Z. Singh V.P. The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: An overview. Environ. Monit. Assess. 2019 191 7 419 10.1007/s10661‑019‑7528‑7 31177337
    [Google Scholar]
  5. Aalami A.H. Hoseinzadeh M. Hosseini Manesh P. Jiryai Sharahi A. Kargar Aliabadi E. Carcinogenic effects of heavy metals by inducing dysregulation of microRNAs: A review. Mol. Biol. Rep. 2022 49 12 12227 12238 10.1007/s11033‑022‑07897‑x 36269534
    [Google Scholar]
  6. Chen D. Liu X. Bian R. Cheng K. Zhang X. Zheng J. Joseph S. Crowley D. Pan G. Li L. Effects of biochar on availability and plant uptake of heavy metals – A meta-analysis. J. Environ. Manage. 2018 222 76 85 10.1016/j.jenvman.2018.05.004 29804035
    [Google Scholar]
  7. Abd Elnabi M.K. Elkaliny N.E. Elyazied M.M. Azab S.H. Elkhalifa S.A. Elmasry S. Mouhamed M.S. Shalamesh E.M. Alhorieny N.A. Abd Elaty A.E. Elgendy I.M. Etman A.E. Saad K.E. Tsigkou K. Ali S.S. Kornaros M. Mahmoud Y.A.G. Toxicity of heavy metals and recent advances in their removal: A review. Toxics 2023 11 7 580 10.3390/toxics11070580 37505546
    [Google Scholar]
  8. Fang Z. Ding T. Chen J. Xue S. Zhou Q. Wang Y. Wang Y. Huang Z. Yang S. Impacts of land use/land cover changes on ecosystem services in ecologically fragile regions. Sci. Total Environ. 2022 831 154967 10.1016/j.scitotenv.2022.154967 35367552
    [Google Scholar]
  9. Haddad M. Nassar D. Shtaya M. Heavy metals accumulation in soil and uptake by barley (Hordeum vulgare) irrigated with contaminated water. Sci. Rep. 2023 13 1 4121 10.1038/s41598‑022‑18014‑0 36914657
    [Google Scholar]
  10. Cheng X. Wei C. Ke X. Pan J. Wei G. Chen Y. Wei C. Li F. Preis S. Nationwide review of heavy metals in municipal sludge wastewater treatment plants in China: Sources, composition, accumulation and risk assessment. J. Hazard. Mater. 2022 437 129267 10.1016/j.jhazmat.2022.129267 35716572
    [Google Scholar]
  11. Gray A.L. Date A.R. Inductively coupled plasma source mass spectrometry using continuum flow ion extraction. Analyst (Lond.) 1983 108 1290 1033 1050 10.1039/an9830801033
    [Google Scholar]
  12. Houk R.S. Fassel V.A. Flesch G.D. Svec H.J. Gray A.L. Taylor C.E. Inductively coupled argon plasma as an ion source for mass spectrometric determination of trace elements. Anal. Chem. 1980 52 14 2283 2289 10.1021/ac50064a012
    [Google Scholar]
  13. Mitchell G.P. Harris C.I. Hughes T.P. Steers E.B.M. Greenfield S. Jones I.L.W. Berry C.T. Bunch L.G. New light sources in spectroscopy. Proc. Soc. Anal. Chem. Anal. Div. Chem. Soc. 1965 2 7 105 106 10.1039/sa9650200105
    [Google Scholar]
  14. Scott R.H. Fassel V.A. Kniseley R.N. Nixon D.E. Inductively coupled plasma-optical emission analytical spectrometry. Anal. Chem. 1974 46 1 75 80 10.1021/ac60337a031
    [Google Scholar]
  15. Yudelevich I.G. Cherevko A.S. Engelsht V.S. Pikalov V.V. Tagiltsev A.P. Zheenbajev Z.Z. A two-jet plasmatron for the spectrochemical analysis of geological samples. Spectrochim. Acta B At. Spectrosc. 1984 39 6 777 785 10.1016/0584‑8547(84)80086‑5
    [Google Scholar]
  16. Olesik J.W. Jiao S. Matrix effects using an ICP-MS with a single positive ion lens and grounded stop: Analyte mass dependent? J. Anal. At. Spectrom. 2017 32 5 951 966 10.1039/C7JA00043J
    [Google Scholar]
  17. Agatemor C. Beauchemin D. Matrix effects in inductively coupled plasma mass spectrometry: A review. Anal. Chim. Acta 2011 706 1 66 83 10.1016/j.aca.2011.08.027 21995912
    [Google Scholar]
  18. Cheng Z. Zheng Y. Mortlock R. van Geen A. Rapid multi-element analysis of groundwater by high-resolution inductively coupled plasma mass spectrometry. Anal. Bioanal. Chem. 2004 379 3 512 518 10.1007/s00216‑004‑2618‑x 15098084
    [Google Scholar]
  19. Todolí J.L. Gras L. Hernandis V. Mora J. Elemental matrix effects in ICP-AES. J. Anal. At. Spectrom. 2002 17 2 142 169 10.1039/B009570M
    [Google Scholar]
  20. Carlton D.D. Jr Fontenot B.E. Hildenbrand Z.L. Davis T.M. Walton J.L. Schug K.A. Varying matrix effects for elemental analysis identified from groundwater in the Barnett Shale. Int. J. Environ. Sci. Technol. 2015 12 11 3665 3674 10.1007/s13762‑015‑0803‑4
    [Google Scholar]
  21. Chen S. Xilin Z. Dengbo L. Ming Y. Study on adsorption behavior of Mn(II) and Mn(VII) on modified carbon nanofibers and their determination by inductively coupled plasma mass spectrometry. Spectroscopy (Springf.) 2008 29 45 50 10.46770/AS.2008.02.002
    [Google Scholar]
  22. Sayar O. Aboufazeli F. Zhad H. Sadeghi O. Karimi M. Najafi E. Optimization of solid-phase extraction by experimental design methodology for determination of lead ions using graphene modified nano-sheets as a novel sorbent. Curr. Anal. Chem. 2014 10 4 512 521 10.2174/157341101004140701114909
    [Google Scholar]
  23. Perreault F. Fonseca de Faria A. Elimelech M. Environmental applications of graphene-based nanomaterials. Chem. Soc. Rev. 2015 44 16 5861 5896 10.1039/C5CS00021A 25812036
    [Google Scholar]
  24. Yu S. Wang X. Tan X. Wang X. Sorption of radionuclides from aqueous systems onto graphene oxide-based materials: A review. Inorg. Chem. Front. 2015 2 7 593 612 10.1039/C4QI00221K
    [Google Scholar]
  25. He M. Huang L. Zhao B. Chen B. Hu B. Advanced functional materials in solid phase extraction for ICP-MS determination of trace elements and their species - A review. Anal. Chim. Acta 2017 973 1 24 10.1016/j.aca.2017.03.047 28502423
    [Google Scholar]
  26. Abd El-Hay S.S. Aldawsari H. Gouda A.A. A new separation and enrichment method of heavy metals in water and food samples using 2-(2′-Benzothiazolylazo)-6-Aminophenol impregnated multi-walled carbon nanotubes. Curr. Anal. Chem. 2018 14 2 120 128 10.2174/1573411013666170530103718
    [Google Scholar]
  27. Siddeeg S.M. Tahoon M.A. Alsaiari N.S. Shabbir M. Rebah F.B. Application of functionalized nanomaterials as effective adsorbents for the removal of heavy metals from wastewater: A review. Curr. Anal. Chem. 2021 17 1 4 22 10.2174/15734110MTA4aMjkwy
    [Google Scholar]
  28. Abbasi N. Azar P.A. Tehrani M.S. Aliabad J.M. Studying the adsorption process of cadmium ions by Fe3O4/Lmethionine/graphene oxide and graphene aerogel nanocomposites from aqueous environments. Curr. Anal. Chem. 2023 19 4 309 319 10.2174/1573411019666230427093802
    [Google Scholar]
  29. Manousi N. Gomez-Gomez B. Madrid Y. Deliyanni E.A. Zachariadis G.A. Determination of rare earth elements by inductively coupled plasma-mass spectrometry after dispersive solid phase extraction with novel oxidized graphene oxide and optimization with response surface methodology and central composite design. Microchem. J. 2019 104428 10.1016/j.microc.2019.104428
    [Google Scholar]
  30. Pakulski D. Gorczyński A. Marcinkowski D. Czepa W. Chudziak T. Witomska S. Nishina Y. Patroniak V. Ciesielski A. Samorì P. High-sorption terpyridine–graphene oxide hybrid for the efficient removal of heavy metal ions from wastewater. Nanoscale 2021 13 23 10490 10499 10.1039/D1NR02255E 34081070
    [Google Scholar]
  31. Chen S. He Y. Zhang Y. Lu D. Preconcentration and separation of trace As(III) and Sb(III) by carbon nanofibers loaded with ammonium pyrroinedithiocarbamate prior to ICP-MS determination. At. Spectr. 2015 36 4 153 158 10.46770/AS.2015.04.001
    [Google Scholar]
  32. Moon H.S. Lee J.H. Kwon S. Kim I.T. Lee S.G. Mechanisms of Na adsorption on graphene and graphene oxide: density functional theory approach. Carbon letters 2015 16 2 116 120 10.5714/CL.2015.16.2.116
    [Google Scholar]
  33. Showalter A.R. Duster T.A. Szymanowski J.E.S. Na C. Fein J.B. Bunker B.A. Sorption mechanisms of metals to graphene oxide. J. Phys. Conf. Ser. 2016 712 012094 10.1088/1742‑6596/712/1/012094
    [Google Scholar]
  34. Udoka N.A. Enenebeaku C. Proficiency of graphene oxide in adsorption of Zn(II) ions from aqueous solution. Phys. Chem. Res. 2019 7 295 307 10.22036/pcr.2018.148061.1538
    [Google Scholar]
  35. Guo T. Bulin C. Ma Z. Li B. Zhang Y. Zhang B. Xing R. Ge X. Mechanism of Cd(II) and Cu(II) adsorption onto few-layered magnetic graphene oxide as an efficient adsorbent. ACS Omega 2021 6 25 16535 16545 10.1021/acsomega.1c01770 34235325
    [Google Scholar]
  36. Gao F. Zhang L. Yang L. Zhou X. Zhang Y. Structural properties of graphene oxide prepared from graphite by three different methods and the effect on removal of Cr(VI) from aqueous solution. Nanomaterials (Basel) 2023 13 2 279 10.3390/nano13020279 36678032
    [Google Scholar]
  37. Dreyer D.R. Park S. Bielawski C.W. Ruoff R.S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010 39 1 228 240 10.1039/B917103G 20023850
    [Google Scholar]
  38. Sarmiento V. Lockett M. Sumbarda-Ramos E.G. Vázquez-Mena O. Effective removal of metal ion and organic compounds by non-functionalized rGO. Molecules 2023 28 2 649 10.3390/molecules28020649 36677707
    [Google Scholar]
  39. Schmertmann S.M. Long S.E. Browner R.F. Sample introduction studies with a graphite rod electrothermal vaporiser for inductively coupled plasma atomic emission spectrometry. J. Anal. At. Spectrom. 1987 2 7 687 693 10.1039/ja9870200687
    [Google Scholar]
  40. Gunn A.M. Millard D.L. Kirkbright G.F. Optical emission spectrometry with an inductively coupled radiofrequency argon plasma source and sample introduction with a graphite rod electrothermal vaporisation device. Part I. Instrumental assembly and performance characteristics. Analyst (Lond.) 1978 103 1231 1066 1073 10.1039/an9780301066
    [Google Scholar]
  41. Kirkbright G.F. Snook R.D. Volatilization of refractory compound forming elements from a graphite electrothermal atomization device for sample introduction into an inductively coupled argon plasma. Anal. Chem. 1979 51 12 1938 1941 10.1021/ac50048a011
    [Google Scholar]
  42. Nixon D.E. Fassel V.A. Kniseley R.N. Inductively coupled plasma-optical emission analytical spectroscopy. Tantalum filament vaporization of microliter samples. Anal. Chem. 1974 46 2 210 213 10.1021/ac60338a018
    [Google Scholar]
  43. Ohls K.D. Sample introduction into ICP-OES for metallic samples. Mikrochim. Acta 1989 99 3-6 337 346 10.1007/BF01244689
    [Google Scholar]
  44. Hu B. Li S. Xiang G. He M. Jiang Z. Recent progress in electrothermal vaporization–inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry. Appl. Spectrosc. Rev. 2007 42 2 203 234 10.1080/05704920601184317
    [Google Scholar]
  45. Börno F. Richter S. Deiting D. Jakubowski N. Panne U. Direct multi-element analysis of plastic materials via solid sampling electrothermal vaporization inductively coupled plasma optical emission spectroscopy. J. Anal. At. Spectrom. 2015 30 5 1064 1071 10.1039/C4JA00442F
    [Google Scholar]
  46. Harrington K. Al Hejami A. Beauchemin D. Use of a mixed argon–hydrogen–tetrafluoromethane carrier gas for the analysis of nickel materials by electrothermal vaporization coupled to inductively coupled plasma optical emission spectrometry. J. Anal. At. Spectrom. 2020 35 3 461 466 10.1039/C9JA00400A
    [Google Scholar]
  47. Li Y.T. Jiang S.J. Sahayam A.C. Electrothermal vaporization inductively coupled plasma mass spectrometry for the determination of Cr, Cd, Hg, and Pb in honeys. Food Anal. Methods 2017 10 2 434 441 10.1007/s12161‑016‑0601‑8
    [Google Scholar]
  48. Mortenkotter H. Grunwald D. ·Fendt S. Spliethoff H. Validation of electothermal vaporisation for the analysis of biomass samples and comparison with other methods of analysis. Waste Biomass Valoriz. 2023 14 3489 3502 10.1007/s12649‑023‑02129‑0
    [Google Scholar]
  49. Bin H. Zucheng J. Yun’e Z. Slurry sampling and fluorination–electrothermal vaporization inductively coupled plasma atomic emission spectrometry for the direct determination of molybdenum in food. J. Anal. At. Spectrom. 1991 6 8 623 626 10.1039/JA9910600623
    [Google Scholar]
  50. Baumann H. Solid sampling with inductively coupled plasma-mass spectrometry? A survey. Fresenius J. Anal. Chem. 1992 342 12 907 916 10.1007/BF00322826
    [Google Scholar]
  51. Verrept P. Dams R. Kurfürst U. Electrothermal vaporization inductively coupled plasma atomic emission spectrometry for the analysis of solid samples: Contribution to instrumentation and methodology. Fresenius J. Anal. Chem. 1993 346 12 1035 1041 10.1007/BF00323712
    [Google Scholar]
  52. Peng T. Chang G. Wang L. Jiang Z. Hu B. Slurry sampling fluorination assisted electrothermal vaporization-inductively coupled plasma-atomic emission spectrometry for the direct determination of metal impurities in aluminium oxide ceramic powders. Fresenius J. Anal. Chem. 2001 369 5 461 465 10.1007/s002160000664 11270230
    [Google Scholar]
  53. Resano M. Vanhaecke F. de Loos-Vollebregt M.T.C. Electrothermal vaporization for sample introduction in atomic absorption, atomic emission and plasma mass spectrometry—a critical review with focus on solid sampling and slurry analysis. J. Anal. At. Spectrom. 2008 23 11 1450 1475 10.1039/b807756h
    [Google Scholar]
  54. Schäffer U. Krivan V. Multielement analysis of graphite and silicon carbide by inductively coupled plasma atomic emission spectrometry using solid sampling and electrothermal vaporization. Anal. Chem. 1999 71 4 849 854 10.1021/ac980821a
    [Google Scholar]
  55. Mello P.A. Pedrotti M.F. Cruz S.M. Muller E.I. Dressler V.L. Flores E.M.M. Determination of rare earth elements in graphite by solid sampling electrothermal vaporization-inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2015 30 10 2048 2055 10.1039/C5JA00136F
    [Google Scholar]
  56. Chen C.C. Jiang S.J. Sahayam A.C. Determination of trace elements in medicinal activated charcoal using slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry with low vaporization temperature. Talanta 2015 131 585 589 10.1016/j.talanta.2014.08.034 25281144
    [Google Scholar]
  57. Hummers W.S. Jr Offeman R.E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958 80 6 1339 1339 10.1021/ja01539a017
    [Google Scholar]
  58. Ajala O.J. Tijani J.O. Bankole M.T. Abdulkareem A.S. A critical review on graphene oxide nanostructured material: Properties, Synthesis, characterization and application in water and wastewater treatment. Environ. Nanotechnol. Monit. Manag. 2022 18 100673 10.1016/j.enmm.2022.100673
    [Google Scholar]
  59. Cai M. Thorpe D. Adamson D.H. Schniepp H.C. Methods of graphite exfoliation. J. Mater. Chem. 2012 22 48 24992 25002 10.1039/c2jm34517j
    [Google Scholar]
  60. Inagaki M. Kim Y.A. Endo M. Graphene: Preparation and structural perfection. J. Mater. Chem. 2011 21 10 3280 3294 10.1039/C0JM02991B
    [Google Scholar]
  61. Shi G. Michelmore A. Jin J. Li L.H. Chen Y. Wang L. Yu H. Wallace G. Gambhir S. Zhu S. Hojati-Talemi P. Ma J. Advancement in liquid exfoliation of graphite through simultaneously oxidizing and ultrasonicating. J. Mater. Chem. A Mater. Energy Sustain. 2014 2 47 20382 20392 10.1039/C4TA04367G
    [Google Scholar]
  62. Zhu Y. Murali S. Stoller M.D. Velamakanni A. Piner R.D. Ruoff R.S. Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon 2010 48 7 2118 2122 10.1016/j.carbon.2010.02.001
    [Google Scholar]
  63. Potts J.R. Murali S. Zhu Y. Zhao X. Ruoff R.S. Microwave-exfoliated graphite oxide/polycarbonate composites. Macromolecules 2011 44 16 6488 6495 10.1021/ma2007317
    [Google Scholar]
  64. Frolova A.O. Volzhenin A.V. Medvedev N.S. Makotchenko V.G. Saprykin A.I. Microwave exfoliated graphene oxide for sorption concentration of gold and silver. Anal. Lett. 2024 ••• 1 14 10.1080/00032719.2024.2323679
    [Google Scholar]
  65. Miller-Ihli N.J. Slurry sampling for graphite furnace atomic absorption spectrometry. Fresenius J. Anal. Chem. 1990 337 3 271 274 10.1007/BF00321972
    [Google Scholar]
  66. Grégoire D.C. Miller-Ihli N.J. Sturgeon R.E. Direct analysis of solids by ultrasonic slurry electrothermal vaporization inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 1994 9 5 605 610 10.1039/JA9940900605
    [Google Scholar]
  67. Kuptsov A.V. Medvedev N.S. Lundovskaya O.V. Saprykin A.I. Labusov V.A. Direct analysis of tellurium solid samples with a two-jet arc plasma using electrothermal vaporization. J. Anal. At. Spectrom. 2021 36 12 2669 2674 10.1039/D1JA00286D
    [Google Scholar]
  68. Kuptsov A.V. Medvedev N.S. Polyakova E.V. Saprykin A.I. Labusov V.A. Using of electrothermal vaporization for direct analysis of zinc solid samples by two-jet arc plasma optical emission spectrometry. Spectrochim. Acta B At. Spectrosc. 2022 194 106475 10.1016/j.sab.2022.106475
    [Google Scholar]
  69. Medvedev N.S. Lundovskaya O.V. Saprykin A.I. Direct analysis of high-purity cadmium by electrothermal vaporization-inductively coupled plasma optical emission spectrometry. Microchem. J. 2019 145 751 755 10.1016/j.microc.2018.11.014
    [Google Scholar]
  70. Medvedev N.S. Shaverina A.V. Tsygankova A.R. Saprykin A.I. Analysis of high-purity germanium dioxide by ETV-ICP-AES with preliminary concentration of trace elements. Talanta 2016 155 358 362 10.1016/j.talanta.2016.02.052 27216693
    [Google Scholar]
  71. Baskoro F. Wong C.B. Kumar S.R. Chang C.W. Chen C.H. Chen D.W. Lue S.J. Graphene oxide-cation interaction: Inter-layer spacing and zeta potential changes in response to various salt solutions. J. Membr. Sci. 2018 554 253 263 10.1016/j.memsci.2018.03.006
    [Google Scholar]
  72. Hu X. Yu Y. Hou W. Zhou J. Song L. Effects of particle size and pH value on the hydrophilicity of graphene oxide. Appl. Surf. Sci. 2013 273 118 121 10.1016/j.apsusc.2013.01.201
    [Google Scholar]
  73. Medvedev N.S. Kurbatova V.D. Frolova A.O. Guselnikova T.Y. Troitskii D.Y. Makotchenko V.G. Saprykin A.I. Elemental analysis with sorption preconcentration by graphene oxide for mineral water by inductively coupled plasma – optical emission and mass spectrometries (ICP-OES and ICP-MS). Anal. Lett. 2024 ••• 1 16 10.1080/00032719.2024.2356759
    [Google Scholar]
  74. Zhao G. Li J. Ren X. Chen C. Wang X. Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management. Environ. Sci. Technol. 2011 45 24 10454 10462 10.1021/es203439v 22070750
    [Google Scholar]
  75. Bian Y. Bian Z.Y. Zhang J.X. Ding A.Z. Liu S.L. Wang H. Effect of the oxygen-containing functional group of graphene oxide on the aqueous cadmium ions removal. Appl. Surf. Sci. 2015 329 269 275 10.1016/j.apsusc.2014.12.090
    [Google Scholar]
  76. Han Z. Sun L. Chu Y. Wang J. Wei C. Jiang Q. Han C. Yan H. Song X. States of graphene oxide and surface functional groups amid adsorption of dyes and heavy metal ions. Chin. J. Chem. Eng. 2023 63 197 208 10.1016/j.cjche.2023.05.005
    [Google Scholar]
  77. Li F. Zhu J. Sun P. Zhang M. Li Z. Xu D. Gong X. Zou X. Geim A.K. Su Y. Cheng H.M. Highly efficient and selective extraction of gold by reduced graphene oxide. Nat. Commun. 2022 13 1 4472 10.1038/s41467‑022‑32204‑4 35918342
    [Google Scholar]
  78. García-Mesa J.C. Montoro Leal P. López Guerrero M.M. Vereda Alonso E.I. Simultaneous determination of noble metals, Sb and Hg by magnetic solid phase extraction on line ICP OES based on a new functionalized magnetic graphene oxide. Microchem. J. 2019 150 104141 10.1016/j.microc.2019.104141
    [Google Scholar]
  79. Zolfonoun E. Yousefi S.R. Exfoliated graphitic carbon nitride nanosheets for on-line vortex-assisted dispersive micro-solid phase extraction of indium prior to determination by ICP-OES. Int. J. Environ. Anal. Chem. 2022 102 16 4031 4041 10.1080/03067319.2020.1779242
    [Google Scholar]
  80. Krishna D.S. Meeravali N.N. Kumar S.J. Graphene oxide nanosheets in basic medium: a new potential adsorbent for microwave assisted cloud point extraction of beryllium from industrial effluents prior to ICP-OES determination. Anal. Methods 2019 11 18 2456 2464 10.1039/C9AY00377K
    [Google Scholar]
  81. Su S. Chen B. He M. Hu B. Xiao Z. Determination of trace/ultratrace rare earth elements in environmental samples by ICP-MS after magnetic solid phase extraction with Fe3O4@SiO2@polyaniline–graphene oxide composite. Talanta 2014 119 458 466 10.1016/j.talanta.2013.11.027 24401441
    [Google Scholar]
  82. Sun J. Liang Q. Han Q. Zhang X. Ding M. One-step synthesis of magnetic graphene oxide nanocomposite and its application in magnetic solid phase extraction of heavy metal ions from biological samples. Talanta 2015 132 557 563 10.1016/j.talanta.2014.09.043 25476344
    [Google Scholar]
/content/journals/cac/10.2174/0115734110354995241226204921
Loading
/content/journals/cac/10.2174/0115734110354995241226204921
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test