Skip to content
2000
image of Poly-(2-aminothiophenol) Functionalized Petroleum Coke for Fast Simultaneous Sequestration of Cd(II) and Pb(II) Ions from Industrial Effluents

Abstract

Background

Nowadays, the challenge between clean water production and promoting an eco-friendly sorbent for the simultaneous fast and efficient removal of heavy metal ions is a hot topic and has attracted much attention.

Objective

The objective of this study was to fabricate a novel material (PATP@PET) by incorporating poly-(2-amino thiophenol; PATP) into the matrix of Saudi Arabian petroleum coke (PET) for simultaneous fast and efficient removal of heavy metal ions.

Method

The FTIR, EDX, SEM, and XRD techniques assessed the chemical structure and surface morphology of the thio-functionalized petcoke. The effects of medium pH, mass dosage of sorbent, metal ion concentration, and coexisting ions were investigated and optimized using batch sorption.

Result

The excellent sorption capacity of PATP@PET sorbent towards the divalent lead and cadmium ions (98.44% and 312.5 mg.g-1 for Pb(II) and 90.15% and 217.4 mg.g-1 for Cd(II)) was realized by strong complex formation with the sulfur atoms of green petcoke and the thiol groups of poly-2-aminothiophenol moieties. The adsorption equilibrium data was best fitted to the pseudo-second-order kinetic model and Langmuir adsorption isotherm. The reusability performance was tested for 10 cycles, and the simultaneous removal of Pb(II) and Cd(II) ions from industrial effluents was accomplished in 30 minutes with 100% removal efficiency at pH 6-7.

Conclusion

PTAP-PET also demonstrated amazing performance for Cd(II) and Pb(II) removal in industrial wastewater samples. Subsequently, PTAP-PET contributes to developing fast, efficient, low-cost water remediation solutions for heavy metal ions that can potentially be translated into industrial-scale applications.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110352819241119095835
2025-01-13
2025-04-04
Loading full text...

Full text loading...

References

  1. Tang C.Y. Yu P. Tang L.S. Wang Q.Y. Bao R.Y. Liu Z.Y. Yang M.B. Yang W. Tannic acid functionalized graphene hydrogel for organic dye adsorption. Ecotoxicol. Environ. Saf. 2018 165 299 306 10.1016/j.ecoenv.2018.09.009 30205332
    [Google Scholar]
  2. Mekonnen M.M. Hoekstra A.Y. Four billion people facing severe water scarcity Sci Adv 2016 2 2 e1500323 10.1126/sciadv.1500323
    [Google Scholar]
  3. Rodell M. Famiglietti J.S. Wiese D.N. Reager J.T. Beaudoing H.K. Landerer F.W. Lo M.H. Emerging trends in global freshwater availability. Nature 2018 557 7707 651 659 10.1038/s41586‑018‑0123‑1 29769728
    [Google Scholar]
  4. Singh A. Pal D.B. Mohammad A. Alhazmi A. Haque S. Yoon T. Srivastava N. Gupta V.K. Biological remediation technologies for dyes and heavy metals in wastewater treatment: New insight. Bioresour. Technol. 2022 343 126154 10.1016/j.biortech.2021.126154 34673196
    [Google Scholar]
  5. Thasneema K.K. Dipin T. Thayyil M.S. Sahu P.K. Messali M. Rosalin T. Elyas K.K. Saharuba P.M. Anjitha T. Hadda T.B. Removal of toxic heavy metals, phenolic compounds and textile dyes from industrial waste water using phosphonium based ionic liquids. J. Mol. Liq. 2021 323 114645 10.1016/j.molliq.2020.114645
    [Google Scholar]
  6. Yakout A.A. Alshitari W. Akhdhar A. Synergistic effect of Cu-nanoparticles and β-cyclodextrin functionalized reduced graphene oxide nanocomposite on the adsorptive remediation of tetracycline antibiotics. Carbohydr. Polym. 2021 273 118528 10.1016/j.carbpol.2021.118528 34560942
    [Google Scholar]
  7. Liu H. Liang S. Gao J. Ngo H.H. Guo W. Guo Z. Wang J. Li Y. Enhancement of Cr(VI) removal by modifying activated carbon developed from Zizania caduciflora with tartaric acid during phosphoric acid activation. Chem. Eng. J. 2014 246 168 174 10.1016/j.cej.2014.02.046
    [Google Scholar]
  8. Nguyen T.C. Loganathan P. Nguyen T.V. Vigneswaran S. Kandasamy J. Naidu R. Simultaneous adsorption of Cd, Cr, Cu, Pb, and Zn by an iron-coated Australian zeolite in batch and fixed-bed column studies. Chem. Eng. J. 2015 270 393 404 10.1016/j.cej.2015.02.047
    [Google Scholar]
  9. Cheng S. Liu Y. Xing B. Qin X. Zhang C. Xia H. Lead and cadmium clean removal from wastewater by sustainable biochar derived from poplar saw dust. J. Clean. Prod. 2021 314 128074 10.1016/j.jclepro.2021.128074
    [Google Scholar]
  10. Mukherjee R. Bhunia P. De S. Impact of graphene oxide on removal of heavy metals using mixed matrix membrane. Chem. Eng. J. 2016 292 284 297 10.1016/j.cej.2016.02.015
    [Google Scholar]
  11. Shaker M.A. Alshitari W.H. Basha M.T. Aly N.A. Asim M. Albishri H.M. Bhawani S.A. Yakout A.A. Synergetic impact of copper nanoparticles and polyaniline reinforced graphene oxide nanocomposite on the sequestration of tetracycline antibiotic from milk and wastewaters samples. Mater. Today Commun. 2024 38 107869 10.1016/j.mtcomm.2023.107869
    [Google Scholar]
  12. Zhuang S. Zhang Q. Wang J. Adsorption of Co2+ and Sr2+ from aqueous solution by chitosan grafted with EDTA. J. Mol. Liq. 2021 325 115197 10.1016/j.molliq.2020.115197
    [Google Scholar]
  13. Basha M.T. Shahat A. Yakout A.A. Tailoring the structure of Fe-based NH2-MIL-88 via 2-hydroxyacetophenone for arsenic removal from aqueous solutions: Kinetics, adsorption isotherms studies, and optimization through Box-Behnken design. Sens. Actuators A Phys. 2024 373 115398 10.1016/j.sna.2024.115398
    [Google Scholar]
  14. Basha M.T. Shahat A. Yakout A.A. Innovative covalently modified Al‐MOF as a highly selective fluorescent sensor for Al (III) detection in tap water, human serum, and tea samples. Appl. Organomet. Chem. 2024 38 1 e7304 10.1002/aoc.7304
    [Google Scholar]
  15. Yakout A.A. Basha M.T. Shahat A. Robust and ultrasensitive Chemosensor based on Bifunctionalized MIL-101(Al) for fluorescent detection of Ferric Ions in Serum and pharmaceutical tablets. ChemistrySelect 2022 202202110 1 7
    [Google Scholar]
  16. Beall G. The use of organo-clays in water treatment. Appl. Clay Sci. 2003 24 1-2 11 20 10.1016/j.clay.2003.07.006
    [Google Scholar]
  17. Deng C. Hou L. Zhang C. Eco-friendly ferrimagnetic-humic acid nanocomposites as superior magnetic adsorbents. Materials (Basel) 2021 14 18 5125 10.3390/ma14185125 34576348
    [Google Scholar]
  18. Karić N. Maia A.S. Teodorović A. Atanasova N. Langergraber G. Crini G. Ribeiro A.R.L. Đolić M. Bio-waste valorisation: Agricultural wastes as biosorbents for removal of (in)organic pollutants in wastewater treatment. Chem Eng J Adv. 2022 9 100239 10.1016/j.ceja.2021.100239
    [Google Scholar]
  19. Wibowo Y.G. Safitri H. Ramadan B.S. Sudibyo Adsorption test using ultra-fine materials on heavy metals removal. Bioresour. Technol. Rep. 2022 19 101149 10.1016/j.biteb.2022.101149
    [Google Scholar]
  20. Gupta V.K. Agarwal S. Saleh T.A. Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes. Water Res. 2011 45 6 2207 2212 10.1016/j.watres.2011.01.012 21303713
    [Google Scholar]
  21. González A. Moreno N. Navia R. Querol X. Study of a Chilean petroleum coke fluidized bed combustion fly ash and its potential application in copper, lead and hexavalent chromium removal. Fuel 2010 89 10 3012 3021 10.1016/j.fuel.2010.04.032
    [Google Scholar]
  22. Swain E.J. US petroleum coke production expected to increase. Oil Gas J. 1997 ••• 95
    [Google Scholar]
  23. Córdoba P. Ayora C. Querol X. Evaluation of chemical stabilisation methods of coal-petcoke fly ash to reduce the mobility of Mo and Ni against environmental concerns. Ecotoxicol. Environ. Saf. 2021 208 111488 10.1016/j.ecoenv.2020.111488 33120274
    [Google Scholar]
  24. Anthony E. Fluidized bed combustion of alternative solid fuels; status, successes and problems of the technology. Pror. Energy Combust. Sci. 1995 21 3 239 268 10.1016/0360‑1285(95)00005‑3
    [Google Scholar]
  25. Wang J. Anthony E.J. Abanades J.C. Clean and efficient use of petroleum coke for combustion and power generation. Fuel 2004 83 10 1341 1348 10.1016/j.fuel.2004.01.002
    [Google Scholar]
  26. Al-Haj-Ibrahim H. Morsi B.I. Desulfurization of petroleum coke: A review. Ind. Eng. Chem. Res. 1992 31 8 1835 1840 10.1021/ie00008a001
    [Google Scholar]
  27. Li T. Li J. Zhang H. Sun K. Xiao J. DFT research on benzothiophene pyrolysis reaction mechanism. J. Phys. Chem. A 2019 123 4 796 810 10.1021/acs.jpca.8b09882 30601656
    [Google Scholar]
  28. Liu H. Xu H. Hua M. Chen L. Wei Y. Wang C. Wu P. Zhu F. Chu X. Li H. Zhu W. Extraction combined catalytic oxidation desulfurization of petcoke in ionic liquid under mild conditions. Fuel 2020 260 116200 10.1016/j.fuel.2019.116200
    [Google Scholar]
  29. Zhao P. Ma C. Wang J. Qiao W. Ling L. Almost total desulfurization of high-sulfur petroleum coke by Na2CO3-promoted calcination combined with ultrasonic-assisted chemical oxidation. N. Carbon Mater. 2018 33 6 587 594 10.1016/S1872‑5805(18)60359‑2
    [Google Scholar]
  30. Zhong Q. Xiao J. Du H. Yao Z. Thiophenic sulfur transformation in a carbon anode during the aluminum electrolysis process. Energy Fuels 2017 31 4 4539 4547 10.1021/acs.energyfuels.6b03018
    [Google Scholar]
  31. Boomi P. Raj J.A. Palaniappan S.P. Poorani G. Selvam S Prabu H.G. Manisankar P. Jeyakanthan J Langeswaran V.K. Improved conductivity and antibacterial activity of poly(2-aminothiophenol)-silver nanocomposite against human pathogens J Photochem Photobiol B 2018 178 323 329
    [Google Scholar]
  32. Abd El-Salam H.M. Azzam EMS Aboad R.S. Synthesis and characterization of poly(2-aminothiophenol-co-2-methylaniline)/silver nanoparticles as antisulfate-reducing bacteria Int J Polym Mater Polym Biomater 2020 67 8 501 508
    [Google Scholar]
  33. Abdallah S.M. Mohamed G.G. Zayed M.A. El-Ela M.S.A. Spectroscopic study of molecular structures of novel Schiff base derived from o-phthaldehyde and 2-aminophenol and its coordination compounds together with their biological activity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2009 73 5 833 840 10.1016/j.saa.2009.04.005 19505840
    [Google Scholar]
  34. Sedghi R. Shojaee M. Behbahani M. Nabid M.R. Application of magnetic nanoparticles modified with poly (2-amino thiophenol) as a sorbent for solid phase extraction and trace detection of lead, copper, and silver ions in food matrices RSC Adv 2015 5 83 67418 67426
    [Google Scholar]
  35. Nabid M.R. Sedghi R. Bagheri A. Behbahani M. Taghizadeh M. Abdi Oskooie H. Heravi M.M. Preparation and application of poly(2-amino thiophenol)/MWCNTs nanocomposite for adsorption and separation of cadmium and lead ions via solid phase extraction. J. Hazard. Mater. 2012 203-204 93 100 10.1016/j.jhazmat.2011.11.096 22206975
    [Google Scholar]
  36. Wu S. Liu Z. Liu N. Ma Z. Oligomeric 2-aminothiophenol decorated carboxyl graphene: A new surface enhanced Raman reporter and its application in immunosensing. Sens. Actuators B Chem. 2015 206 502 507 10.1016/j.snb.2014.09.088
    [Google Scholar]
  37. Kamel E.M. Ahmed O.M. Abd El-Salam H.M. Fabrication of facile polymeric nanocomposites based on chitosan-gr-P2-aminothiophenol for biomedical applications. Int. J. Biol. Macromol. 2020 165 Pt B 2649 2659 10.1016/j.ijbiomac.2020.09.140 32991898
    [Google Scholar]
  38. Chen Y. Wang M. Hu Y. Han J. Poly(2-aminothiophenol)/MnO2 hierarchical nanocables as efficient adsorbents towards heavy metal ions. Mater. Chem. Phys. 2018 214 172 179 10.1016/j.matchemphys.2018.04.076
    [Google Scholar]
  39. Fu Y. Sun Y. Zheng Y. Jiang J. Yang C. Wang J. Hu J. New network polymer functionalized magnetic-mesoporous nanoparticle for rapid adsorption of Hg(II) and sequential efficient reutilization as a catalyst Sep Purif Technol 2021 259 118112 10.1016/j.seppur.2020.118112
    [Google Scholar]
  40. Fu Y. Jiang J. Chen Z. Ying S. Wang J. Hu J. Rapid and selective removal of Hg (II) ions and high catalytic performance of the spent adsorbent based on functionalized mesoporous silica/poly(m-aminothiophenol) nanocomposite J Mol Liq 2019 286 110746 10.1016/j.molliq.2019.04.023
    [Google Scholar]
  41. Shahabi Nejad M. Sheibani H. Super-efficient removal of arsenic and mercury ions from wastewater by nanoporous biochar-supported poly 2-aminothiophenol. J. Environ. Chem. Eng. 2022 10 3 107363 10.1016/j.jece.2022.107363
    [Google Scholar]
  42. Alama Md Removal of organic acids from water using biochar and petroleum coke Environ Technol Innov. 2016 6 141 151
    [Google Scholar]
  43. Arcibar-Orozco J.A. Zili-Tomita H.E. Suárez-Toriello V.A. Saucedo-Lucero J.O. Petcoke revalorization as support for ZnO-based Photocatalyst. Waste Biomass Valoriz. 2022 13 3 1681 1694 10.1007/s12649‑021‑01585‑w
    [Google Scholar]
  44. Niasar H.S. Li H. Das S. Kasanneni T.V.R. Ray M.B. Xu C.C. Preparation of activated petroleum coke for removal of naphthenic acids model compounds: Box-Behnken design optimization of KOH activation process. J. Environ. Manage. 2018 211 63 72 10.1016/j.jenvman.2018.01.051 29408084
    [Google Scholar]
  45. Zhang Y. Chen X. Chu W. Cui H. Wang M. Removal of vanadium from petroleum coke by microwave and ultrasonic-assisted leaching. Hydrometallurgy 2020 191 105168 10.1016/j.hydromet.2019.105168
    [Google Scholar]
  46. Ensafi A.A. Fazel R. Rezaei B. Hu J.S. Electrochemical properties of modified poly(4-aminothiophenol)-Zn-Ni MOF-reduced graphene oxide nanocomposite for high-performance supercapacitors. Fuel 2022 324 124724 10.1016/j.fuel.2022.124724
    [Google Scholar]
  47. Fu Y. Yang C. Zheng Y. Jiang J. Sun Y. Chen F. Hu J. Sulfur crosslinked poly(m-aminothiophenol)/potato starch on mesoporous silica for efficient Hg(II) removal and reutilization of waste adsorbent as a catalyst. J. Mol. Liq. 2021 328 115420 10.1016/j.molliq.2021.115420
    [Google Scholar]
  48. Yuh-Shan H. Citation review of Lagergren kinetic rate equation on adsorption reactions. Scientometrics 2004 59 1 171 177 10.1023/B:SCIE.0000013305.99473.cf
    [Google Scholar]
  49. Ho Y.S. McKay G. Pseudo-second order model for sorption processes. Process Biochem. 1999 34 5 451 465 10.1016/S0032‑9592(98)00112‑5
    [Google Scholar]
  50. Ho Y.S. Porter J.F. McKay G. Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: Copper, nickel and lead single component systems. Water Air Soil Pollut. 2002 141 1/4 1 33 10.1023/A:1021304828010
    [Google Scholar]
  51. Yakout A.A. Albishri H.M. Solvothermal synthesis of EDTA-functionalized magnetite-carboxylated graphene oxide nanocomposite as a potential magnetic solid phase extractor of p-phenylenediamine from environmental samples. J. Dispers. Sci. Technol. 2019 40 3 369 377 10.1080/01932691.2018.1469415
    [Google Scholar]
  52. Yakout A.A. Khan Z.A. High performance Zr-MnO2@reduced graphene oxide nanocomposite for efficient and simultaneous remediation of arsenates As(V) from environmental water samples. J. Mol. Liq. 2021 334 116427 10.1016/j.molliq.2021.116427
    [Google Scholar]
  53. Yoon S.J. Diener L.M. Bloom P.R. Nater E.A. Bleam W.F. X-ray absorption studies of CH3Hg+-binding sites in humic substances. Geochim. Cosmochim. Acta 2005 69 5 1111 1121 10.1016/j.gca.2004.07.036
    [Google Scholar]
  54. Manfrin J. Gonçalves A.C. Jr Schwantes D. Conradi E. Jr Zimmermann J. Ziemer G.L. Development of biochar and activated carbon from cigarettes wastes and their applications in Pb2+ adsorption. J. Environ. Chem. Eng. 2021 9 2 104980 10.1016/j.jece.2020.104980
    [Google Scholar]
  55. Bhat A. Megeri G.B. Thomas C. Bhargava H. Jeevitha C. Chandrashekar S. Madhu G.M. Adsorption and optimization studies of lead from aqueous solution using γ-Alumina. J. Environ. Chem. Eng. 2015 3 1 30 39 10.1016/j.jece.2014.11.014
    [Google Scholar]
  56. Medici F. Patterer M.S. Peluso M.A. Sambeth J.E. Lead adsorption from aqueous solution using manganese oxides recovered from spent alkaline batteries. J. Solid Waste Technol. Manag. 2020 46 3 206 212 10.5276/JSWTM/2020.206
    [Google Scholar]
  57. Li Y. He J. Zhang K. Liu T. Hu Y. Chen X. Wang C. Huang X. Kong L. Liu J. Super rapid removal of copper, cadmium and lead ions from water by NTA-silica gel. RSC Advances 2019 9 1 397 407 10.1039/C8RA08638A 35521596
    [Google Scholar]
  58. Rickard D. Luther G.W. III Metal sulfide complexes and clusters. Rev. Mineral. Geochem. 2006 61 1 421 504 10.2138/rmg.2006.61.8
    [Google Scholar]
  59. Zheng H. Xu R. Zhang J. Daghagheleh O. Schenk J. Li C. Wang W. A comprehensive review of characterization methods for metallurgical coke structures. Materials (Basel) 2021 15 1 174 10.3390/ma15010174 35009320
    [Google Scholar]
  60. Lemos V. Baliza P. Amberlite XAD-2 functionalized with 2-aminothiophenol as a new sorbent for on-line preconcentration of cadmium and copper. Talanta 2005 67 3 564 570 10.1016/j.talanta.2005.03.012 18970207
    [Google Scholar]
  61. Baghkumeh A.M. Faghihian H. Mokhtari S.H. Functionalized nano magnetic Fe3O4–SiO2 core–shell as efficient adsorbent for removal of Pb2+ from aqueous solutions. Desalination Water Treat. 2017 78 166 171 10.5004/dwt.2017.20413
    [Google Scholar]
  62. Chi H. Yang C. Liu G. An electrochemical sensor based on electrochemically activated carbon cloth and poly (o-aminothiophenol) cross-linked nanogold imprinted layer for the determination of tert-butylhydroquinone. Food Chem. 2024 452 139548 10.1016/j.foodchem.2024.139548 38728894
    [Google Scholar]
  63. Fu Y. Sun Y. Chen Z. Ying S. Wang J. Hu J. Functionalized magnetic mesoporous silica/poly(m-aminothiophenol) nanocomposite for Hg(II) rapid uptake and high catalytic activity of spent Hg(II) adsorbent. Sci. Total Environ. 2019 691 664 674 10.1016/j.scitotenv.2019.07.153 31325865
    [Google Scholar]
  64. Akhdhar A. Yakout A.A. Enhanced simultaneous sequestration of Cd(II) and Pb(II) ions from industrial wastewater samples based on poly-(2-aminothiophenol) functionalized graphene oxide. J. Dispers. Sci. Technol. 2023 44 14 2700 2710 10.1080/01932691.2022.2122495
    [Google Scholar]
  65. Yakout A.A. Alshitari W. Selective and efficient solid phase extraction of cadmium (II) in sub-trace limits based on alizarin red-S cross-linked-2-mercapto-N-(3-(triethoxysilyl) propyl) acetamide bi-functionalized graphene oxide nanocomposite from different environmental water samples. J. Dispers. Sci. Technol. 2023 45 1 140 150 10.1080/01932691.2022.2135525
    [Google Scholar]
  66. Zhang X. Lin X. He Y. Chen Y. Luo X. Shang R. Study on adsorption of tetracycline by Cu-immobilized alginate adsorbent from water environment. Int. J. Biol. Macromol. 2019 124 418 428 10.1016/j.ijbiomac.2018.11.218 30496862
    [Google Scholar]
  67. Zhuang Y. Yu F. Ma J. Chen J. Enhanced adsorption removal of antibiotics from aqueous solutions by modified alginate/graphene double network porous hydrogel. J. Colloid Interface Sci. 2017 507 250 259 10.1016/j.jcis.2017.07.033 28800449
    [Google Scholar]
/content/journals/cac/10.2174/0115734110352819241119095835
Loading
/content/journals/cac/10.2174/0115734110352819241119095835
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: lead ; cadmium ; industrial wastewaters ; Petcoke ; simultaneous removal ; poly (2-aminothiophenol)
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test