Skip to content
2000
image of Characterization of Lithium-containing Fly Ash Derived from Coal-fired Power Plants in Guizhou Province, China

Abstract

Background

Coal-fired power plants, such as those located in Guizhou, are generating substantial amounts of fly ash. This fly ash is rich in lithium, a highly valuable metal utilized in numerous industrial applications. Effective extraction of these metals necessitates a thorough understanding of their characteristics within the fly ash.

Methods

Multiple analytical techniques were used to study fly ash's physicochemical properties. Meanwhile, wet magnetic separation and acid-base methods are employed to separate its mineral phases.

Results

The fly ash mainly contains mullite, glass, and iron microspheres, showing spherical particle morphology. It's rich in O, Si, Al, Fe, C, and oxides like SiO, AlO, FeO. Most particles are smaller than 20 μm. Lithium in the ash existed as Li-O-M compounds, mainly in the non-magnetic and glass phases.

Conclusion

Overall, these findings have deepened our understanding of fly ash and the distribution of lithium within it, providing a foundation for the recovery of lithium and other valuable elements.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110349242241206065556
2025-01-29
2025-04-02
Loading full text...

Full text loading...

References

  1. Lu Q. Qin S. Wang W. Wang Q. Kang S. Geochemistry of Late Permian coals from the Yueliangtian coal deposit, Guizhou: Evidence of sediment source and evaluation on critical elements. Sci. Total Environ. 2023 856 Pt 1 159123 10.1016/j.scitotenv.2022.159123 36181795
    [Google Scholar]
  2. Qian J. Wu C. Wang Z. The mineral composition of fly ash. Fly Ash Compr Util 2001 01 26 31
    [Google Scholar]
  3. Cao S. Zhou C. Pan J. Liu C. Tang M. Ji W. Hu T. Zhang N. Study on influence factors of leaching of rare earth elements from coal fly ash. Energy Fuels 2018 32 7 8000 8005 10.1021/acs.energyfuels.8b01316
    [Google Scholar]
  4. Luo Y. Wu Y. Ma S. Zheng S. Zhang Y. Chu P.K. Utilization of coal fly ash in China: A mini-review on challenges and future directions. Environ. Sci. Pollut. Res. Int. 2021 28 15 18727 18740 10.1007/s11356‑020‑08864‑4 32342424
    [Google Scholar]
  5. Han H. Huang S. Fu B. Gao Y. Chen F. Li J. Research progress of lithium extraction from fly ash. Med. Chem. Res. 2022 15 16 18 10.3969/j.issn.1672‑8114.2022.15.005
    [Google Scholar]
  6. Oliveira M.L.S. Marostega F. Taffarel S.R. Saikia B.K. Waanders F.B. DaBoit K. Baruah B.P. Silva L.F.O. Nano-mineralogical investigation of coal and fly ashes from coal-based captive power plant (India): An introduction of occupational health hazards. Sci. Total Environ. 2014 468-469 1128 1137 10.1016/j.scitotenv.2013.09.040 24121564
    [Google Scholar]
  7. Yang Z. Chang G. Xia Y. He Q. Zeng H. Xing Y. Gui X. Utilization of waste cooking oil for highly efficient recovery of unburned carbon from coal fly ash. J. Clean. Prod. 2021 282 124547 10.1016/j.jclepro.2020.124547
    [Google Scholar]
  8. Meij R. te Winkel B.H. Trace elements in world steam coal and their behaviour in Dutch coal-fired power stations: A review. Int. J. Coal Geol. 2009 77 3-4 289 293 10.1016/j.coal.2008.07.015
    [Google Scholar]
  9. Vassilev S.V. Vassileva C.G. A new approach for the classification of coal fly ashes based on their origin, composition, properties, and behaviour. Fuel 2007 86 10-11 1490 1512 10.1016/j.fuel.2006.11.020
    [Google Scholar]
  10. Dai S. Finkelman R.B. Coal as a promising source of critical elements: Progress and future prospects. Int. J. Coal Geol. 2018 186 155 164 10.1016/j.coal.2017.06.005
    [Google Scholar]
  11. Seredin V.V. Dai S. Sun Y. Chekryzhov I.Y. Coal deposits as promising sources of rare metals for alternative power and energy-efficient technologies. Appl. Geochem. 2013 31 1 11 10.1016/j.apgeochem.2013.01.009
    [Google Scholar]
  12. Li Y. Man J. Cheng L. Panchal B. Lithium activation pretreatment mechanism and leaching process from coal fly ash. Energ Explor Exploit 2024 42 2 476 491
    [Google Scholar]
  13. Ma Z. Zhang S. Shan X. Guo Y. Cheng F. Migration of lithium, gallium and rare earth elements in coal, coal slime, and coal gangue during combustion. CIESC Journal 2021 72 06 3349 3358 10.11949/0438‑1157.20201544
    [Google Scholar]
  14. Cui L. Li S. Guo Y. ZHANG, X.; Cheng, F. Research and development of lithium recovery from multi-component complex system of coal fly ash. CIESC Journal 2020 71 12 5388 5399 10.11949/0438‑1157.20200424
    [Google Scholar]
  15. Pan J. Zhou C. Tang M. Cao S. Liu C. Zhang N. Wen M. Luo Y. Hu T. Ji W. Study on the modes of occurrence of rare earth elements in coal fly ash by statistics and a sequential chemical extraction procedure. Fuel 2019 237 555 565 10.1016/j.fuel.2018.09.139
    [Google Scholar]
  16. Cao B. Research status and prospect of rare earth elements in coal. Coal Sci. Technol. 2022 50 04 181 194 10.13199/j.cnki.cst.2020‑0489
    [Google Scholar]
  17. Hu P. Hou X. Zhang J. Li S. Wu H. Damø A.J. Li H. Wu Q. Xi X. Distribution and occurrence of lithium in high-alumina-coal fly ash. Int. J. Coal Geol. 2018 189 27 34 10.1016/j.coal.2018.02.011
    [Google Scholar]
  18. Li B. Xie X. Lv J. Zhu H. Li J. Kang B. Song Q. Progress and prospect of research on comprehensive utilization of fly ash. Conserv Util Miner Resour 2020 40 05 153 160 10.13779/j.cnki.issn1001‑0076.2020.05.021
    [Google Scholar]
  19. Sun B. Liu Y. Tajcmanova L. Liu C. Wu J. In-situ analysis of the lithium occurrence in the No.11 coal from the Antaibao mining district, Ningwu Coalfield, Northern China. Ore Geol. Rev. 2022 144 104825 10.1016/j.oregeorev.2022.104825
    [Google Scholar]
  20. Zhao C. Distribution and enrichment mechanism of multi-metallic elements associated with coal in Ordos Basin. PhD Thesis, Beijing: China University of Mining & Technology, Beijing 2014
    [Google Scholar]
  21. Ketris M. á. Yudovich Y. Estimations of Clarkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals. Int. J. Coal Geol. 2009 78 2 135 148
    [Google Scholar]
  22. Dong H. Chen J. Li X. Shao L. The effect of activator on lithium extraction from Xinjiang fly ash. Chem Indust Eng Prog 2019 38 03 1538 1544 10.16085/j.issn.1000‑6613.2018‑1020
    [Google Scholar]
  23. Witte A. Garg N. Particle shape, crystallinity, and degree of polymerization of fly ash via combined SEM-EDS and Raman spectroscopy. Cement Concr. Res. 2024 184 107612 10.1016/j.cemconres.2024.107612
    [Google Scholar]
  24. Dai S. Zhao L. Peng S. Chou C.L. Wang X. Zhang Y. Li D. Sun Y. Abundances and distribution of minerals and elements in high-alumina coal fly ash from the Jungar power plant, Inner Mongolia, China. Int. J. Coal Geol. 2010 81 4 320 332 10.1016/j.coal.2009.03.005
    [Google Scholar]
  25. Liu H. Compostion of the Coal Combustion and Utilization of the Fly Ash Generated from Two Major Coal-fired Power Plants in Chongqing city, Southwest China. Beijing China University of Mining & Technology 2015
    [Google Scholar]
  26. Bai J. Li W. Li B. Characterization of low-temperature coal ash behaviors at high temperatures under reducing atmosphere. Fuel 2008 87 4-5 583 591 10.1016/j.fuel.2007.02.010
    [Google Scholar]
  27. Mozgawa W. Krol M. Dyczek J. Deja J. Investigation of the coal fly ashes using IR spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc. 2014 132 889 94 10.1016/j.saa.2014.05.052
    [Google Scholar]
  28. Temuujin J. Okada K. MacKenzie K.J.D. Effect of mechanochemical treatment on the crystallization behaviour of diphasic mullite gel. Ceram. Int. 1999 25 1 85 90 10.1016/S0272‑8842(98)00005‑4
    [Google Scholar]
  29. Zhou C. Li C. Li W. Sun J. Li Q. Wu W. Liu G. Distribution and preconcentration of critical elements from coal fly ash by integrated physical separations. Int. J. Coal Geol. 2022 261 104095 10.1016/j.coal.2022.104095
    [Google Scholar]
  30. Li C. Zhou C. Li W. Zhu W. Shi J. Liu G. Enrichment of critical elements from coal fly ash by the combination of physical separations. Fuel 2023 336 127156 10.1016/j.fuel.2022.127156
    [Google Scholar]
  31. Zhang W. Honaker R. Characterization and recovery of rare earth elements and other critical metals (Co, Cr, Li, Mn, Sr, and V) from the calcination products of a coal refuse sample. Fuel 2020 267 117236 10.1016/j.fuel.2020.117236
    [Google Scholar]
  32. Xu F. Qin S. Li S. Cui L. Wang Y. Dee Q. Gui Z. Research progress on geochemistry and extraction of lithium from coal and coal ash. Coal Sci. Technol. 2021 49 09 220 229 10.13199/j.cnki.cst.2021.09.030
    [Google Scholar]
  33. Oboirien B.O. Thulari V. North B.C. Major and trace elements in coal bottom ash at different oxy coal combustion conditions. Appl. Energy 2014 129 207 216 10.1016/j.apenergy.2014.04.091
    [Google Scholar]
  34. Hu P. Occurrence of lithium in high-alumina-coal fly ash and its leaching behaviors during pre-desilication. MD Thesis, University of Chinese Academy of Sciences, Beijing 2018
    [Google Scholar]
  35. Wood K.N. Teeter G. XPS on Li-battery-related compounds: Analysis of inorganic SEI phases and a methodology for charge correction. ACS Appl. Energy Mater. 2018 1 9 4493 4504 10.1021/acsaem.8b00406
    [Google Scholar]
  36. Xu F. Qin S. Li S. Wen H. Lv D. Wang Q. Kang S. The migration and mineral host changes of lithium during coal combustion: Experimental and thermodynamic calculation study. Int. J. Coal Geol. 2023 275 104298 10.1016/j.coal.2023.104298
    [Google Scholar]
/content/journals/cac/10.2174/0115734110349242241206065556
Loading
/content/journals/cac/10.2174/0115734110349242241206065556
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: fly ash ; Power plant ; characteristics ; lithium
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test