Skip to content
2000
image of A Multifunctional Cyclodextrin-based Metal-organic Material for the Visual and Selective Detection of Ag+ and Adsorption of Congo Red

Abstract

Background

The cyclodextrin-based metal-organic complex () exhibits Pb (II)-rings-based luminescence and water-stable properties. In this paper, it was successfully utilized as a multifunctional material, applied as a fluorescent probe for Ag+ and an adsorbent for Congo red.

Methods

X-ray powder diffraction analysis (PXRD), fluorescence analysis (FL), UV-Vis spectroscopy (UV-Vis), Fourier infrared spectrum (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM) and SEM X-ray energy dispersive spectrum (SEM-EDS) were employed to study and prove the mechanism AgO-involved.

Results

The fluorescence intensity clearly decreases as Ag+ solution (1 mM in HO) is added continuously. At a dose of 1.67 mM, the maximum fluorescence “turn-off” condition is reached, and at 432 nm, the fluorescence quenching percentage is almost 65%. The adsorption capacity offor Congo Red is 22.95 mg/g, with a removal rate of 71.98%. Methyl orange follows with an adsorption capacity of 7.46 mg/g and a removal rate of 22.83%. The adsorption ability of rhodamine B by is poor, the adsorption amount is 6.76 mg/g, and the removal rate is 19.75%.

Conclusion

The multifunctional is utilized as an Ag+ probe through fluorescence quenching and naked-eye detection with good sensitivity and selectivity. The max fluorescence quenching percentage is 65% with the Ag+ concentration of 1.67 mM, and the LOD is calculated to be 0.3856 mM. As an adsorbent, we found that the Congo red (anionic dyes) could be efficiently adsorbed. The adsorption performance may come from the mutual attraction of positive and negative charges, and the interaction between -OH and Congo red-NH. The kinetic results indicate that the adsorption process of on CR is more in line with the pseudo second-order kinetic fitting model and is influenced by chemical reactions.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110347004241130175426
2025-02-11
2025-03-29
Loading full text...

Full text loading...

References

  1. Xuan Y. Li X. Yan C. Wang G. Fluorescence off–on nanosensor based on MoS2 nanosheets and oligonucleotides for the alternative detection of mercury(II) ions or silver(I) ions. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023 293 122479 122486 10.1016/j.saa.2023.122479 36787675
    [Google Scholar]
  2. Dhanya V. Balaji D. Swetha A. Shri V.S. A comprehensive review of effective adsorbents used for the removal of dyes from wastewater. Curr. Anal. Chem. 2020 18 3 255 268
    [Google Scholar]
  3. Zhang Y. Wang Q. Li Y. Hu R. Bithiophene-based COFs for silver ions detection and removal. Microporous Mesoporous Mater. 2022 346 112289 112296 10.1016/j.micromeso.2022.112289
    [Google Scholar]
  4. Song Y. Wang X. Liu H. Wang X. Li D. Zhu H.L. Qian Y. A high selective colorimetric fluorescent probe for detection of silver ions in vitro and in vivo and its application on test strips. Talanta 2022 246 123366 10.1016/j.talanta.2022.123366 35477056
    [Google Scholar]
  5. Balamurugan G. Jang J.W. Park S.J. Vikneshvaran S. Park J.S. Ratiometric photothermal detection of silver ions using diimmonium salts. Talanta 2022 242 123296 123303 10.1016/j.talanta.2022.123296 35167961
    [Google Scholar]
  6. Pu Z.F. Peng J. Wen Q.L. Li Y. Ling J. Liu P. Cao Q.E. Photocatalytic synthesis of BSA-Au nanoclusters with tunable fluorescence for highly selective detection of silver ion. Dyes Pigments 2021 193 109533 109542 10.1016/j.dyepig.2021.109533
    [Google Scholar]
  7. Zhao G. Wang Q. Wang S. Zhou C.J. Zhong H. Adsorption of silver ions using an ethoxycarbonyl thiourea chelating resin. Mater. Res. Innov. 2015 19 Suppl 10 S10-350 S10-355 10.1179/1432891715Z.0000000002192
    [Google Scholar]
  8. Muhammad S. Muhammad B.T. Role of nanocatalyst(photocatalysts) for waste water treatment. Curr. Anal. Chem. 2020 17 2 138 149
    [Google Scholar]
  9. Sun N. Yan B. A reliable amplified fluorescence-enhanced chemosensor (Eu-MIL-61) for the directional detection of Ag + in an aqueous solution. Dalton Trans. 2017 46 3 875 881 10.1039/C6DT04335F 28004054
    [Google Scholar]
  10. Safavi A. Ahmadi R. Mohammadpour Z. Colorimetric sensing of silver ion based on anti aggregation of gold nanoparticles. Sensor. Actuat. Biol. Chem. 2017 242 609 615
    [Google Scholar]
  11. Khantaw T. Boonmee C. Tuntulani T. Ngeontae W. Selective turn-on fluorescence sensor for Ag+ using cysteamine capped CdS quantum dots: Determination of free Ag+ in silver nanoparticles solution. Talanta 2013 115 849 856 10.1016/j.talanta.2013.06.053 24054673
    [Google Scholar]
  12. Liu X. Yang X. Fu Y. Zhu C. Cheng Y. Novel fluorescent sensor for Ag+ and Hg2+ based on the BINOL-pyrene derivative via click reaction. Tetrahedron 2011 67 18 3181 3186 10.1016/j.tet.2011.03.024
    [Google Scholar]
  13. El-Shekheby H.A. Mangood A.H. Hamza S.M. Al-Kady A.S. Ebeid E.Z.M. A highly efficient and selective turn‐on fluorescent sensor for Hg 2+, Ag + and Ag nanoparticles based on a coumarin dithioate derivative. Luminescence 2014 29 2 158 167 10.1002/bio.2521 23703858
    [Google Scholar]
  14. Zhang M. Zhang Z. Peng Y. Feng L. Li X. Zhao C. Sarfaraz K. Novel cationic polymer modified magnetic chitosan beads for efficient adsorption of heavy metals and dyes over a wide pH range. Int. J. Biol. Macromol. 2020 156 289 301 10.1016/j.ijbiomac.2020.04.020 32289412
    [Google Scholar]
  15. Gautam D. Lal S. Hooda S. Adsorption of rhodamine 6G dye on binary system of nanoarchitectonics composite magnetic graphene oxide material. J. Nanosci. Nanotechnol. 2020 20 5 2939 2945 10.1166/jnn.2020.17442 31635631
    [Google Scholar]
  16. Topcu C. Coldur F. Andac M. Isildak I. Senyuz N. Bati H. Ag+-selective poly(vinyl chloride) Membrane Electrode Based on [N,N- ethylenebis-(3-methoxy salicylaldimine)]. Curr. Anal. Chem. 2011 7 2 136 145 10.2174/157341111794814995
    [Google Scholar]
  17. Li P.Z. Zhao Y. Nitrogen-rich porous adsorbents for CO2 capture and storage. Chem. Asian J. 2013 8 8 1680 1691 10.1002/asia.201300121 23744799
    [Google Scholar]
  18. Li H. Zhai J. Sun X. Highly sensitive and selective detection of silver(i) ion using nano-C60 as an effective fluorescent sensing platform. Analyst (Lond.) 2011 136 10 2040 2043 10.1039/c1an15050b 21442124
    [Google Scholar]
  19. Liu G. Xuan C. Feng D.Q. Hua D. Liu T. Qi G. Wang W. Dual-modal fluorescence and light-scattering sensor based on water-soluble carbon dots for silver ions detection. Anal. Methods 2017 9 38 5611 5617 10.1039/C7AY01873H
    [Google Scholar]
  20. Zhang L. Jian Y. Wang J. He C. Li X. Liu T. Duan C. Post-modification of a MOF through a fluorescent-labeling technology for the selective sensing and adsorption of Ag+ in aqueous solution. Dalton Trans. 2012 41 34 10153 10155 10.1039/c2dt30689a 22810021
    [Google Scholar]
  21. Wu Z. Feng M. Chen X. Tang X. N-dots as a photoluminescent probe for the rapid and selective detection of Hg 2+ and Ag + in aqueous solution. J. Mater. Chem. B Mater. Biol. Med. 2016 4 12 2086 2089 10.1039/C5TB02628H 32263175
    [Google Scholar]
  22. Pournaki M. Fallah A. Gülcan H.O. Gazi M. A novel chitosan based fluorescence chemosensor for selective detection of Fe (III) ion in acetic aqueous medium. Mater. Technol. 2021 36 2 91 96 10.1080/10667857.2020.1730565
    [Google Scholar]
  23. Li Y. Yu H. Shao G. Gan F. A tetraphenylethylene-based “turn on” fluorescent sensor for the rapid detection of Ag+ ions with high selectivity. J. Photochem. Photobiol. Chem. 2015 301 14 19 10.1016/j.jphotochem.2014.12.013
    [Google Scholar]
  24. Li F. Meng F. Wang Y. Zhu C. Cheng Y. Polymer-based fluorescence sensor incorporating thiazole moiety for direct and visual detection of Hg2+ and Ag+. Tetrahedron 2015 71 11 1700 1704 10.1016/j.tet.2015.01.052
    [Google Scholar]
  25. Ibrahim W.M. Saeed I.Q. Muhammad H.Y. Jabbar H.S. Aluminun oxide Nanoparticles from Aluminum door and window factory wastes for the removal of methyl green dye from wastewater: A comparative study. Curr. Anal. Chem. 2023 19 10 732 742 10.2174/0115734110281748231204062132
    [Google Scholar]
  26. Jadon N. Kour B. Bhat B.A. Sharma H.K. Green synthesis derived novel Fe2O3/ZnO nanocomposite for efficient photocatalytic degradation of methyl orange dye. Curr. Anal. Chem. 2024 20 3 162 174 10.2174/0115734110297844240119062857
    [Google Scholar]
  27. Hakami A.A.H. Wabaidur S.M. Khan M.A. AlOthman Z.A. Siddiqui M.R. Extraction procedures and analytical methods for the determination of methylene blue, rhodamine B and crystal violet - An overview. Curr. Anal. Chem. 2021 17 5 708 728 10.2174/1573411017999201125203536
    [Google Scholar]
  28. Liu C. Huang S. Yao H. He S. Lu Y. Zhao L. Zeng X. Preparation of fluorescein-based chemosensors and their sensing behaviors toward silver ions. RSC Advances 2014 4 31 16109 16114 10.1039/C3RA47392A
    [Google Scholar]
  29. Joseph J. Radhakrishnan R.C. Johnson J.K. Joy S.P. Thomas J. Ion-exchange mediated removal of cationic dye-stuffs from water using ammonium phosphomolybdate. Mater. Chem. Phys. 2020 242 122488 10.1016/j.matchemphys.2019.122488
    [Google Scholar]
  30. Jankowska K. Su Z. Zdarta J. Jesionowski T. Pinelo M. Synergistic action of laccase treatment and membrane filtration during removal of azo dyes in an enzymatic membrane reactor upgraded with electrospun fibers. J. Hazard. Mater. 2022 435 129071 10.1016/j.jhazmat.2022.129071 35650748
    [Google Scholar]
  31. Sun H. Liu Z. Liu X. Yu C. Wei L. Preparation and characterization of Ppy/Bi2MoO6 microspheres with highly photocatalytic performance for removal of highly concentrated organic dyes. Mater. Today Sustain. 2022 19 100154 10.1016/j.mtsust.2022.100154
    [Google Scholar]
  32. Xiao X.Z. Dai T.T. Guo J. Flowerlike brochantite nanoplate superstructures for catalytic wet peroxide oxidation of Congo red, ACS Appl. Nano Mater 2019 7 4159 4168
    [Google Scholar]
  33. Ihaddaden S. Aberkane D. Boukerroui A. Robert D. Removal of methylene blue (basic dye) by coagulation-flocculation with biomaterials (bentonite and Opuntia ficus indica). J. Water Process Eng. 2022 49 102952 10.1016/j.jwpe.2022.102952
    [Google Scholar]
  34. Huang S. Hu B. Zhao S. Zhang S. Wang M. Jia Q. He L. Zhang Z. Du M. Multiple catalytic sites of Fe-N and Fe-N-C single atoms embedded N-doped carbon heterostructures for high-efficiency removal of malachite green. Chem. Eng. J. 2022 430 132933 10.1016/j.cej.2021.132933
    [Google Scholar]
  35. Iqbal A. Cevik E. Bozkurt A. Asiri S.M.M. Alagha O. Qahtan T.F. Jalees M.I. Farooq M.U. Ultrahigh adsorption by regenerable iron-cobalt core-shell nanospheres and their synergetic effect on nanohybrid membranes for removal of malachite green dye. J. Environ. Chem. Eng. 2022 10 3 107968 10.1016/j.jece.2022.107968
    [Google Scholar]
  36. Ren G. Zhang Q. Li S. Fu S. Chai F. Wang C. Qu F. One pot synthesis of highly fluorescent N doped C-dots and used as fluorescent probe detection for Hg2+ and Ag+ in aqueous solution. Sensor Actuat. Biol. Chem. 2017 243 244 253
    [Google Scholar]
  37. Iqbal J. Shah N.S. Sayed M. Niazi N.K. Imran M. Khan J.A. Khan Z.U.H. Hussien A.G.S. Polychronopoulou K. Howari F. Nano-zerovalent manganese/biochar composite for the adsorptive and oxidative removal of Congo-red dye from aqueous solutions. J. Hazard. Mater. 2021 403 123854 10.1016/j.jhazmat.2020.123854 33264930
    [Google Scholar]
  38. Rouhani F. Rafizadeh-Masuleh F. Morsali A. Selective sacrificial metal–organic frameworks: A highly quantitative colorimetric naked-eye detector for aluminum ions in aqueous solutions. J. Mater. Chem. A Mater. Energy Sustain. 2019 7 31 18634 18641 10.1039/C9TA03647D
    [Google Scholar]
  39. Zhou Y. Wang S. Zhang K. Jiang X. Visual detection of copper(II) by azide- and alkyne-functionalized gold nanoparticles using click chemistry. Angew. Chem. Int. Ed. 2008 47 39 7454 7456 10.1002/anie.200802317 18698660
    [Google Scholar]
  40. Zhou Y. Zhang J. Zhou H. Zhang Q. Ma T. Niu J. A highly sensitive and selective “off–on” chemosensor for the visual detection of Pd2+ in aqueous media. Sens. Actuators B: Chem. 2012 171-172 508 514 10.1016/j.snb.2012.05.021
    [Google Scholar]
  41. Cheong V.F. Moh P.Y. Recent advancement in metal–organic framework: Synthesis, activation, functionalisation, and bulk production. Mater. Sci. Technol. 2018 34 9 1025 1045 10.1080/02670836.2018.1468653
    [Google Scholar]
  42. Cai S.L. Yang Z.C. Wu K.Y. Fan C. Zhai L.Y. Huang N.H. Li R.T. Duan W.J. Chen J.X. Experimental and computational investigation of a DNA-shielded 3D metal–organic framework for the prompt dual sensing of Ag + and S 2−. RSC Advances 2019 9 27 15424 15430 10.1039/C9RA02028D 35514810
    [Google Scholar]
  43. Koo W.T. Jang J.S. Kim I.D. Metal-organic frameworks for chemiresistive sensors. Chem 2019 5 8 1938 1963 10.1016/j.chempr.2019.04.013
    [Google Scholar]
  44. François Y. Varenne A. Juillerat E. Villemin D. Gareil P. Evaluation of chiral ionic liquids as additives to cyclodextrins for enantiomeric separations by capillary electrophoresis. J. Chromatogr. A 2007 1155 2 134 141 10.1016/j.chroma.2006.12.076 17222416
    [Google Scholar]
  45. Rajkumar T. Kukkar D. Kim K.H. Sohn J.R. Deep A. Cyclodextrin-metal–organic framework (CD-MOF): From synthesis to applications. J. Ind. Eng. Chem. 2019 72 50 66 10.1016/j.jiec.2018.12.048
    [Google Scholar]
  46. Zhang Y.M. Xu Q.Y. Liu Y. Molecular recognition and biological application of modified β-cyclodextrins. Sci. China Chem. 2019 62 5 549 560 10.1007/s11426‑018‑9405‑3
    [Google Scholar]
  47. Wei Y. Sun D. Yuan D. Liu Y. Zhao Y. Li X. Wang S. Dou J. Wang X. Hao A. Sun D. Pb(ii) metal–organic nanotubes based on cyclodextrins: Biphasic synthesis, structures and properties. Chem. Sci. (Camb.) 2012 3 7 2282 2287 10.1039/c2sc20187a
    [Google Scholar]
  48. Han S. Wei Y. Valente C. Forgan R.S. Gassensmith J.J. Smaldone R.A. Nakanishi H. Coskun A. Stoddart J.F. Grzybowski B.A. Imprinting chemical and responsive micropatterns into metal-organic frameworks. Angew. Chem. Int. Ed. 2011 50 1 276 279 10.1002/anie.201004332 21154489
    [Google Scholar]
  49. Xin X.L. Dai F.N. Li F.G. Jin X. Wang R.M. Sun D.F. A visual test paper based on Pb (ii) metal-organic nanotubes utilized as a H 2 S sensor with high selectivity and sensitivity. Anal. Methods 2017 9 21 3094 3098 10.1039/C7AY00627F
    [Google Scholar]
  50. Bian S. Shen C. Qian Y. Liu J. Dong X. Facile synthesis of sulfur-doped graphene quantum dots as fluorescent sensing probes for Ag+ ions detection. Sensor Actuat. Biol. Chem. 2017 242 231 237
    [Google Scholar]
  51. Shi W. Chen Y. Chen X. Xie Z. Hui Y. Simple-structured, hydrazinecarbothioamide derivatived dual-channel optical probe for Hg2+ and Ag+. J. Lumin. 2016 174 56 62 10.1016/j.jlumin.2016.01.032
    [Google Scholar]
  52. Yan H. Su H. Tian D. Miao F. Li H. Synthesis of triazolo-thiadiazole fluorescent organic nanoparticles as primary sensor toward Ag+ and the complex of Ag+ as secondary sensor toward cysteine. Sensor Actuat. Biol. Chem. 2011 160 656 661
    [Google Scholar]
  53. Jiao H. Zhang L. Liang Z. Peng G. Lin H. Size-controlled sensitivity and selectivity for the fluorometric detection of Ag+ by homocysteine capped CdTe quantum dots. Mikrochim. Acta 2014 181 11-12 1393 1399 10.1007/s00604‑014‑1276‑8
    [Google Scholar]
  54. Tabaraki R. Nateghi A. Nitrogen-doped graphene quantum dots: “Turn-off” fluorescent probe for detection of Ag+ ions. J. Fluoresc. 2016 26 1 297 305 10.1007/s10895‑015‑1714‑y 26553027
    [Google Scholar]
  55. Chen T. Zhu W. Xu Y. Zhang S. Zhang X. Qian X. A thioether-rich crown-based highly selective fluorescent sensor for Hg2+ and Ag+ in aqueous solution. Dalton Trans. 2010 39 5 1316 1320 10.1039/B908969A 20104358
    [Google Scholar]
  56. Wu M. Yan J.M. Ag 2 O modified gC 3 N 4 for highly efficient photocatalytic hydrogen generation under visible light irradiation. J. Mater. Chem. 2015 3 15710 15714 10.1039/C5TA03358F
    [Google Scholar]
  57. Wu M. Yan J.M. Zhao M. Jiang Q. Facile synthesis of an Ag2O–ZnO nanohybrid and its high photocatalytic activity. ChemPlusChem 2015 77 10 931 935 10.1002/cplu.201200159
    [Google Scholar]
  58. Lu X. Qin M. Wang Y. Zhou J. Zhu Q. Peng P. Zhang Y. Wu H. Strong terahertz emission from copper oxides/silver micro thin film deposited on nanoparticles aggregation substrate. Appl. Surf. Sci. 2020 508 145219 10.1016/j.apsusc.2019.145219
    [Google Scholar]
  59. Skinner W.M. Qian G. Buckley A.N. Electronic environments in Ni3Pb2S2 (shandite) and its initial oxidation in air. J. Solid State Chem. 2013 206 32 37 10.1016/j.jssc.2013.07.023
    [Google Scholar]
  60. Yuan C. Jin Z. Xu X. Inclusion complex of astaxanthin with hydroxypropyl-β-cyclodextrin: UV, FTIR, 1H NMR and molecular modeling studies. Carbohydr. Polym. 2012 89 2 492 496 10.1016/j.carbpol.2012.03.033 24750749
    [Google Scholar]
  61. Patel J. Mighri F. Ajji A. Tiwari D. Chaudhuri T.K. Spin-coating deposition of PbS and CdS thin films for solar cell application. Appl. Phys. Adv. Mater. 2014 117 1791 1799
    [Google Scholar]
  62. Li H.W. Yue Y. Liu T.Y. Li D. Wu Y. Fluorescence-enhanced sensing mechanism of BSA-protected small gold-nanoclusters to silver (I) ions in aqueous solutions. J. Phys. Chem. C 2013 117 31 16159 16165 10.1021/jp403466b
    [Google Scholar]
  63. Singha D.K. Majee P. Mondal S.K. Mahata P. A Eu‐doped Y‐based luminescent metal-organic framework as a highly efficient sensor for nitroaromatic explosives. Eur. J. Inorg. Chem. 2015 2015 8 1390 1397 10.1002/ejic.201403097
    [Google Scholar]
  64. Zhang L. Kang Z. Xin X. Sun D. Metal-organic frameworks based luminescent materials for nitroaromatics sensing. CrystEngComm 2016 18 2 193 206 10.1039/C5CE01917F
    [Google Scholar]
  65. Li W. Mu B. Yang Y. Feasibility of industrial-scale treatment of dye wastewater via bio-adsorption technology. Bioresour. Technol. 2019 277 157 170 10.1016/j.biortech.2019.01.002 30638884
    [Google Scholar]
  66. Soltani R. Pelalak R. Pishnamazi M. Marjani A. Shirazian S. A water-stable functionalized NiCo-LDH/MOF nanocomposite: Green synthesis, characterization, and its environmental application for heavy metals adsorption. Arab. J. Chem. 2021 14 4 103052 10.1016/j.arabjc.2021.103052
    [Google Scholar]
  67. Jawad A.H. Saud Abdulhameed A. Wilson L.D. Syed-Hassan S.S.A. ALOthman Z.A. Rizwan Khan M. High surface area and mesoporous activated carbon from KOH-activated dragon fruit peels for methylene blue dye adsorption: Optimization and mechanism study. Chin. J. Chem. Eng. 2021 32 281 290 10.1016/j.cjche.2020.09.070
    [Google Scholar]
  68. Feng Y. Wang H. Xu J. Du X. Cheng X. Du Z. Wang H. Fabrication of MXene/PEI functionalized sodium alginate aerogel and its excellent adsorption behavior for Cr(VI) and Congo Red from aqueous solution. J. Hazard. Mater. 2021 416 125777 10.1016/j.jhazmat.2021.125777 33839501
    [Google Scholar]
  69. Liu Z. Gao B. Han H. Li Y. Fu H. Wei D. A green cross-linking method for the preparation of renewable three-dimensional graphene sponges for efficient adsorption of Congo red dye. Chin. J. Chem. Eng. 2024 66 84 93 10.1016/j.cjche.2023.12.004
    [Google Scholar]
  70. Li M. Zhao L. Zhang Y. Liu M. Ye H. Zhang Y. Chen X. Adsorption behavior and self-aggregation of 5,10,15,20-tetrakis-(4-sulfonatophenyl)-porphyrin on quaternized polysulfone membrane. Colloid Polym. Sci. 2015 293 2 513 522 10.1007/s00396‑014‑3438‑y
    [Google Scholar]
/content/journals/cac/10.2174/0115734110347004241130175426
Loading
/content/journals/cac/10.2174/0115734110347004241130175426
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test