Skip to content
2000
image of Assessment of Biochemical Markers of Bone Turnover and their Association in Iraqi Thalassemia Patients

Abstract

Background

Thalassemia syndromes are heterogeneous groups of inherited anemia. Managing these conditions often requires regular blood transfusions, which can lead to complications, such as iron overload and bone disorders. This study aimed to examine the biochemical markers of bone turnover in thalassemia patients and investigate their associations in the Iraqi cohort.

Method

The study involved 45 thalassemia patients and 45 healthy control subjects. Fibroblast growth factor 23 (FGF-23), phosphorus, vitamin D, vitamin K, matrix Gla protein (MGP), and parathyroid hormone (PTH) were measured by ELISA kit, and the level of calcium ion was determined by atomic absorption spectrometry technique.

Results

The results demonstrated that the levels of FGF-23 and phosphorus were considerably higher in patients with thalassemia than in control (=0.0001**). Conversely, the levels of vitamin D (=0.005**), vitamin K (=0.0002**), MGP (=0.0003**), and PTH (=0.0001**) were significantly lower in thalassemia patients compared to control subjects. Furthermore, no significant difference in calcium levels between the two groups (-value = 0.465) was observed. The association of bone biochemical markers demonstrated that FGF-23 has a positive significant correlation with phosphorous and is inversely correlated with vitamin D, PTH, vitamin K, and MGP. Moreover, PTH has a positive significant correlation with vitamin D, vitamin K, and MGP. However, it has a significant negative correlation with PTH and phosphorous.

Conclusion

These findings show that patients with thalassemia display biochemical markers associated with bone and cardiovascular disorders, indicating the need for specialized medical treatments for this patient population.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110353859250101114214
2025-01-22
2025-04-02
Loading full text...

Full text loading...

References

  1. Sankaran V.G. Xu J. Orkin S.H. Advances in the understanding of haemoglobin switching. Br. J. Haematol. 2010 149 2 181 194 10.1111/j.1365‑2141.2010.08105.x 20201948
    [Google Scholar]
  2. Shawky R.M. Kamal T.M. Thalassemia intermedia: An overview. Egypt. J. Med. Hum. Genet. 2012 13 3 245 255 10.1016/j.ejmhg.2012.03.006
    [Google Scholar]
  3. Thein S.L. Molecular basis of β thalassemia and potential therapeutic targets. Blood Cells Mol. Dis. 2018 70 54 65 10.1016/j.bcmd.2017.06.001 28651846
    [Google Scholar]
  4. Viprakasit V. Ekwattanakit S. Clinical classification, screening and diagnosis for thalassemia, hematology/oncology clinics of North America 32 Hematol Oncol Clin North Am. 2018 32 2 193 211 10.1016/j.hoc.2017.11.006.
    [Google Scholar]
  5. Brancaleoni V. Di Pierro E. Motta I. Cappellini M.D. Laboratory diagnosis of thalassemia. Int. J. Lab. Hematol. 2016 38 S1 Suppl. 1 32 40 10.1111/ijlh.12527 27183541
    [Google Scholar]
  6. Angastiniotis M. Lobitz S. Thalassemias: An Overview. Int. J. Neonatal Screen. 2019 5 1 16 10.3390/ijns5010016 33072976
    [Google Scholar]
  7. Gu X. Zeng Y. A review of the molecular diagnosis of thalassemia. Hematology 2002 7 4 203 209 10.1080/1024533021000024102 14972782
    [Google Scholar]
  8. Koohi F. Kazemi T. Miri-Moghaddam E. Cardiac complications and iron overload in beta thalassemia major patients—a systematic review and meta-analysis. Ann. Hematol. 2019 98 6 1323 1331 10.1007/s00277‑019‑03618‑w 30729283
    [Google Scholar]
  9. Leecharoenkiat K. Lithanatudom P. Sornjai W. Smith D.R. Iron dysregulation in beta-thalassemia. Asian Pac. J. Trop. Med. 2016 9 11 1035 1043 10.1016/j.apjtm.2016.07.035 27890361
    [Google Scholar]
  10. Pinto V. Forni G. Management of iron overload in beta-thalassemia patients: Clinical practice update based on case series. Int. J. Mol. Sci. 2020 21 22 8771 10.3390/ijms21228771 33233561
    [Google Scholar]
  11. Srisukh S. Ongphiphadhanakul B. Bunnag P. Hypogonadism in thalassemia major patients. J. Clin. Transl. Endocrinol. 2016 5 42 45 10.1016/j.jcte.2016.08.001 29067234
    [Google Scholar]
  12. Mariotti S. Loviselli A. Murenu S. Sau F. Valentino L. Mandas A. Vacquer S. Martino E. Balestrieri A. Lai M.E. High prevalence of thyroid dysfunction in adult patients with β-thalassemia major submitted to amiodarone treatment. J. Endocrinol. Invest. 1999 22 1 55 63 10.1007/BF03345479 10090138
    [Google Scholar]
  13. Papakonstantinou O. Ladis V. Kostaridou S. Maris T. Berdousi H. Kattamis C. Gourtsoyiannis N. The pancreas in β-thalassemia major: MR imaging features and correlation with iron stores and glucose disturbunces. Eur. Radiol. 2007 17 6 1535 1543 10.1007/s00330‑006‑0507‑8 17149622
    [Google Scholar]
  14. De Sanctis V. Soliman A.T. Elsedfy H. Di Maio S. Canatan D. Soliman N. Karimi M. Kattamis C. Gonadal dysfunction in adult male patients with thalassemia major: An update for clinicians caring for thalassemia. Expert Rev. Hematol. 2017 10 12 1095 1106 10.1080/17474086.2017.1398080 29072100
    [Google Scholar]
  15. Majid H. Jafri L. Ahmed S. Talati J. Moiz B. Khan A.H. Unique classification of parathyroid dysfunction in patients with transfusion dependent thalassemia major using Nomogram-A cross sectional study. Ann. Med. Surg. (Lond.) 2019 45 22 26 10.1016/j.amsu.2019.07.016 31360455
    [Google Scholar]
  16. De Sanctis V. Soliman A.T. Elsefdy H. Soliman N. Bedair E. Fiscina B. Kattamis C. Bone disease in β thalassemia patients: Past, present and future perspectives. Metabolism 2018 80 66 79 10.1016/j.metabol.2017.09.012 28987275
    [Google Scholar]
  17. Galaris D. Pantopoulos K. Oxidative stress and iron homeostasis: Mechanistic and health aspects. Crit. Rev. Clin. Lab. Sci. 2008 45 1 1 23 10.1080/10408360701713104 18293179
    [Google Scholar]
  18. Kakhlon O. Cabantchik Z.I. The labile iron pool: Characterization, measurement, and participation in cellular processes1 1This article is part of a series of reviews on Iron and Cellular Redox Status. Free Radic. Biol. Med. 2002 33 8 1037 1046 10.1016/S0891‑5849(02)01006‑7 12374615
    [Google Scholar]
  19. Papanikolaou G. Pantopoulos K. Iron metabolism and toxicity. Toxicol. Appl. Pharmacol. 2005 202 2 199 211 10.1016/j.taap.2004.06.021 15629195
    [Google Scholar]
  20. Zhang Z. Hou B. Du G. Sun P. Guan W. Lin Q. Han B. Yu W. Association of hepatic/pancreatic iron overload evaluated by quantitative T2* MRI with bone mineral density and trabecular bone score. BMC Endocr. Disord. 2023 23 1 2 10.1186/s12902‑022‑01262‑6 36597099
    [Google Scholar]
  21. Gujja P. Rosing D.R. Tripodi D.J. Shizukuda Y. Iron overload cardiomyopathy: Better understanding of an increasing disorder. J. Am. Coll. Cardiol. 2010 56 13 1001 1012 10.1016/j.jacc.2010.03.083 20846597
    [Google Scholar]
  22. Origa R. Fiumana E. Gamberini M.R. Armari S. Mottes M. Sangalli A. Paglietti E. Galanello R. Borgna-Pignatti C. Osteoporosis in beta-thalassemia: Clinical and genetic aspects. Ann. N. Y. Acad. Sci. 2005 1054 1 451 456 10.1196/annals.1345.051 16339696
    [Google Scholar]
  23. Sneddon W.B. Ruiz G.W. Gallo L.I. Xiao K. Zhang Q. Rbaibi Y. Weisz O.A. Apodaca G.L. Friedman P.A. Convergent signaling pathways regulate parathyroid hormone and fibroblast growth factor-23 action on NPT2A-mediated phosphate transport. J. Biol. Chem. 2016 291 36 18632 18642 10.1074/jbc.M116.744052 27432882
    [Google Scholar]
  24. Shimada T. Kakitani M. Yamazaki Y. Hasegawa H. Takeuchi Y. Fujita T. Fukumoto S. Tomizuka K. Yamashita T. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J. Clin. Invest. 2004 113 4 561 568 10.1172/JCI200419081 14966565
    [Google Scholar]
  25. Schouten B.J. Hunt P.J. Livesey J.H. Frampton C.M. Soule S.G. FGF23 elevation and hypophosphatemia after intravenous iron polymaltose: A prospective study. J. Clin. Endocrinol. Metab. 2009 94 7 2332 2337 10.1210/jc.2008‑2396 19366850
    [Google Scholar]
  26. Shimizu Y. Tada Y. Yamauchi M. Okamoto T. Suzuki H. Ito N. Fukumoto S. Sugimoto T. Fujita T. Hypophosphatemia induced by intravenous administration of saccharated ferric oxide. Bone 2009 45 4 814 816 10.1016/j.bone.2009.06.017 19555782
    [Google Scholar]
  27. Wolf M. Koch T.A. Bregman D.B. Effects of iron deficiency anemia and its treatment on fibroblast growth factor 23 and phosphate homeostasis in women. J. Bone Miner. Res. 2013 28 8 1793 1803 10.1002/jbmr.1923 23505057
    [Google Scholar]
  28. Deger S.M. Erten Y. Pasaoglu O.T. Derici U.B. Reis K.A. Onec K. Pasaoglu H. The effects of iron on FGF23-mediated Ca–P metabolism in CKD patients. Clin. Exp. Nephrol. 2013 17 3 416 423 10.1007/s10157‑012‑0725‑0 23180041
    [Google Scholar]
  29. Batra J. Buttar R.S. Kaur P. Kreimerman J. Melamed M.L. FGF-23 and cardiovascular disease: Review of literature. Curr. Opin. Endocrinol. Diabetes Obes. 2016 23 6 423 429 10.1097/MED.0000000000000294 27652999
    [Google Scholar]
  30. Guo Y.C. Yuan Q. Fibroblast growth factor 23 and bone mineralisation. Int. J. Oral Sci. 2015 7 1 8 13 10.1038/ijos.2015.1 25655009
    [Google Scholar]
  31. Faul C. FGF23 effects on the heart—levels, time, source, and context matter. Kidney Int. 2018 94 1 7 11 10.1016/j.kint.2018.03.024 29933856
    [Google Scholar]
  32. Alsalih M. Roomi A.B. Ssamsudin S. Arshad S. Ziainol I. Warid F. Vicissitudes in cellular immune related to anti-Tnf-Alpha therapy, and some clinical investigation induces by Infliximab in covid 19 patients Int. J. Pharm. Res. 2020 9 3 10.31838/ijpr/2020.SP1.344
    [Google Scholar]
  33. Wahl P. Wolf M. FGF23 in chronic kidney disease. Adv. Exp. Med. Biol. 2012 728 107 125 10.1007/978‑1‑4614‑0887‑1_8 22396166
    [Google Scholar]
  34. Roomi A.B. AL-Salih R.M. Ali S.A. The effect insulin therapy and metformin on osteoporosis in diabetic postmenopausal Iraqi women. Indian J. Public Health 2019 10 1479
    [Google Scholar]
  35. Holick M.F. Resurrection of vitamin D deficiency and rickets. J. Clin. Invest. 2006 116 8 2062 2072 10.1172/JCI29449 16886050
    [Google Scholar]
  36. De Satictis V. Vullo C. Bagni B. Chiccoli L. Hypoparathyroidism in beta-thalassemia major. Acta Haematol. 1992 88 2-3 105 108 10.1159/000204662 1466190
    [Google Scholar]
  37. Autio K.A. Mait J.E. Lesser M. Giardina P.J. Low bone mineral density in adolescents with β-thalassemia. Ann N Y Acad Sci. 2005 1054 462 466 10.1196/annals.1345.063
    [Google Scholar]
  38. Mizuiri S. Nishizawa Y. Yamashita K. Ono K. Naito T. Tanji C. Usui K. Doi S. Masaki T. Shigemoto K. Relationship of matrix Gla protein and vitamin K with vascular calcification in hemodialysis patients. Ren. Fail. 2019 41 1 770 777 10.1080/0886022X.2019.1650065 31538831
    [Google Scholar]
  39. Hao Z. Jin D.Y. Stafford D.W. Tie J.K. Vitamin K-dependent carboxylation of coagulation factors: Insights from a cell-based functional study. Haematologica 2020 105 8 2164 2173 10.3324/haematol.2019.229047 31624106
    [Google Scholar]
/content/journals/cac/10.2174/0115734110353859250101114214
Loading
/content/journals/cac/10.2174/0115734110353859250101114214
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: parathyroid hormone ; FGF-23 ; vitamin D ; Thalassemia ; vitamin K
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test