Skip to content
2000
image of Characterization of the Chemical Components of Pedicularis kansuensis Maxim Using Ultra-high-performance Liquid Chromatography Coupled to Quadrupole‐Time‐of‐Flight Tandem Mass Spectrometry

Abstract

Background

Maxim. is a commonly used Tibetan medicine that has been used for a long time to clear heat and detoxify, remove dampness and diuresis, treat sores, and nourish. It has favorable biological activities such as anti-inflammatory, antioxidant, and anti-fatigue. However, to date, only a handful of studies have utilized traditional separation and purification methods to investigate the chemical constituents of Maxim. This scarcity of comprehensive and systematic research on its chemical composition impedes the further exploration of its biological activity and clinical applications.

Objective

It is imperative to develop an effective, dependable, and expeditious methodology for the systematic analysis and comprehensive characterization of the diverse chemical constituents found in Maxim through cracking pathways and patterns.

Methods

This study used negative ion mode UHPLC-QTOF-MS/MS and 8 reference standards to comprehensively investigate the collision-induced dissociation tandem mass spectrometry (CID-MS/MS) fragmentation pathway of chemical components in Maxim. A method based on ultra-high performance liquid chromatography and quadrupole time-of-flight mass spectrometry combined with data analysis software was established for screening and identifying targeted and non-targeted components of Maxim.

Results

A total of 150 compounds were identified in Maxim, including 43 acylglucoside, 36 iridoid glycosides, 19 lignans, 41 flavonoids, and 11 other compounds.

Conclusion

This research has meticulously crafted an efficient and comprehensive methodology for the detection of intricate compounds. It has been successfully implemented in the analysis and identification of chemical constituents within Maxim, thereby laying a solid foundation for further in-depth exploration of this species. Moreover, this work serves as a valuable reference for the study of other traditional Chinese medicinal herbs.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110346855241225104655
2025-03-06
2025-04-02
Loading full text...

Full text loading...

References

  1. Frezza C. Venditti A. Toniolo C. Vita D.D. Serafini I. Ciccòla A. Franceschin M. Ventrone A. Tomassini L. Foddai S. Guiso M. Nicoletti M. Bianco A. Serafini M. Pedicularis L. Genus: Systematics, botany, phytochemistry, chemotaxonomy, ethnopharmacology, and other. Plants 2019 8 9 306 10.3390/plants8090306 31461963
    [Google Scholar]
  2. Hu J. Li K. Deng C. Gong Y. Liu Y. Wang L. Seed germination ecology of semiparasitic weed Pedicularis kansuensis in alpine grasslands. Plants 2022 11 13 1777 10.3390/plants11131777 35807730
    [Google Scholar]
  3. Wang T. Li X. Tang C. Cao Z. He H. Ma X. Li Y. De K. Complete chloroplast genomes and phylogenetic relationships of Pedicularis chinensis and Pedicularis kansuensis. Sci. Rep. 2024 14 1 14357 10.1038/s41598‑024‑63815‑0 38906909
    [Google Scholar]
  4. Xiang L. Li Y. Sui X. Li A. Fast and abundant in vitro spontaneous haustorium formation in root hemiparasitic plant Pedicularis kansuensis Maxim. (Orobanchaceae). Plant Divers. 2018 40 5 226 231 10.1016/j.pld.2018.07.005 30740568
    [Google Scholar]
  5. Sui X. Kuss P. Li W. Yang M. Guan K. Li A. Identity and distribution of weedy Pedicularis kansuensis Maxim. (Orobanchaceae) in Tianshan Mountains of Xinjiang: Morphological, anatomical and molecular evidence. J. Arid Land 2016 8 3 453 461 10.1007/s40333‑016‑0004‑0
    [Google Scholar]
  6. Li W.J. Sui X.L. Kuss P. Liu Y.Y. Li A.R. Guan K.Y. Long-distance dispersal after the Last Glacial Maximum (LGM) led to the disjunctive distribution of Pedicularis kansuensis (Orobanchaceae) between the Qinghai-Tibetan Plateau and Tianshan region. PLoS One 2016 11 11 e0165700 10.1371/journal.pone.0165700 27806090
    [Google Scholar]
  7. Zhang B. Shi K. Liao Z. Dai Y. Zou Z. Phenylpropanoid glycosides and triterpenoid of Pedicularis kansuensis Maxim. Fitoterapia 2011 82 6 854 860 10.1016/j.fitote.2011.04.005 21570452
    [Google Scholar]
  8. Yin J.G. Yuan C.S. Jia Z.J. A new iridoid and other chemical constituents from Pedicularis kansuensis formaalbiflora Li. Arch. Pharm. Res. 2007 30 4 431 435 10.1007/BF02980216 17489358
    [Google Scholar]
  9. Ma B. Yang S. Li J. Ouyang H. He M. Feng Y. Tan T. A four‐step filtering strategy based on ultra‐high‐performance liquid chromatography coupled to quadrupole‐time‐of‐flight tandem mass spectrometry for comprehensive profiling the major chemical constituents of Akebiae Fructus. Rapid Commun. Mass Spectrom. 2019 33 18 1464 1474 10.1002/rcm.8480 31074056
    [Google Scholar]
  10. Yu Y. Yao C. Guo D. Insight into chemical basis of traditional Chinese medicine based on the state-of-the-art techniques of liquid chromatography−mass spectrometry. Acta Pharm. Sin. B 2021 11 6 1469 1492 10.1016/j.apsb.2021.02.017 34221863
    [Google Scholar]
  11. Ma J. Li K. Shi S. Li J. Tang S. Liu L. The application of uhplc-hrms for quality control of traditional chinese medicine. Front. Pharmacol. 2022 13 922488 10.3389/fphar.2022.922488 35721122
    [Google Scholar]
  12. Yang M. Li J. Zhao C. Xiao H. Fang X. Zheng J. LC-Q-TOF-MS/MS detection of food flavonoids: Principle, methodology, and applications. Crit. Rev. Food Sci. Nutr. 2023 63 19 3750 3770 10.1080/10408398.2021.1993128 34672231
    [Google Scholar]
  13. Ren D. Ran L. Yang C. Xu M. Yi L. Integrated strategy for identifying minor components in complex samples combining mass defect, diagnostic ions and neutral loss information based on ultra-performance liquid chromatography-high resolution mass spectrometry platform: Folium Artemisiae Argyi as a case study. J. Chromatogr. A 2018 1550 35 44 10.1016/j.chroma.2018.03.044 29602544
    [Google Scholar]
  14. Yao M. Li J. He M. Ouyang H. Ruan L. Huang X. Rao Y. Yang S. Zhou X. Bai J. Investigation and identification of the multiple components of Rheum officinale Baill. using ultra‐high‐performance liquid chromatography coupled with quadrupole‐time‐of‐flight tandem mass spectrometry and data mining strategy. J. Sep. Sci. 2021 44 3 681 690 10.1002/jssc.202000735 33251660
    [Google Scholar]
  15. Yao M. Li A. Yang Y. Xu Z. Yuan M. Ouyang H. He M. Feng Y. Yang S. Li J. Comprehensive identification strategy for rapid profiling of chemical constituents using ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry with Rhubarb as an example. J. Chromatogr. A 2024 1730 465094 10.1016/j.chroma.2024.465094 38889584
    [Google Scholar]
  16. Wang C. Gong X. Bo A. Zhang L. Zhang M. Zang E. Zhang C. Li M. Iridoids: Research advances in their phytochemistry, biological activities, and pharmacokinetics. Molecules 2020 25 2 287 10.3390/molecules25020287 31936853
    [Google Scholar]
  17. Liu Z.H. Wang Y.Q. Mei X.D. Wang F. Yang X.Z. Li X.D. Jiang F. Zhang J.Y. Comprehensive analysis of the chemical constituents in sulfur-fumigated Lonicerae Japonicae Flos using UHPLC-LTQ-Orbitrap mass spectrometry. Chin. J. Nat. Med. 2020 18 2 148 160 10.1016/S1875‑5364(20)30015‑7 32172950
    [Google Scholar]
  18. Bai J. Jing X. Yang Y. Wang X. Feng Y. Ge F. Li J. Yao M. Comprehensive profiling of chemical composition of Gleditsiae spina using ultra‐high‐performance liquid chromatography coupled with electrospray ionization quadrupole time‐of‐flight mass spectrometry. Rapid Commun. Mass Spectrom. 2023 37 6 e9467 10.1002/rcm.9467 36594178
    [Google Scholar]
  19. Yang S. Zhang X. Dong Y. Sun G. Jiang A. Li Y. Cleavage rules of mass spectrometry fragments and rapid identification of chemical components of Radix Paeoniae Alba using UHPLC‐Q‐TOF‐MS. Phytochem. Anal. 2021 32 5 836 849 10.1002/pca.3029 33503685
    [Google Scholar]
  20. Mei Y. Wei L. Tan M. Wang C. Zou L. Chen J. Cai Z. Yin S. Zhang F. Shan C. Liu X. Qualitative and quantitative analysis of the major constituents in Spatholobi Caulis by UFLC-Triple TOF-MS/MS and UFLC-QTRAP-MS/MS. J. Pharm. Biomed. Anal. 2021 194 113803 10.1016/j.jpba.2020.113803 33317912
    [Google Scholar]
  21. He M. Jia J. Li J. Wu B. Huang W. Liu M. Li Y. Yang S. Ouyang H. Feng Y. Application of characteristic ion filtering with ultra-high performance liquid chromatography quadrupole time of flight tandem mass spectrometry for rapid detection and identification of chemical profiling in Eucommia ulmoides Oliv. J. Chromatogr. A 2018 1554 81 91 10.1016/j.chroma.2018.04.036 29685335
    [Google Scholar]
/content/journals/cac/10.2174/0115734110346855241225104655
Loading
/content/journals/cac/10.2174/0115734110346855241225104655
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test