Skip to content
2000
image of Detection of Anti-drug Antibodies (ADAs) to an Antibody-drug Conjugate (ADC) PYX-201 in Human Plasma Using a Novel Electrochemiluminescence (ECL) Immunoassay

Abstract

Background

PYX-201 is an Antibody-Drug Conjugate (ADC) composed of a fully human IgG1 antibody, a cleavable linker mcValCitPABC, and toxic auristatin payloads Aur0101, with a drug antibody ratio (DAR) of approximately 4. PYX-201 is a promising candidate for oncology treatment because it targets the extra domain B splice variant of fibronectin (EDB + FN), which is expressed at low levels in normal adult tissues while at moderate or high levels in various human solid tumors.

Methods

An electrochemiluminescence (ECL) immunoassay was developed and validated for the detection (screening, confirmatory, and titration) of antibodies to an ADC PYX-201 in human plasma. Anti-PYX-201 antibodies were captured by biotinylated PYX-201 (Bio-PYX-201) and detected by ruthenylated PYX-201 (Ru-PYX-201) on a Meso Sector imager S 600 or 6000 reader.

Results

The screening cut-point factor (SCPF), confirmatory cut-point (CCP), and titration cut-point factor (TCPF) were found to be 1.11, 20.7%, and 1.23, respectively. Sensitivity was determined to be 2.25 ng/mL in the screening assay and 5.34 ng/mL in the confirmatory assay for anti-PYX-201 antibodies. Sensitivity was determined to be 7.70 ng/mL in the confirmatory assay for anti-PYX-201 monoclonal antibody (mAb) antibodies. The positive controls (PCs) were set at the following levels: low positive control (LPC) at 14.0 ng/mL, medium positive control (MPC) at 100 ng/mL, and high positive control (HPC) at 5,000 ng/mL. The drug tolerance was up to 200 µg/mL at the HPC level, up to 100 µg/mL at the MPC level, and 0 µg/mL at the LPC level. The intra-assay percent coefficient of variation (%CV) was ≤ 4.5% for PCs in the screening assay and ≤ 11.5% for PCs in the confirmatory assay. The inter-assay %CV was ≤ 13.6% for PCs in the screening assay and ≤ 19.2% for PCs in the confirmatory assay. No hook effect, hemolysis effect, or lipemia effect was found in this ADA method. Anti-PYX-201 antibodies were found stable in human plasma for at least 24 hours at room temperature or after six freeze/thaw cycles.

Conclusion

Anti-PYX-201 ADA bioanalytical method validation was reported for the first time in any biological matrix. This ADA method has been successfully applied to human sample analysis to support a clinical study.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110349489241107072651
2025-01-01
2025-01-19
Loading full text...

Full text loading...

References

  1. Coats S. Williams M. Kebble B. Dixit R. Tseng L. Yao N.S. Tice D.A. Soria J.C. Antibody-drug conjugates: future directions in clinical and translational strategies to improve the therapeutic index. Clin. Cancer Res. 2019 25 18 5441 5448 10.1158/1078‑0432.CCR‑19‑0272 30979742
    [Google Scholar]
  2. Joubert N. Beck A. Dumontet C. Denevault-Sabourin C. Antibody-drug conjugates: The last decade. Pharmaceuticals (Basel) 2020 13 9 245 10.3390/ph13090245 32937862
    [Google Scholar]
  3. Tong J.T.W. Harris P.W.R. Brimble M.A. Kavianinia I. An insight into FDA approved antibody-drug conjugates for cancer therapy. Molecules 2021 26 19 5847 10.3390/molecules26195847 34641391
    [Google Scholar]
  4. Strebhardt K. Ullrich A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat. Rev. Cancer 2008 8 6 473 480 10.1038/nrc2394 18469827
    [Google Scholar]
  5. do Pazo C. Nawaz K. Webster R.M. The oncology market for antibody–drug conjugates. Nat. Rev. Drug Discov. 2021 20 8 583 584 10.1038/d41573‑021‑00054‑2 33762691
    [Google Scholar]
  6. Fu Z. Li S. Han S. Shi C. Zhang Y. Antibody drug conjugate: The “biological missile” for targeted cancer therapy. Signal Transduct. Target. Ther. 2022 7 1 93 10.1038/s41392‑022‑00947‑7 35318309
    [Google Scholar]
  7. Pandit A. Antibody-drug conjugates in oncology: key considerations and future trends. 2022 Available from: http://Premier-research.com/blog-antibody-drug-conjugates
  8. Antibody-drug conjugates (ADCs) list approved by FDA (2000-2023) 2023 Available from: http://Axispharm.com/antibody-drug-conjugatesadcs-list-approved-by-fda2000-2022
  9. Zolot R.S. Basu S. Million R.P. Antibody–drug conjugates. Nat. Rev. Drug Discov. 2013 12 4 259 260 10.1038/nrd3980 23535930
    [Google Scholar]
  10. Zhu X. Huo S. Xue C. An B. Qu J. Current LC-MS-based strategies for characterization and quantification of antibody-drug conjugates. J. Pharm. Anal. 2020 10 3 209 220 10.1016/j.jpha.2020.05.008 32612867
    [Google Scholar]
  11. Ritchie M. Tchistiakova L. Scott N. Implications of receptor-mediated endocytosis and intracellular trafficking dynamics in the development of antibody drug conjugates. MAbs 2013 5 1 13 21 10.4161/mabs.22854 23221464
    [Google Scholar]
  12. Panowski S. Bhakta S. Raab H. Polakis P. Junutula J.R. Site-specific antibody drug conjugates for cancer therapy. MAbs 2014 6 1 34 45 10.4161/mabs.27022 24423619
    [Google Scholar]
  13. Sievers E.L. Senter P.D. Antibody-drug conjugates in cancer therapy. Annu. Rev. Med. 2013 64 1 15 29 10.1146/annurev‑med‑050311‑201823 23043493
    [Google Scholar]
  14. Criscitiello C. Morganti S. Curigliano G. Antibody–drug conjugates in solid tumors: A look into novel targets. J. Hematol. Oncol. 2021 14 1 20 10.1186/s13045‑021‑01035‑z 33509252
    [Google Scholar]
  15. Ashman N. Bargh J.D. Spring D.R. Non-internalising antibody–drug conjugates. Chem. Soc. Rev. 2022 51 22 9182 9202 10.1039/D2CS00446A 36322071
    [Google Scholar]
  16. Drago J.Z. Modi S. Chandarlapaty S. Unlocking the potential of antibody–drug conjugates for cancer therapy. Nat. Rev. Clin. Oncol. 2021 18 6 327 344 10.1038/s41571‑021‑00470‑8 33558752
    [Google Scholar]
  17. Jain N. Smith S.W. Ghone S. Tomczuk B. Current ADC linker chemistry. Pharm. Res. 2015 32 11 3526 3540 10.1007/s11095‑015‑1657‑7 25759187
    [Google Scholar]
  18. Tarcsa E. Guffroy M.R. Falahatpisheh H. Phipps C. Kalvass J.C. Antibody-drug conjugates as targeted therapies: Are we there yet? A critical review of the current clinical landscape. Drug Discov. Today. Technol. 2020 37 13 22 10.1016/j.ddtec.2020.07.002 34895651
    [Google Scholar]
  19. Matsumoto E. Yoshida T. Kawarada Y. Sakakura T. Expression of fibronectin isoforms in human breast tissue: Production of extra domain A+/extra domain B+ by cancer cells and extra domain A+ by stromal cells. Jpn. J. Cancer Res. 1999 90 3 320 325 10.1111/j.1349‑7006.1999.tb00750.x 10359047
    [Google Scholar]
  20. Khan Z.A. Caurtero J. Barbin Y.P. Chan B.M. Uniyal S. Chakrabarti S. ED-B fibronectin in non-small cell lung carcinoma. Exp. Lung Res. 2005 31 7 701 711 10.1080/01902140591007236 16203624
    [Google Scholar]
  21. Menrad A. Menssen H.D. ED-B fibronectin as a target for antibody-based cancer treatments. Expert Opin. Ther. Targets 2005 9 3 491 500 10.1517/14728222.9.3.491 15948669
    [Google Scholar]
  22. Balza E. Sassi F. Ventura E. Parodi A. Fossati S. Blalock W. Carnemolla B. Castellani P. Zardi L. Borsi L. A novel human fibronectin cryptic sequence unmasked by the insertion of the angiogenesis‐associated extra type III domain B. Int. J. Cancer 2009 125 4 751 758 10.1002/ijc.24473 19479996
    [Google Scholar]
  23. Sauer S. Erba P.A. Petrini M. Menrad A. Giovannoni L. Grana C. Hirsch B. Zardi L. Paganelli G. Mariani G. Neri D. Dürkop H. Menssen H.D. Expression of the oncofetal ED-B–containing fibronectin isoform in hematologic tumors enables ED-B–targeted 131I-L19SIP radioimmunotherapy in Hodgkin lymphoma patients. Blood 2009 113 10 2265 2274 10.1182/blood‑2008‑06‑160416 19131554
    [Google Scholar]
  24. Saw P.E. Xu X. Kang B.R. Lee J. Lee Y.S. Kim C. Kim H. Kang S.H. Na Y.J. Moon H.J. Kim J.H. Park Y.K. Yoon W. Kim J.H. Kwon T.H. Choi C. Jon S. Chong K. Extra-domain B of fibronectin as an alternative target for drug delivery and a cancer diagnostic and prognostic biomarker for malignant glioma. Theranostics 2021 11 2 941 957 10.7150/thno.44948 33391514
    [Google Scholar]
  25. Li F. Hooper A.T. Golas J. Chang C.P.B. Neubert H. King L. Evaluation of EDB fibronectin in plasma, patient-derived xenograft formalin-fixed paraffin-embedded and fresh frozen tumor tissues using immunoaffinity LC-MS/MS. J. Proteome Res. 2022 21 10 2331 2340 10.1021/acs.jproteome.2c00182 36049057
    [Google Scholar]
  26. Qiao P.L. Gargesha M. Liu Y. Laney V.E.A. Hall R.C. Vaidya A.M. Gilmore H. Gawelek K. Scott B.B. Roy D. Wilson D.L. Lu Z.R. Magnetic resonance molecular imaging of extradomain B fibronectin enables detection of pancreatic ductal adenocarcinoma metastasis. Magn. Reson. Imaging 2022 86 37 45 10.1016/j.mri.2021.11.008 34801672
    [Google Scholar]
  27. Yin F. DeCiantis C. Pinkas J. Das B. Wang F. Zheng N. Hahn D. Amrite A. Adhikari D. Kane C. Sikora J. Pittman J. Wates R. Shaheen E. Harriman S. Quantitation of an ADC drug PYX-201 in rat and monkey plasma via ELISA and its application in preclinical studies. Bioanalysis 2023 15 1 43 52 10.4155/bio‑2022‑0233 36876967
    [Google Scholar]
  28. Yin F. Adhikari D. Sun M. Shane Woolf M. Ma E. Mylott W. Shaheen E. Harriman S. Pinkas J. Bioanalysis of an antibody drug conjugate (ADC) PYX-201 in human plasma using a hybrid immunoaffinity LC–MS/MS approach. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2023 1223 123715 10.1016/j.jchromb.2023.123715 37094503
    [Google Scholar]
  29. Yin F. DeCiantis C. Pinkas J. Das B. Wang F. Zheng N. Hahn D. Amrite A. Feng J. Adhikari D. Kane C. Sikora J. Pittman J. Wates R. Shaheen E. Harriman S. Quantitation of total antibody (tAb) from antibody drug conjugate (ADC) PYX-201 in rat and monkey plasma using an enzyme-linked immunosorbent assay (ELISA) and its application in preclinical studies. J. Pharm. Biomed. Anal. 2023 233 115452 10.1016/j.jpba.2023.115452 37167766
    [Google Scholar]
  30. Yin F. Adhikari D. Peay M. Cortes D. Garada M. Shane Woolf M. Ma E. Lebarbenchon D. Mylott W. Dyszel M. Harriman S. Pinkas J. Development and validation of a hybrid immunoaffinity LC–MS/MS assay for quantitation of total antibody (TAb) from an antibody drug conjugate (ADC) PYX-201 in human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2023 1228 123844 10.1016/j.jchromb.2023.123844 37579604
    [Google Scholar]
  31. Yin F. Ahsan F. Pinkas J. Das B. Wang F. Zheng N. Hahn D. Amrite A. Feng J. Adhikari D. Sikora J. Shaheen E. Harriman S. A sensitive LC-MS/MS assay to quantitate free payload Aur0101 from ADC PYX-201 in rat and monkey plasma. Bioanalysis 2023 15 14 833 843 10.4155/bio‑2023‑0056 37584364
    [Google Scholar]
  32. Yin F. Adhikari D. Li Y. Turner D. Shane Woolf M. Lebarbenchon D. Ma E. Mylott W. Shaheen E. Harriman S. Pinkas J. A sensitive and rapid LC-MS/MS assay for quantitation of free payload Aur0101 from antibody drug conjugate (ADC) PYX-201 in human plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2023 1226 123786 10.1016/j.jchromb.2023.123786 37352642
    [Google Scholar]
  33. Koren E. Zuckerman L. Mire-Sluis A. Immune responses to therapeutic proteins in humans--clinical significance, assessment and prediction. Curr. Pharm. Biotechnol. 2002 3 4 349 360 10.2174/1389201023378175 12463417
    [Google Scholar]
  34. Schellekens H. Immunogenicity of therapeutic proteins: Clinical implications and future prospects. Clin. Ther. 2002 24 11 1720 1740 10.1016/S0149‑2918(02)80075‑3 12501870
    [Google Scholar]
  35. Ponce R. Abad L. Amaravadi L. Gelzleichter T. Gore E. Green J. Gupta S. Herzyk D. Hurst C. Ivens I.A. Kawabata T. Maier C. Mounho B. Rup B. Shankar G. Smith H. Thomas P. Wierda D. Immunogenicity of biologically-derived therapeutics: Assessment and interpretation of nonclinical safety studies. Regul. Toxicol. Pharmacol. 2009 54 2 164 182 10.1016/j.yrtph.2009.03.012 19345250
    [Google Scholar]
  36. Sethu S. Govindappa K. Alhaidari M. Pirmohamed M. Park K. Sathish J. Immunogenicity to biologics: Mechanisms, prediction and reduction. Arch. Immunol. Ther. Exp. (Warsz.) 2012 60 5 331 344 10.1007/s00005‑012‑0189‑7 22930363
    [Google Scholar]
  37. Harris C.T. Cohen S. Reducing immunogenicity by design: Approaches to minimize immunogenicity of monoclonal antibodies. BioDrugs 2024 38 2 205 226 10.1007/s40259‑023‑00641‑2 38261155
    [Google Scholar]
  38. Kim Y. Bae S. Yu K.S. Lee S. Lee C. Kim J. Her H. Oh J. A randomized study to evaluate the safety and immunogenicity of a pentavalent meningococcal vaccine. NPJ Vaccines 2024 9 1 140 10.1038/s41541‑024‑00935‑8 39112515
    [Google Scholar]
  39. Lee Y. Jeong M. Park J. Jung H. Lee H. Immunogenicity of lipid nanoparticles and its impact on the efficacy of mRNA vaccines and therapeutics. Exp. Mol. Med. 2023 55 10 2085 2096 10.1038/s12276‑023‑01086‑x 37779140
    [Google Scholar]
  40. Bano N. Ehlinger C. Yang T. Swanson M. Allen S. Considerations in the immunogenicity assessment strategy for oligonucleotide therapeutics (ONTs). AAPS J. 2022 24 5 93 10.1208/s12248‑022‑00741‑x 36028587
    [Google Scholar]
  41. Borgoyakova M.B. Karpenko L.I. Merkulyeva I.A. Shcherbakov D.N. Rudometov A.P. Starostina E.V. Shanshin D.V. Isaeva A.A. Nesmeyanova V.S. Volkova N.V. Belenkaya S.V. Volosnikova E.A. Zadorozhny A.M. Orlova L.A. Zaykovskaya A.V. Pyankov O.V. Bazhan S.I. Ilyichev A.A. Immunogenicity of the DNA/protein combined vaccine against COVID-19. Bull. Exp. Biol. Med. 2022 174 2 246 249 10.1007/s10517‑023‑05682‑9 36598669
    [Google Scholar]
  42. Guidance on immunogenicity testing of therapeutic protein products – developing and validating assays for anti-drug antibody detection 2019 Available from: https://www.fda.gov/media/119788/download
  43. Guideline on immunogenicity assessment of therapeutic proteins. 2017 Available from: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-immunogenicity-assessment-therapeutic-proteins-revision-1_en.pdf
  44. Ducret A. Ackaert C. Bessa J. Bunce C. Hickling T. Jawa V. Kroenke M.A. Lamberth K. Manin A. Penny H.L. Smith N. Terszowski G. Tourdot S. Spindeldreher S. Assay format diversity in pre-clinical immunogenicity risk assessment: Toward a possible harmonization of antigenicity assays. MAbs 2022 14 1 1993522 10.1080/19420862.2021.1993522 34923896
    [Google Scholar]
  45. Du J. Yang Y. Zhu L. Wang S. Yu C. Liu C. Long C. Chen B. Xu G. Zou L. Wang L. Method validation of a bridging immunoassay in combination with acid-dissociation and bead treatment for detection of anti-drug antibody. Heliyon 2023 9 3 e13999 10.1016/j.heliyon.2023.e13999 36915535
    [Google Scholar]
  46. Hoofring S.A. Lopez R. Hock M.B. Kaliyaperumal A. Patel S.K. Swanson S.J. Chirmule N. Starcevic M. Immunogenicity testing strategy and bioanalytical assays for antibody-drug conjugates. Bioanalysis 2013 5 9 1041 1055 10.4155/bio.13.10 23641695
    [Google Scholar]
  47. Shankar G. Devanarayan V. Amaravadi L. Barrett Y.C. Bowsher R. Finco-Kent D. Fiscella M. Gorovits B. Kirschner S. Moxness M. Parish T. Quarmby V. Smith H. Smith W. Zuckerman L.A. Koren E. Recommendations for the validation of immunoassays used for detection of host antibodies against biotechnology products. J. Pharm. Biomed. Anal. 2008 48 5 1267 1281 10.1016/j.jpba.2008.09.020 18993008
    [Google Scholar]
  48. Myler H. Pedras-Vasconcelos J. Phillips K. Hottenstein C.S. Chamberlain P. Devanaryan V. Gleason C. Goodman J. Manning M.S. Purushothama S. Richards S. Shen H. Zoghbi J. Amaravadi L. Barger T. Bowen S. Bowsher R.R. Clements-Egan A. Geng D. Goletz T.J. Gunn G.R. Hallett W. Hodsdon M.E. Janelsins B.M. Jawa V. Kamondi S. Kirshner S. Kramer D. Liang M. Lindley K. Liu S. Liu Z. McNally J. Mikulskis A. Nelson R. Ahbari M.R. Qu Q. Ruppel J. Snoeck V. Song A. Yan H. Ware M. Anti-drug antibody validation testing and reporting harmonization. AAPS J. 2022 24 1 4 10.1208/s12248‑021‑00649‑y 34853961
    [Google Scholar]
  49. Suh K. Kyei I. Hage D.S. Approaches for the detection and analysis of antidrug antibodies to biopharmaceuticals: A review. J. Sep. Sci. 2022 45 12 2077 2092 10.1002/jssc.202200112 35230731
    [Google Scholar]
  50. Civoli F. Kasinath A. Cai X.Y. Wadhwa M. Exley A. Oldfield P. Alvandkouhi S. Schaffar G. Chappell J. Bowsher R. Devanarayan V. Marini J. Rebarchak S. Anderson M. Koppenburg V. Lester T. Recommendations for the development and validation of immunogenicity assays in support of biosimilar programs. AAPS J. 2020 22 1 7 10.1208/s12248‑019‑0386‑y 31792633
    [Google Scholar]
  51. Wadhwa M. Knezevic I. Kang H.N. Thorpe R. Immunogenicity assessment of biotherapeutic products: An overview of assays and their utility. Biologicals 2015 43 5 298 306 10.1016/j.biologicals.2015.06.004 26144595
    [Google Scholar]
  52. Xiang D. Li N. Liu L. Yu H. Li X. Zhao T. Liu D. Gong X. Development and validation of enzyme-linked immunosorbent assays for the measurement of infliximab and anti-drug antibody levels. Heliyon 2023 9 11 e21858 10.1016/j.heliyon.2023.e21858 38034789
    [Google Scholar]
  53. Lee K. Lee S. Jung S. Chin H.S. Analysis of ocular fluid in patients with ranibizumab-recalcitrant neovascular age-related macular degeneration who have serum anti-ranibizumab antibodies. Graefes Arch. Clin. Exp. Ophthalmol. 2023 261 12 3581 3587 10.1007/s00417‑023‑06146‑6 37318582
    [Google Scholar]
  54. Qin Q. Gong L. Current analytical strategies for antibody-drug conjugates in biomatrices. Molecules 2022 27 19 6299 10.3390/molecules27196299 36234836
    [Google Scholar]
  55. Liu T. Tong Y. Gao J. Fang W. Wu J. Peng X. Fan X. Chen X. Sun J. Cao S. Li Z. Gong L. Qin Q. Ju D. Development of a bridging ELISA for detection of antibodies against ZV0203 in cynomolgus monkey serum. J. Pharmacol. Toxicol. Methods 2023 119 107210 10.1016/j.vascn.2022.107210 36028046
    [Google Scholar]
  56. Nechansky A. HAHA – nothing to laugh about. Measuring the immunogenicity (human anti-human antibody response) induced by humanized monoclonal antibodies applying ELISA and SPR technology. J. Pharm. Biomed. Anal. 2010 51 1 252 254 10.1016/j.jpba.2009.07.013 19679421
    [Google Scholar]
  57. Wyant T. Yang L. Rosario M. Comparison of the ELISA and ECL assay for vedolizumab anti-drug antibodies: Assessing the impact on pharmacokinetics and safety outcomes of the phase 3 gemini trials. AAPS J. 2021 23 1 3 10.1208/s12248‑020‑00518‑0 33200296
    [Google Scholar]
  58. Aoyama M. Mano Y. Quantification of anti-drug antibodies against E6011, an anti-fractalkine monoclonal antibody, in monkey and human serum, by an electrochemiluminescence assay. J. Pharmacol. Toxicol. Methods 2023 124 107470 10.1016/j.vascn.2023.107470 37689367
    [Google Scholar]
  59. Johnson D. Simmons E. Abdeen S. Kinne A. Parmer E. Rinker S. Thystrup J. Ramaswamy S. Bowsher R.R. Sensitive assay design for detection of anti-drug antibodies to biotherapeutics that lack an immunoglobulin Fc domain. Sci. Rep. 2021 11 1 15467 10.1038/s41598‑021‑95055‑x 34326436
    [Google Scholar]
  60. Shibata H. Nishimura K. Miyama C. Tada M. Suzuki T. Saito Y. Ishii-Watabe A. Comparison of different immunoassay methods to detect human anti-drug antibody using the WHO erythropoietin antibody reference panel for analytes. J. Immunol. Methods 2018 452 73 77 10.1016/j.jim.2017.09.009 28970009
    [Google Scholar]
  61. Wu Y. Liu X. Chen Y. Woods R. Lee N. Yang H. Chowdhury P. Roskos L.K. White W.I. An electrochemiluminescence (ECL)-based assay for the specific detection of anti-drug antibodies of the IgE isotype. J. Pharm. Biomed. Anal. 2013 86 73 81 10.1016/j.jpba.2013.06.005 23988731
    [Google Scholar]
  62. Swanson S.J. Bussiere J. Immunogenicity assessment in non-clinical studies. Curr. Opin. Microbiol. 2012 15 3 337 347 10.1016/j.mib.2012.05.015 22770538
    [Google Scholar]
  63. Whittingham S. A solid phase radioimmunoassay for detection of antibodies to extractable nuclear antigens. J. Immunol. Methods 1983 61 1 73 81 10.1016/0022‑1759(83)90010‑8 6406611
    [Google Scholar]
  64. Beeg M. Nobili A. Orsini B. Rogai F. Gilardi D. Fiorino G. Danese S. Salmona M. Garattini S. Gobbi M. A Surface Plasmon Resonance-based assay to measure serum concentrations of therapeutic antibodies and anti-drug antibodies. Sci. Rep. 2019 9 1 2064 10.1038/s41598‑018‑37950‑4 30765716
    [Google Scholar]
  65. Lofgren J.A. Dhandapani S. Pennucci J.J. Abbott C.M. Mytych D.T. Kaliyaperumal A. Swanson S.J. Mullenix M.C. Comparing ELISA and surface plasmon resonance for assessing clinical immunogenicity of panitumumab. J. Immunol. 2007 178 11 7467 7472 10.4049/jimmunol.178.11.7467 17513798
    [Google Scholar]
  66. Real-Fernández F. Cimaz R. Rossi G. Simonini G. Giani T. Pagnini I. Papini A.M. Rovero P. Surface plasmon resonance-based methodology for anti-adalimumab antibody identification and kinetic characterization. Anal. Bioanal. Chem. 2015 407 24 7477 7485 10.1007/s00216‑015‑8915‑8 26210546
    [Google Scholar]
  67. Wyant T. Yang L. Lirio R.A. Rosario M. Vedolizumab immunogenicity with long-term or interrupted treatment of patients with inflammatory bowel disease. J. Clin. Pharmacol. 2021 61 9 1174 1181 10.1002/jcph.1877 33908636
    [Google Scholar]
  68. Mojtahed Poor S. Ulshöfer T. Gabriel L.A. Henke M. Köhm M. Behrens F. Geisslinger G. Parnham M.J. Burkhardt H. Schiffmann S. Immunogenicity assay development and validation for biological therapy as exemplified by ustekinumab. Clin. Exp. Immunol. 2019 196 2 259 275 10.1111/cei.13261 30656642
    [Google Scholar]
  69. Fiorotti C.K. Immunogenicity considerations for antibody-drug conjugates: A focus on neutralizing antibody assays. Bioanalysis 2018 10 2 65 70 10.4155/bio‑2017‑0229 29243486
    [Google Scholar]
  70. Burbelo P.D. Hirai H. Issa A.T. Kingman A. Lernmark Å. Ivarsson S.A. Notkins A.L. Iadarola M.J. Comparison of radioimmunoprecipitation with luciferase immunoprecipitation for autoantibodies to GAD65 and IA-2β. Diabetes Care 2010 33 4 754 756 10.2337/dc09‑1938 20086252
    [Google Scholar]
  71. Nicolas X. Hurbin F. Periquet M. Richards S. Sensinger C. Welch K. An Haack K. Pharmacokinetics of alglucosidase alfa manufactured at the 4000-L scale in participants with pompe disease: A phase 3/4 open-label study. Clin. Pharmacol. Drug Dev. 2023 12 12 1185 1193 10.1002/cpdd.1314 37705424
    [Google Scholar]
  72. Sathiya V. Kumar V.R. Harmonised methods for detection of insulin immunogenicity. Int. J. Pharm. Investig. 2024 14 2 306 316 10.5530/ijpi.14.2.38
    [Google Scholar]
  73. Wadhwa M. Bird C. Dilger P. Gaines-Das R. Thorpe R. Strategies for detection, measurement and characterization of unwanted antibodies induced by therapeutic biologicals. J. Immunol. Methods 2003 278 1-2 1 17 10.1016/S0022‑1759(03)00206‑0 12957392
    [Google Scholar]
  74. Mire-Sluis A.R. Barrett Y.C. Devanarayan V. Koren E. Liu H. Maia M. Parish T. Scott G. Shankar G. Shores E. Swanson S.J. Taniguchi G. Wierda D. Zuckerman L.A. Recommendations for the design and optimization of immunoassays used in the detection of host antibodies against biotechnology products. J. Immunol. Methods 2004 289 1-2 1 16 10.1016/j.jim.2004.06.002 15251407
    [Google Scholar]
  75. Gorovits B. Wakshull E. Pillutla R. Xu Y. Manning M.S. Goyal J. Recommendations for the characterization of immunogenicity response to multiple domain biotherapeutics. J. Immunol. Methods 2014 408 1 12 10.1016/j.jim.2014.05.010 24861938
    [Google Scholar]
/content/journals/cac/10.2174/0115734110349489241107072651
Loading
/content/journals/cac/10.2174/0115734110349489241107072651
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: extra domain B fibronectin ; ECL ; PYX-201 ; ADA ; validation ; ADC
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test