Skip to content
2000
image of FRET-based Ratiometric Fluorescent Probes for Enzyme Detection: Current Insight

Abstract

Over the decade many types of fluorescent sensors have been developed for detecting diverse types of analyte. The sensors developed using the phenomenon of fluorescence provide high sensitivity, selectivity, for the analyte that they are being developed for. This has led to a huge increase in development of sensors for biomarkers that are particularly of importance for early detection or diagnosis of life threatening diseases. In addition to the advantages of Fluorimetry there is continuous research going on to create sensors that are easy to construct, reproducible, cost and time efficient, along with maintaining sensitivity enough for accurate determination of the analyte of interest. As the research advanced, the dyes used as simple sensors were replaced with other molecules as a substrate for biomarker or other analyte sensing. Additionally, early scientists used single emission sensors for detection of analyte. Further, the single emission sensors were evolved to dual emission and then further advancement led to innovation of ratiometric sensors. These ratiometric sensors provide good internal standard referencing system which gives them good sensitivity as compared to other luminescent sensors. Through this review we aim to provide useful information on the subject of FRET, ratiometric fluorescence analysis, the types of materials used for developing the sensors and examples of biosensors used for enzyme detection.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110348463241121191421
2025-01-10
2025-05-10
Loading full text...

Full text loading...

References

  1. Yang C. Wang Q. Ding W. Recent progress in the imaging detection of enzyme activities in vivo. RSC Advances 2019 9 44 25285 25302 10.1039/C9RA04508B 35530057
    [Google Scholar]
  2. Bisswanger H. Enzyme assays. Perspect. Sci. 2014 1 1-6 41 55 10.1016/j.pisc.2014.02.005
    [Google Scholar]
  3. Ongaro L. Alonso C.A.I. Zhou X. Brûlé E. Li Y. Schang G. Parlow A.F. Steyn F. Bernard D.J. Development of a Highly Sensitive ELISA for Measurement of FSH in Serum, Plasma, and Whole Blood in Mice. Endocrinology 2021 162 4 bqab014 10.1210/endocr/bqab014 33475143
    [Google Scholar]
  4. Liu H. Lei Y. A critical review: Recent advances in “digital” biomolecule detection with single copy sensitivity. Biosens. Bioelectron. 2021 177 112901 10.1016/j.bios.2020.112901 33472132
    [Google Scholar]
  5. Bradley P. Desai M.A. Application of HPLC in the Purification of Biomolecules. 2000 10.1007/978‑1‑59259‑027‑8_11
    [Google Scholar]
  6. Weiss S. Fluorescence Spectroscopy of Single Biomolecules. 1999 10.1126/science.283.5408.1676
    [Google Scholar]
  7. Introduction to Fluorescence. 2006
    [Google Scholar]
  8. Shahzad A. Köhler G. Knapp M. Gaubitzer E. Puchinger M. Edetsberger M. Emerging applications of fluorescence spectroscopy in medical microbiology field. J. Transl. Med. 2009 7 1 99 10.1186/1479‑5876‑7‑99 19941643
    [Google Scholar]
  9. Tourkya B. Boubellouta T. Dufour E. Leriche F. Fluorescence spectroscopy as a promising tool for a polyphasic approach to pseudomonad taxonomy. Curr. Microbiol. 2009 58 1 39 46 10.1007/s00284‑008‑9263‑0 18815829
    [Google Scholar]
  10. Alimova A. Katz A. Podder R. Minko G. Wei H. Alfano R.R. Gottlieb P. Virus particles monitored by fluorescence spectroscopy: a potential detection assay for macromolecular assembly. Photochem. Photobiol. 2004 80 1 41 46 15339207
    [Google Scholar]
  11. Uthamacumaran A. Abdouh M. Sengupta K. 2023
  12. Sarfraz I. Rasul A. Ucak I. Lai N.S. Asrar M. Adem Ş. Enzyme assay techniques and protocols. Analytical Techniques in Biosciences. Elsevier 2022 191 199 10.1016/B978‑0‑12‑822654‑4.00012‑9
    [Google Scholar]
  13. Thompson R.B. Fluorescence Sensors and Biosensors CRC Press 2005 10.1201/9781420028287
    [Google Scholar]
  14. Salama A.M. Yasin G. Zourob M. Lu J. Fluorescent Biosensors for the Detection of Viruses Using Graphene and Two-Dimensional Carbon Nanomaterials. Biosensors (Basel) 2022 12 7 460 10.3390/bios12070460 35884263
    [Google Scholar]
  15. Pietraszewska-Bogiel A. Gadella T.W.J. FRET microscopy: from principle to routine technology in cell biology. J. Microsc. 2011 241 2 111 118 10.1111/j.1365‑2818.2010.03437.x 21118231
    [Google Scholar]
  16. Sekar R.B. Periasamy A. Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. J. Cell Biol. 2003 160 5 629 633 10.1083/jcb.200210140 12615908
    [Google Scholar]
  17. Sarkar M. Raj R R. Maliekal T.T. Finding the partner: FRET and beyond. Exp. Cell Res. 2024 441 2 114166 10.1016/j.yexcr.2024.114166 39029572
    [Google Scholar]
  18. Kaur A. Kaur P. Ahuja S. Förster resonance energy transfer (FRET) and applications thereof. Anal. Methods 2020 12 46 5532 5550 10.1039/D0AY01961E 33210685
    [Google Scholar]
  19. Broussard J.A. Green K.J. Research Techniques Made Simple: Methodology and Applications of Förster Resonance Energy Transfer (FRET) Microscopy. J. Invest. Dermatol. 2017 137 11 e185 e191 10.1016/j.jid.2017.09.006 29055415
    [Google Scholar]
  20. Sahoo H. Förster resonance energy transfer – A spectroscopic nanoruler: Principle and applications. J. Photochem. Photobiol. Photochem. Rev. 2011 12 1 20 30 10.1016/j.jphotochemrev.2011.05.001
    [Google Scholar]
  21. Müller S.M. Galliardt H. Schneider J. Barisas B.G. Seidel T. Quantification of Förster resonance energy transfer by monitoring sensitized emission in living plant cells. Front. Plant Sci. 2013 4 413 10.3389/fpls.2013.00413 24194740
    [Google Scholar]
  22. Schaaf T.M. Li A. Grant B.D. Peterson K. Yuen S. Bawaskar P. Kleinboehl E. Li J. Thomas D.D. Gillispie G.D. Red-Shifted FRET Biosensors for High-Throughput Fluorescence Lifetime Screening. Biosensors (Basel) 2018 8 4 99 10.3390/bios8040099 30352972
    [Google Scholar]
  23. Herman B. Krishnan R.V. Centonze V.E. Microscopic Analysis of Fluorescence Resonance Energy Transfer (FRET). Protein-Protein Interactions. New Jersey Humana Press 351 370 10.1385/1‑59259‑762‑9:351
    [Google Scholar]
  24. Zeug A. Woehler A. Neher E. Ponimaskin E.G. Quantitative intensity-based FRET approaches--a comparative snapshot. Biophys. J. 2012 103 9 1821 1827 10.1016/j.bpj.2012.09.031 23199910
    [Google Scholar]
  25. Bene L. Ungvári T. Fedor R. Sasi Szabó L. Damjanovich L. Intensity correlation-based calibration of FRET. Biophys. J. 2013 105 9 2024 2035 10.1016/j.bpj.2013.09.041 24209847
    [Google Scholar]
  26. Roszik J. Szöllosi J. Vereb G. AccPbFRET: an ImageJ plugin for semi-automatic, fully corrected analysis of acceptor photobleaching FRET images. BMC Bioinformatics 2008 9 1 346 10.1186/1471‑2105‑9‑346 18713453
    [Google Scholar]
  27. Mittag A. Lenz D. Bocsi J. Sack U. Gerstner A.O.H. Tárnok A. Sequential photobleaching of fluorochromes for polychromatic slide‐based cytometry. 2006 10.1002/cyto.a.20227
    [Google Scholar]
  28. Shrestha D. Jenei A. Nagy P. Vereb G. Szöllősi J. Understanding FRET as a research tool for cellular studies. Int. J. Mol. Sci. 2015 16 4 6718 6756 10.3390/ijms16046718 25815593
    [Google Scholar]
  29. Matthews D.R. Carlin L.M. Ofo E. Barber P.R. Vojnovic B. Irving M. Ng T. Ameer-Beg S.M. Time-lapse FRET microscopy using fluorescence anisotropy. J. Microsc. 2010 237 1 51 62 10.1111/j.1365‑2818.2009.03301.x 20055918
    [Google Scholar]
  30. Gradinaru C.C. Marushchak D.O. Samim M. Krull U.J. Fluorescence anisotropy: from single molecules to live cells. Analyst (Lond.) 2010 135 3 452 459 10.1039/b920242k 20174695
    [Google Scholar]
  31. Chen Y. Mauldin J.P. Day R.N. Periasamy A. Characterization of spectral FRET imaging microscopy for monitoring nuclear protein interactions. J. Microsc. 2007 228 Pt 2 139 152 10.1111/j.1365‑2818.2007.01838.x 17970914
    [Google Scholar]
  32. Fang C. Huang Y. Zhao Y. Review of FRET biosensing and its application in biomolecular detection. Am. J. Transl. Res. 2023 15 2 694 709 36915763
    [Google Scholar]
  33. Liu L. Ga L. Ai J. Ratiometric fluorescence sensing with logical operation: Theory, design and applications. Biosens. Bioelectron. 2022 213 114456 10.1016/j.bios.2022.114456 35691083
    [Google Scholar]
  34. Bigdeli A. Ghasemi F. Abbasi-Moayed S. Shahrajabian M. Fahimi-Kashani N. Jafarinejad S. Farahmand Nejad M.A. Hormozi-Nezhad M.R. Ratiometric fluorescent nanoprobes for visual detection: Design principles and recent advances - A review. Anal. Chim. Acta 2019 1079 30 58 10.1016/j.aca.2019.06.035 31387719
    [Google Scholar]
  35. Pei X. Pan Y. Zhang L. Lv Y. Recent advances in ratiometric luminescence sensors. Appl. Spectrosc. Rev. 2021 56 4 324 345 10.1080/05704928.2020.1793770
    [Google Scholar]
  36. Leake M.C. Quinn S.D. A guide to small fluorescent probes for single-molecule biophysics. 2023 10.1063/5.0131663
    [Google Scholar]
  37. Tian X. Murfin L.C. Wu L. Lewis S.E. James T.D. Fluorescent small organic probes for biosensing. Chem. Sci. (Camb.) 2021 12 10 3406 3426 10.1039/D0SC06928K 34163615
    [Google Scholar]
  38. Fu Y. Finney N.S. Small-molecule fluorescent probes and their design. RSC Advances 2018 8 51 29051 29061 10.1039/C8RA02297F 35547972
    [Google Scholar]
  39. Georgiev N.I. Bakov V.V. Anichina K.K. Bojinov V.B. Fluorescent Probes as a Tool in Diagnostic and Drug Delivery Systems. Pharmaceuticals (Basel) 2023 16 3 381 10.3390/ph16030381 36986481
    [Google Scholar]
  40. Yang G. Liu Y. Teng J. Zhao C.X. FRET Ratiometric Nanoprobes for Nanoparticle Monitoring. Biosensors (Basel) 2021 11 12 505 10.3390/bios11120505 34940262
    [Google Scholar]
  41. Bischof H. Burgstaller S. Waldeck-Weiermair M. Rauter T. Schinagl M. Ramadani-Muja J. Graier W.F. Malli R. Live-Cell Imaging of Physiologically Relevant Metal Ions Using Genetically Encoded FRET-Based Probes. Cells 2019 8 5 492 10.3390/cells8050492 31121936
    [Google Scholar]
  42. Chini M.K. Kumar V. Javed A. Satapathi S. Graphene quantum dots and carbon nano dots for the FRET based detection of heavy metal ions. 2019 10.1016/j.nanoso.2019.100347
    [Google Scholar]
  43. Ma C. Zeng F. Huang L. Wu S. FRET-based ratiometric detection system for mercury ions in water with polymeric particles as scaffolds. J. Phys. Chem. B 2011 115 5 874 882 10.1021/jp109594h 21250732
    [Google Scholar]
  44. Lai W.Q. Chang Y.F. Chou F.N. Yang D.M. Portable FRET-Based Biosensor Device for On-Site Lead Detection. Biosensors (Basel) 2022 12 3 157 10.3390/bios12030157 35323427
    [Google Scholar]
  45. Liu Y. Zhang J. Wang Y. Liu C. Zhang G. Liu W. A rapid and naked-eye visible FRET ratiometric fluorescent chemosensor for sensitive detection of toxic BF3. Sens. Actuators B Chem. 2017 243 940 945 10.1016/j.snb.2016.12.078
    [Google Scholar]
  46. Li Y. Yu T. Li J. Kong D. Shi Q. Liu C. Dong C. A Novel Fluorescent FRET Hairpin Probe Switch for aflD Gene Detection in Real Fermented Soybean Paste. Food Anal. Methods 2021 14 12 2469 2477 10.1007/s12161‑021‑02080‑7
    [Google Scholar]
  47. Wang C. Huang X. Tian X. Zhang X. Yu S. Chang X. Ren Y. Qian J. A multiplexed FRET aptasensor for the simultaneous detection of mycotoxins with magnetically controlled graphene oxide/Fe3O4 as a single energy acceptor. Analyst (Lond.) 2019 144 20 6004 6010 10.1039/C9AN01593K 31538153
    [Google Scholar]
  48. Kumar Y V V A. R M R. J A. Mudili V. Poda S. Development of a FRET-based fluorescence aptasensor for the detection of aflatoxin B1 in contaminated food grain samples. RSC Advances 2018 8 19 10465 10473 10.1039/C8RA00317C 35540493
    [Google Scholar]
  49. Kudr J. Richtera L. Xhaxhiu K. Hynek D. Heger Z. Zitka O. Adam V. Carbon dots based FRET for the detection of DNA damage. Biosens. Bioelectron. 2017 92 133 139 10.1016/j.bios.2017.01.067 28213325
    [Google Scholar]
  50. Ray P.C. Darbha G.K. Ray A. Walker J. Hardy W. Gold Nanoparticle Based FRET for DNA Detection. Plasmonics 2007 2 4 173 183 10.1007/s11468‑007‑9036‑9
    [Google Scholar]
  51. Xie Y. Dix A.V. Tor Y. FRET enabled real time detection of RNA-small molecule binding. J. Am. Chem. Soc. 2009 131 48 17605 17614 10.1021/ja905767g 19908830
    [Google Scholar]
  52. Santangelo P. Nitin N. Bao G. Nanostructured probes for RNA detection in living cells. Ann. Biomed. Eng. 2006 34 1 39 50 10.1007/s10439‑005‑9003‑6 16463087
    [Google Scholar]
  53. Kang B. Lee Y. Lim J. Yong D. Ki Choi Y. Woo Yoon S. Seo S. Jang S. Uk Son S. Kang T. Jung J. Lee K-S. Kim M.H. Lim E-K. FRET-based hACE2 receptor mimic peptide conjugated nanoprobe for simple detection of SARS-CoV-2. Chem. Eng. J. 2022 442 136143 10.1016/j.cej.2022.136143 35382003
    [Google Scholar]
  54. Jin B. Wang S. Lin M. Jin Y. Zhang S. Cui X. Gong Y. Li A. Xu F. Lu T.J. Upconversion nanoparticles based FRET aptasensor for rapid and ultrasenstive bacteria detection. Biosens. Bioelectron. 2017 90 525 533 10.1016/j.bios.2016.10.029 27825886
    [Google Scholar]
  55. Heli B. Ajji A. Toward a nanopaper-based and solid phase immunoassay using FRET for the rapid detection of bacteria. Sci. Rep. 2020 10 1 14367 10.1038/s41598‑020‑71285‑3 32873860
    [Google Scholar]
  56. Davis B.W. Niamnont N. Dillon R. Bardeen C.J. Sukwattanasinitt M. Cheng Q. FRET detection of proteins using fluorescently doped electrospun nanofibers and pattern recognition. Langmuir 2011 27 10 6401 6408 10.1021/la2006925 21491867
    [Google Scholar]
  57. Agam G. Gebhardt C. Popara M. Mächtel R. Folz J. Ambrose B. Chamachi N. Chung S.Y. Craggs T.D. de Boer M. Grohmann D. Ha T. Hartmann A. Hendrix J. Hirschfeld V. Hübner C.G. Hugel T. Kammerer D. Kang H-S. Kapanidis A.N. Krainer G. Kramm K. Lemke E.A. Lerner E. Margeat E. Martens K. Michaelis J. Mitra J. Moya Muñoz G.G. Quast R.B. Robb N.C. Sattler M. Schlierf M. Schneider J. Schröder T. Sefer A. Tan P.S. Thurn J. Tinnefeld P. van Noort J. Weiss S. Wendler N. Zijlstra N. Barth A. Seidel C.A.M. Lamb D.C. Cordes T. Reliability and accuracy of single-molecule FRET studies for characterization of structural dynamics and distances in proteins. Nat. Methods 2023 20 4 523 535 10.1038/s41592‑023‑01807‑0 36973549
    [Google Scholar]
  58. Dewangan L. Korram J. Karbhal I. Nagwanshi R. Satnami M.L. N-Doped Carbon Quantum Dot-MnO 2 Nanowire FRET Pairs: Detection of Cholesterol, Glutathione, Acetylcholinesterase, and Chlorpyrifos. ACS Appl. Nano Mater. 2021 4 12 13612 13624 10.1021/acsanm.1c03047
    [Google Scholar]
  59. Li R. Xue F. Cao C. Wei P. Zhong Y. Xiao S. Li F. Yi T. A near infrared fluorescent probe for one-step detection of histone deacetylase activity based on an intramolecular FRET. Sens. Actuators B Chem. 2019 297 126791 10.1016/j.snb.2019.126791
    [Google Scholar]
  60. Zhang Q. Ding H. Xu X. Wang H. Liu G. Pu S. 2022
  61. Zhou R. Lu X. Yang Q. Wu P. Nanocrystals for large Stokes shift-based optosensing. Chin. Chem. Lett. 2019 30 10 1843 1848 10.1016/j.cclet.2019.07.062
    [Google Scholar]
  62. Liu T.Z. Wang S. Xu J.R. Miao J.Y. Zhao B.X. Lin Z.M. FRET-based fluorescent probe with favorable water solubility for simultaneous detection of SO2 derivatives and viscosity. Talanta 2023 256 124302 10.1016/j.talanta.2023.124302 36708620
    [Google Scholar]
  63. Jun J.V. Chenoweth D.M. Petersson E.J. Rational design of small molecule fluorescent probes for biological applications. Org. Biomol. Chem. 2020 18 30 5747 5763 10.1039/D0OB01131B 32691820
    [Google Scholar]
  64. Golshadi Z. Dinari M. Knebel A. Lützenkirchen J. Monjezi B.H. Metal organic and covalent organic framework-based QCM sensors for environmental pollutant detection and beyond. Coord. Chem. Rev. 2024 521 216163 10.1016/j.ccr.2024.216163
    [Google Scholar]
  65. Wu W. Yan Y. Xie M. Liu Y. Deng L. Wang H. A critical review on metal organic frameworks (MOFs)-based sensors for foodborne pathogenic bacteria detection. Talanta 2025 281 126918 10.1016/j.talanta.2024.126918 39305763
    [Google Scholar]
  66. Mohan B. Virender Kumar Gupta R. Pombeiro A.J.L. Ren P. Advanced luminescent metal–organic framework (MOF) sensors engineered for urine analysis applications. Coord. Chem. Rev. 2024 519 216090 10.1016/j.ccr.2024.216090
    [Google Scholar]
  67. Zhang S. Wang B. Li S. Li X. Liu G. Zhang Z. Wang X. Metal-/carboxylate-directed four d10 piperazine-amide-based coordination polymers for the fluorescent detection of nitrophenol and nitroaniline in various water environments. J. Mol. Struct. 2024 1297 136929 10.1016/j.molstruc.2023.136929
    [Google Scholar]
  68. Li S. Wang B. Liu G. Li X. Sun C. Zhang Z. Wang X. Achieving ultra-trace analysis and multi-light driven photodegradation toward phenolic derivatives via a bifunctional catalyst derived from a Cu( i )-complex-modified polyoxometalate. Inorg. Chem. Front. 2024 11 5 1561 1572 10.1039/D3QI02513F
    [Google Scholar]
  69. Wu S. Min H. Shi W. Cheng P. Multicenter Metal-Organic Framework-Based Ratiometric Fluorescent Sensors. Adv. Mater. 2020 32 3 e1805871 10.1002/adma.201805871 30790371
    [Google Scholar]
  70. Sun T. Gao Y. Du Y. Zhou L. Chen X. Recent Advances in Developing Lanthanide Metal-Organic Frameworks for Ratiometric Fluorescent Sensing. Front Chem. 2021 8 624592 10.3389/fchem.2020.624592 33569372
    [Google Scholar]
  71. Wu P. Hou X. Xu J.J. Chen H.Y. Ratiometric fluorescence, electrochemiluminescence, and photoelectrochemical chemo/biosensing based on semiconductor quantum dots. Nanoscale 2016 8 16 8427 8442 10.1039/C6NR01912A 27056088
    [Google Scholar]
  72. Mu Q. Li Y. Xu H. Ma Y. Zhu W. Zhong X. Quantum dots-based ratiometric fluorescence probe for mercuric ions in biological fluids. Talanta 2014 119 564 571 10.1016/j.talanta.2013.11.036 24401456
    [Google Scholar]
  73. Wang J. Liu Y. Peng F. Chen C. He Y. Ma H. Cao L. Sun S. A general route to efficient functionalization of silicon quantum dots for high-performance fluorescent probes. Small 2012 8 15 2430 2435 10.1002/smll.201102627 22623450
    [Google Scholar]
  74. Yuan X. Lv W. Wang B. Yan C. Ma Q. Zheng B. 2021
  75. Wang H. He Y. Recent advances in silicon nanomaterial-based fluorescent sensors. Sensors (Basel) 2017 17 2 268 10.3390/s17020268 28165357
    [Google Scholar]
  76. Zhao Y. Wang X. Mi J. Jiang Y. Wang C. Metal Nanoclusters–Based Ratiometric Fluorescent Probes from Design to Sensing Applications. Part. Part. Syst. Charact. 2019 36 11 1900298 10.1002/ppsc.201900298
    [Google Scholar]
  77. Zhang L. Wang E. Metal nanoclusters: New fluorescent probes for sensors and bioimaging. Nano Today 2014 9 1 132 157 10.1016/j.nantod.2014.02.010
    [Google Scholar]
  78. Guan Y. Qu S. Li B. Zhang L. Ma H. Zhang L. Ratiometric fluorescent nanosensors for selective detecting cysteine with upconversion luminescence. Biosens. Bioelectron. 2016 77 124 130 10.1016/j.bios.2015.09.034 26402589
    [Google Scholar]
  79. Liu S. Zhang L. Yang T. Yang H. Zhang K.Y. Zhao X. Lv W. Yu Q. Zhang X. Zhao Q. Liu X. Huang W. Development of upconversion luminescent probe for ratiometric sensing and bioimaging of hydrogen sulfide. ACS Appl. Mater. Interfaces 2014 6 14 11013 11017 10.1021/am5035158 25007356
    [Google Scholar]
  80. Zhang Z. Shikha S. Liu J. Zhang J. Mei Q. Zhang Y. Upconversion Nanoprobes: Recent Advances in Sensing Applications. Anal. Chem. 2019 91 1 548 568 10.1021/acs.analchem.8b04049 30260218
    [Google Scholar]
  81. Chudakov D.M. Matz M.V. Lukyanov S. Lukyanov K.A. Fluorescent proteins and their applications in imaging living cells and tissues. Physiol. Rev. 2010 90 3 1103 1163 10.1152/physrev.00038.2009 20664080
    [Google Scholar]
  82. Tamura T. Hamachi I. Recent progress in design of protein-based fluorescent biosensors and their cellular applications. ACS Chem. Biol. 2014 9 12 2708 2717 10.1021/cb500661v 25317665
    [Google Scholar]
  83. Zhan Y. Yang S. Chen L. Zeng Y. Li L. Lin Z. Guo L. Xu W. Ultrahigh Efficient FRET Ratiometric Fluorescence Biosensor for Visual Detection of Alkaline Phosphatase Activity and Its Inhibitor. ACS Sustain. Chem.& Eng. 2021 9 38 12922 12929 10.1021/acssuschemeng.1c03830
    [Google Scholar]
  84. Li P. Liang N. Liu C. Xia L. Qu F. Song Z.L. Silver ion-regulated ratiometric fluorescence assay for alkaline phosphatase detection based on carbon dots and o-phenylenediamine. 2022 10.1016/j.saa.2022.121682
    [Google Scholar]
  85. Huang X. Chen X. Chen S. Zhang X. Wang L. Hou S. Novel ratiometric fluorescent probe for real-time detection of alkaline phosphatase and its application in living cells. 2021 10.1016/j.saa.2021.119953
    [Google Scholar]
  86. Chib R. Raut S. Fudala R. Chang A. Mummert M. Rich R. Gryczynski Z. Gryczynski I. FRET based ratio-metric sensing of hyaluronidase in synthetic urine as a biomarker for bladder and prostate cancer. Curr. Pharm. Biotechnol. 2013 14 4 470 474 10.2174/13892010113149990222 23360262
    [Google Scholar]
  87. Liu Y. Zhao H. Gao N. Yang C. Zhang R. Zhang X. An efficient FRET based theranostic nanoprobe for hyaluronidase detection and cancer therapy in vitro. Sens. Actuators B Chem. 2021 344 130201 10.1016/j.snb.2021.130201
    [Google Scholar]
  88. Yan G. Kong B. Zhao J. Ni H. Zhan L. Huang C. Zou H. Fluorescence turn-on Cu2-xSe@HA-rhodamine 6G FRET nanoprobe for hyaluronidase detection and imaging. J. Photochem. Photobiol. B 2022 233 112496 10.1016/j.jphotobiol.2022.112496 35689932
    [Google Scholar]
  89. Chib R. Mummert M. Bora I. Laursen B.W. Shah S. Pendry R. Gryczynski I. Borejdo J. Gryczynski Z. Fudala R. Fluorescent biosensor for the detection of hyaluronidase: intensity-based ratiometric sensing and fluorescence lifetime-based sensing using a long lifetime azadioxatriangulenium (ADOTA) fluorophore. Anal. Bioanal. Chem. 2016 408 14 3811 3821 10.1007/s00216‑016‑9472‑5 26993308
    [Google Scholar]
  90. Yang W. Ni J. Luo F. Weng W. Wei Q. Lin Z. Chen G. Cationic Carbon Dots for Modification-Free Detection of Hyaluronidase via an Electrostatic-Controlled Ratiometric Fluorescence Assay. Anal. Chem. 2017 89 16 8384 8390 10.1021/acs.analchem.7b01705 28730807
    [Google Scholar]
  91. Raj P. Lee S.Y. Lee T.Y. Carbon Dot/Naphthalimide Based Ratiometric Fluorescence Biosensor for Hyaluronidase Detection. Materials (Basel) 2021 14 5 1313 10.3390/ma14051313 33803381
    [Google Scholar]
  92. Hu Q. Zeng F. Wu S. A ratiometric fluorescent probe for hyaluronidase detection via hyaluronan-induced formation of red-light emitting excimers. Biosens. Bioelectron. 2016 79 776 783 10.1016/j.bios.2016.01.019 26774093
    [Google Scholar]
  93. Suo Z. Liu X. Hou X. Liu Y. Lu J. Xing F. Chen Y. Feng L. Ratiometric Assays for Acetylcholinesterase Activity and Organo‐Phosphorous Pesticide Based on Superior Carbon Quantum Dots and BLGF‐Protected Gold Nanoclusters FRET Process. ChemistrySelect 2020 5 29 9254 9260 10.1002/slct.202002042
    [Google Scholar]
  94. Zhang X.P. Xu W. Wang J.H. Shu Y. MnO2/DNAzyme-mediated ratiometric fluorescence assay of acetylcholinesterase. Analyst (Lond.) 2022 147 18 4008 4013 10.1039/D2AN01180H 36001020
    [Google Scholar]
  95. Wang M. Li N. Wang S. Chen J. Wang M. Liu L. Su X. Constructing self-assembled nanohybrids for the ratiometric fluorescent sensing of acetylcholinesterase activity. Sens. Actuators B Chem. 2021 345 130430 10.1016/j.snb.2021.130430
    [Google Scholar]
  96. Luo J. Zhang H. Guan J. An B. Peng J. Zhu W. Wei N. Zhang Y. Detection of lipase activity in human serum based on a ratiometric fluorescent probe. New J. Chem. 2021 45 21 9561 9568 10.1039/D1NJ01155C
    [Google Scholar]
  97. Breger J.C. Susumu K. Lasarte-Aragonés G. Díaz S.A. Brask J. Medintz I.L. Quantum Dot Lipase Biosensor Utilizing a Custom-Synthesized Peptidyl-Ester Substrate. ACS Sens. 2020 5 5 1295 1304 10.1021/acssensors.9b02291 32096987
    [Google Scholar]
  98. Zhang Z. Feng Q. Yang M. Tang Y. A ratiometric fluorescent biosensor based on conjugated polymers for sensitive detection of nitroreductase and hypoxia diagnosis in tumor cells. Sens. Actuators B Chem. 2020 318 128257 10.1016/j.snb.2020.128257
    [Google Scholar]
  99. Zhao Y. Zhang Z. Zou Y. Yang Y. Visualization of Nicotine Adenine Dinucleotide Redox Homeostasis with Genetically Encoded Fluorescent Sensors. Antioxid. Redox Signal. 2018 28 3 213 229 10.1089/ars.2017.7226 28648094
    [Google Scholar]
  100. Mao G. Peng W. Tian S. Zheng J. Ji X. He Z. Dual-protein visual detection using ratiometric fluorescent probe based on Rox-DNA functionalized CdZnTeS QDs. Sens. Actuators B Chem. 2019 283 755 760 10.1016/j.snb.2018.12.065
    [Google Scholar]
  101. An N. Zhang Q. Wang J. Liu C. Shi L. Liu L. Deng L. Lu Y. A new FRET-based ratiometric probe for fluorescence and colorimetric analyses of adenosine 5′-triphosphate. Polym. Chem. 2017 8 7 1138 1145 10.1039/C6PY02001A
    [Google Scholar]
  102. Shi B. Zhang Z. Jin Q. Wang Z. Tang J. Xu G. Zhu T. Gong X. Tang X. Zhao C. Selective tracking of ovarian-cancer-specific γ-glutamyltranspeptidase using a ratiometric two-photon fluorescent probe. J. Mater. Chem. B Mater. Biol. Med. 2018 6 45 7439 7443 10.1039/C8TB01735B 32254745
    [Google Scholar]
  103. Li Y. Deng B. Chen H. Yang S. Sun B. A ratiometric fluorescent probe for the detection of β-galactosidase and its application. RSC Advances 2021 11 22 13341 13347 10.1039/D1RA00739D 35423855
    [Google Scholar]
  104. Wu Y. Huang S. Zeng F. Wang J. Yu C. Huang J. Xie H. Wu S. A ratiometric fluorescent system for carboxylesterase detection with AIE dots as FRET donors. Chem. Commun. (Camb.) 2015 51 64 12791 12794 10.1039/C5CC04771D 26165151
    [Google Scholar]
  105. Poon C.Y. Li Q. Zhang J. Li Z. Dong C. Lee A.W.M. Chan W-H. Li H-W. FRET-based modified graphene quantum dots for direct trypsin quantification in urine. Anal. Chim. Acta 2016 917 64 70 10.1016/j.aca.2016.02.032 27026601
    [Google Scholar]
  106. Xu S. Zhang F. Xu L. Liu X. Ma P. Sun Y. Wang X. Song D. A fluorescence resonance energy transfer biosensor based on carbon dots and gold nanoparticles for the detection of trypsin. Sens. Actuators B Chem. 2018 273 1015 1021 10.1016/j.snb.2018.07.023
    [Google Scholar]
  107. 2022
  108. Ge J. Cai R. Yang L. Zhang L. Jiang Y. Yang Y. Cui C. Wan S. Chu X. Tan W. Core–Shell HA-AuNPs@SiNPs Nanoprobe for Sensitive Fluorescence Hyaluronidase Detection and Cell Imaging. ACS Sustain. Chem.& Eng. 2018 6 12 16555 16562 10.1021/acssuschemeng.8b03684
    [Google Scholar]
  109. Duan X. Li N. Wang G. Su X. High sensitive ratiometric fluorescence analysis of trypsin and dithiothreitol based on WS2 QDs. Talanta 2020 219 121171 10.1016/j.talanta.2020.121171 32887094
    [Google Scholar]
  110. Wei X. Hu X.X. Zhang L.L. Li J. Wang J. Wang P. Song Z. Zhang J. Yan M. Yu J. Highly selective and sensitive FRET based ratiometric two-photon fluorescent probe for endogenous β-galactosidase detection in living cells and tissues. Microchem. J. 2020 157 105046 10.1016/j.microc.2020.105046
    [Google Scholar]
  111. Fudala R. Rich R. Mukerjee A. Ranjan A.P. Vishwanatha J.K. Kurdowska A.K. Gryczynski Z. Borejdo J. Gryczynski I. Fluorescence detection of MMP-9. II. Ratiometric FRET-based sensing with dually labeled specific peptide. Curr. Pharm. Biotechnol. 2014 14 13 1134 1138 10.2174/138920101413140605111109 22339171
    [Google Scholar]
  112. Yang J. Zhang Z. Lin J. Lu J. 1773
  113. Wang Y. Xu J. Lei L. Wang F. Xu Z. Zhang W. Multi-functional carbon dots-based nanoprobe for ratiometric enzyme reaction monitoring and biothiol analysis. Sens. Actuators B Chem. 2018 264 296 303 10.1016/j.snb.2018.02.183
    [Google Scholar]
  114. Yang G.Y. Li C. Fischer M. Cairo C.W. Feng Y. Withers S.G. A FRET probe for cell-based imaging of ganglioside-processing enzyme activity and high-throughput screening. Angew. Chem. Int. Ed. Engl. 2015 54 18 5389 5393 10.1002/anie.201411747 25757223
    [Google Scholar]
  115. Song A.M. Tong Y.J. Liang R.P. Qiu J.D. A ratiometric lanthanide fluorescent probe for highly sensitive detection of alkaline phosphatase and arsenate. Microchem. J. 2021 164 106027 10.1016/j.microc.2021.106027
    [Google Scholar]
  116. Kurishita Y. Kohira T. Ojida A. Hamachi I. Rational design of FRET-based ratiometric chemosensors for in vitro and in cell fluorescence analyses of nucleoside polyphosphates. J. Am. Chem. Soc. 2010 132 38 13290 13299 10.1021/ja103615z 20812684
    [Google Scholar]
  117. Kong X. Li M. Dong B. Yin Y. Song W. Lin W. An Ultrasensitivity Fluorescent Probe Based on the ICT-FRET dual mechanisms for imaging β-galactosidase in vitro and ex vivo. Anal. Chem. 2019 91 24 15591 15598 10.1021/acs.analchem.9b03639 31726828
    [Google Scholar]
  118. Sidhu J.S. Singh A. Garg N. Singh N. Carbon Dot Based, Naphthalimide Coupled FRET Pair for Highly Selective Ratiometric Detection of Thioredoxin Reductase and Cancer Screening. ACS Appl. Mater. Interfaces 2017 9 31 25847 25856 10.1021/acsami.7b07046 28737377
    [Google Scholar]
  119. Wang M. Xie J.L. Li J. Fan Y.Y. Deng X. Duan H.L. Zhang Z-Q. 3-Aminophenyl Boronic Acid Functionalized Quantum-Dot-Based Ratiometric Fluorescence Sensor for the Highly Sensitive Detection of Tyrosinase Activity. ACS Sens. 2020 5 6 1634 1640 10.1021/acssensors.0c00122 32486639
    [Google Scholar]
  120. Mao G. Du M. Wang X. Ji X. He Z. Simple construction of ratiometric fluorescent probe for the detection of dopamine and tyrosinase by the naked eye. Analyst (Lond.) 2018 143 21 5295 5301 10.1039/C8AN01640B 30283922
    [Google Scholar]
  121. Yang X.J. Zhang K. Zhang T.T. Xu J.J. Chen H.Y. Reliable Förster Resonance Energy Transfer Probe Based on Structure-Switching DNA for Ratiometric Sensing of Telomerase in Living Cells. Anal. Chem. 2017 89 7 4216 4222 10.1021/acs.analchem.7b00267 28298082
    [Google Scholar]
  122. Zhang X. Bai Y. Jiang Y. Wang N. Yang F. Zhan L. Huang C. Homo-FRET enhanced ratiometric fluorescence strategy for exonuclease III activity detection. Anal. Methods 2021 13 12 1489 1494 10.1039/D0AY02315A 33690735
    [Google Scholar]
  123. Ohta Y. Wakita H. Kawaguchi M. Ieda N. Osada S. Nakagawa H. Ratiometric assay of CARM1 activity using a FRET-based fluorescent probe. Bioorg. Med. Chem. Lett. 2019 29 22 126728 10.1016/j.bmcl.2019.126728 31607607
    [Google Scholar]
  124. Hou L. Huang Y. Lin T. Ye F. Zhao S. A FRET ratiometric fluorescence biosensor for the selective determination of pyrophosphate ion and pyrophosphatase activity based on difunctional Cu-MOF nanozyme. 2022 10.1016/j.biosx.2021.100101
    [Google Scholar]
  125. Zhao H. Hu W. Jing J. Zhang X. One-step G-quadruplex-based fluorescence resonance energy transfer sensing method for ratiometric detection of uracil-DNA glycosylase activity. Talanta 2021 221 121609 10.1016/j.talanta.2020.121609 33076139
    [Google Scholar]
  126. Takakusa H. Kikuchi K. Urano Y. Sakamoto S. Yamaguchi K. Nagano T. Design and synthesis of an enzyme-cleavable sensor molecule for phosphodiesterase activity based on fluorescence resonance energy transfer. J. Am. Chem. Soc. 2002 124 8 1653 1657 10.1021/ja011251q 11853439
    [Google Scholar]
  127. Serrano I.C. Stoica G. Adams A.M. Palomares E. Dual core quantum dots for highly quantitative ratiometric detection of trypsin activity in cystic fibrosis patients. Nanoscale 2014 6 22 13623 13629 10.1039/C4NR03952A 25274267
    [Google Scholar]
  128. Zhao H. Liu Y. Cui J. Yang C. Gao N. Jing J. Zhang X. Enzyme-triggered DNA nanomimosa: A ratiometric nanoprobe for RNase H activity sensing in living cells. Talanta 2021 233 122547 10.1016/j.talanta.2021.122547 34215050
    [Google Scholar]
  129. Ma T. Hou Y. Zeng J. Liu C. Zhang P. Jing L. Shangguan D. Gao M. Dual-ratiometric target-triggered fluorescent probe for simultaneous quantitative visualization of tumor microenvironment protease activity and pH in vivo. J. Am. Chem. Soc. 2018 140 1 211 218 10.1021/jacs.7b08900 29237264
    [Google Scholar]
  130. Wang M. Wang M. Zhang F. Su X. A ratiometric fluorescent biosensor for the sensitive determination of α-glucosidase activity and acarbose based on N-doped carbon dots. Analyst (Lond.) 2020 145 17 5808 5815 10.1039/D0AN01065K 32672281
    [Google Scholar]
  131. Hardt N. Hacker S.M. Marx A. Synthesis and fluorescence characteristics of ATP-based FRET probes. Org. Biomol. Chem. 2013 11 48 8298 8305 10.1039/c3ob41751d 24173528
    [Google Scholar]
  132. Ma D. Bai H. Li J. Li Y. Song L. Zheng J. Miao C. A ratiometric fluorescent nanoprobe for signal amplification monitoring of intracellular telomerase activity. Anal. Bioanal. Chem. 2022 414 5 1891 1898 10.1007/s00216‑021‑03823‑5 35001192
    [Google Scholar]
  133. Wang J. Qian J. Teng Z. Cao T. Gong D. Liu W. Cao Y. Qin W. Guo H. Iqbal A. Self-Assembling Ratiometric Fluorescent Micelle Nanoprobe for Tyrosinase Detection in Living Cells. ACS Appl. Nano Mater. 2019 2 6 3819 3827 10.1021/acsanm.9b00689
    [Google Scholar]
  134. Hu J. Li W.C. Qiu J-G. Jiang B. Zhang C.Y. A multifunctional DNA nanostructure based on multicolor FRET for nuclease activity assay. Analyst (Lond.) 2020 145 18 6054 6060 10.1039/D0AN01212B 32780032
    [Google Scholar]
  135. Chen L. Sun W. Li J. Liu Z. Ma Z. Zhang W. Du L. Xu W. Fang H. Li M. The first ratiometric fluorescent probes for aminopeptidase N cell imaging. Org. Biomol. Chem. 2013 11 2 378 382 10.1039/C2OB26564H 23174889
    [Google Scholar]
/content/journals/cac/10.2174/0115734110348463241121191421
Loading
/content/journals/cac/10.2174/0115734110348463241121191421
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test