Skip to content
2000
image of Tetrafunctionalized Azocalix[4]resorcinarene Dye: A Chromogenic Supramolecule Used for the Selective Liquid-Liquid Extraction and Spectrophotometric Determination of Cu(II)

Abstract

Background

The detection and extraction of trace metal ions, particularly copper(II), are critical for environmental monitoring and industrial processes. Calixresorcinarene, with its unique cavity structure, offers excellent platforms for designing selective chemosensors and extractants. Functionalization of calixresorcinarene with azo groups can enhance their chromogenic properties, enabling both extraction and detection in a single step.

Objective

This study aimed to evaluate its (Azocalix[4]resorcinaren) efficacy as a selective chemosensor for the liquid-liquid extraction and spectrophotometric determination of Cu(II) ions.

Methods: Application in Extraction and Detection

The ability of the dye to selectively extract Cu(II) ions from aqueous solutions was investigated liquid-liquid extraction experiments. The dye-Cu(II) complex formation was monitored by UV-Vis spectrophotometry, with systematic optimization of experimental conditions, including pH, solvent system, and extraction duration.

Results

The synthesized azocalix[4]resorcinarene dye exhibited a pronounced selectivity towards Cu(II) ions, forming a stable, colored complex. The complexation induced a distinct bathochromic shift in the absorption spectrum, allowing for precise spectrophotometric detection. Optimal extraction was achieved at a specific pH and solvent combination, with the method demonstrating a low detection limit and high sensitivity. The dye showed minimal interference from other metal ions, confirming its selectivity for Cu(II).

Conclusion

The tetrafunctionalized azocalix[4]resorcinarene dye is a highly effective chromogenic agent for the selective extraction and detection of Cu(II) ions. Its robust performance in both extraction efficiency and spectrophotometric detection underscores its potential utility in environmental analysis and industrial applications where trace metal detection is crucial.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110346665241016094729
2024-10-25
2025-06-23
Loading full text...

Full text loading...

References

  1. Atwood J.L. Steed J.W. Encyclopedia of Supramolecular Chemistry. 1st ed Boca Raton CRC Press 2004
    [Google Scholar]
  2. Jain V.K. Pandya R.A. Pillai S.G. Agrawal Y.K. Kanaiya P.H. Solid-phase extractive preconcentration and separation of lanthanum(III) and cerium(III) using a polymer-supported chelating calix [4] arene resin. J. Anal. Chem. 2007 62 2 104 112 10.1134/S1061934807020025
    [Google Scholar]
  3. Mandalia H.C. Jain V.K. Prodigious azocalix[4] pyrrole super-molecule: Effective reagent for liquid-liquid extraction, preconcentration and transport of Cu(II) ions. Adv. Anal. Chem. 2011 1 1 7
    [Google Scholar]
  4. Gutsche C.D. Calixarenes revisited in. Monographs in Supramolecular Chemistry. Stoddart J.F. London Royal Society of Chemistry 1998
    [Google Scholar]
  5. Jain V.K. Kanaiya P.H. Chemistry of calix[4]resorcinarenes. Russ. Chem. Rev. 2011 80 1 75 102 10.1070/RC2011v080n01ABEH004127
    [Google Scholar]
  6. Song Y. Pei W-Y. Zhang J-Y. Xiao Y. A ca-lix[4]resorcinarene-copper(II) based supramolecular nanocapsule with encapsulated polyoxometalates for en-hanced photocatalytic activity. ACS Appl. Nano Mater. 2023 6 11902 11911
    [Google Scholar]
  7. Karcı F. Azocalixarenes. 1: Synthesis, characterization and investigation of the absorption spectra of substituted azo-calix[4]arenes. Dyes Pigments 2003 59 1 53 61 10.1016/S0143‑7208(03)00095‑0
    [Google Scholar]
  8. Karcı F. Şener İ. Deligöz H. Azocalixarenes. 2: Synthesis, characterization and investigation of the absorption spectra of azocalix[6]arenes containing chromogenic groups. Dyes Pigments 2004 62 2 131 140 10.1016/j.dyepig.2003.11.017
    [Google Scholar]
  9. Sliwa W. Zujewska T. Bachowska B. Resorcinarenes. Pol. J. Chem. 2003 34 1079 1082
    [Google Scholar]
  10. Makwana B.A. Bhatt K. Vyas D. Gupte H.S. Jain V.K. Synthesis, characterisation, binding behaviour and antimicro-bial activity of azocalix [4] resorcine dye derived from 8-aminoquinoline. Sch. Acad. J. Pharm. 2014 3 463 470
    [Google Scholar]
  11. He L. Li L. Wang S.C. Chan Y.T. Sequential self-assembly of calix[4]resorcinarene-based heterobimetallic Cd 8 Pt 8 nano-Saturn complexes. Chem. Commun. (Camb.) 2023 59 77 11500 11503 10.1039/D3CC03414C 37622211
    [Google Scholar]
  12. Jain V.K. Pillai S.G. Kanaiya P.H. Octafunctionalized ca-lix[4]resorcinarene-N-fenil-acetohydroxamic acid for the sep-aration, preconcentration and transport studies of cerium(IV). J. Braz. Chem. Soc. 2006 17 7 1316 1322 10.1590/S0103‑50532006000700018
    [Google Scholar]
  13. Liu J.L. Zhang P.Z. Jia A.Q. Shi H.T. Zhang Q.F. Su-pramolecular assemblies of sulfonatomethylated ca-lix[4]resorcinarenes with aquated sodium(I), cesium(I), and aluminum(III) ions. ChemistrySelect 2022 7 1 e202104118 10.1002/slct.202104118
    [Google Scholar]
  14. Bohmer V. Calixarenes: A Versatile Class of Macrocyclic Compounds. Dordrecht Kluwer Academic Publishers 1991
    [Google Scholar]
  15. Jain V.K. Pillai S.G. Kanaiya P.H. Synthesis of ca-lix[4]resorcinarene based dyes and its application in dyeing of fibres. E-J. Chem. 2008 5 1037 1047
    [Google Scholar]
  16. Timmerman P. Verboom W. Reinhoudt D.N. Resorcina-renes. Tetrahedron 1996 52 8 2663 2704 10.1016/0040‑4020(95)00984‑1
    [Google Scholar]
  17. Poleska-Muchlado Z. Luboch E. Biernat J.F. Novel ca-lix[4]resorcinarenes with side azobenzo-15-crown-5 residues. Synth. Commun. 2008 38 18 3062 3067 10.1080/00397910802044298
    [Google Scholar]
  18. Freemantle M.H. Chemistry in Action. London Macmillan Education Ltd. 1989
    [Google Scholar]
  19. Khalifa M.E. Akl M.A. Ghazy S.E.S. Selective flotation-spectrophotometric determination of trace copper(II) in natu-ral waters, human blood and drug samples using phenanthra-quinone monophenylthiosemicarbazone. Chem. Pharm. Bull. (Tokyo) 2001 49 6 664 668 10.1248/cpb.49.664 11411513
    [Google Scholar]
  20. Sawyer C.N. McCarty P.L. Parkin G.F. Chemistry for Envi-ronmental Engineering. 4th ed New York McGraw-Hill 1996
    [Google Scholar]
  21. Ghazy S.E.S. Samra S.E.S. Mahdy A.E.F.M. El-Morsy S.M. Flotation-separation of aluminum from some water samples using powdered marble waste and oleic acid. Anal. Sci. 2003 19 10 1401 1406 10.2116/analsci.19.1401 14596406
    [Google Scholar]
  22. Kanaiya P.H. Pania R. Monitoring and studying the effect of aquatic plants of the chemical profile of water sample. Zeichen J. 2022 8 9 78 86
    [Google Scholar]
  23. Di J. Wu Y. Ma Y. A novel spectrophotometric determina-tion of trace copper based on charge transfer complex. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2005 61 5 937 941 10.1016/j.saa.2004.04.021 15683800
    [Google Scholar]
  24. Yaman M. Akdeniz I. Sensitivity enhancement in flame atomic absorption spectrometry for determination of copper in human thyroid tissues. Anal. Sci. 2004 20 9 1363 1366 10.2116/analsci.20.1363 15478350
    [Google Scholar]
  25. Cabon J.Y. Determination of Cu and Mn in seawater by graphite furnace atomic absorption spectrometry with the use of hydrofluoric acid as a chemical modifier. Spectrochim. Acta B At. Spectrosc. 2002 57 5 939 950 10.1016/S0584‑8547(02)00025‑3
    [Google Scholar]
  26. Ioannidou M.D. Zachariadis G.A. Anthemidis A.N. Stra-tis J.A. Direct determination of toxic trace metals in honey and sugars using inductively coupled plasma atomic emission spectrometry. Talanta 2005 65 1 92 97 18969769
    [Google Scholar]
  27. Kowalewska Z. Ruszczyńska A. Bulska E. Cu determina-tion in crude oil distillation products by atomic absorption and inductively coupled plasma mass spectrometry after ana-lyte transfer to aqueous solution. Spectrochim. Acta B At. Spectrosc. 2005 60 3 351 359 10.1016/j.sab.2005.02.002
    [Google Scholar]
  28. Kim H. Choi H.S. Spectrofluorimetric determination of copper(II) by its static quenching effect on the fluorescence of 4,5-dihydroxy-1,3-benzenedisulfonic acid. Talanta 2001 55 1 163 169 10.1016/S0039‑9140(01)00405‑2 18968358
    [Google Scholar]
  29. Brainina K.Z. Stozhko N.Y. Belysheva G.M. Inzhevatova O.V. Kolyadina L.I. Cremisini C. Galletti M. Determina-tion of heavy metals in wines by anodic stripping voltamme-try with thick-film modified electrode. Anal. Chim. Acta 2004 514 2 227 234 10.1016/j.aca.2004.03.047
    [Google Scholar]
  30. Lu C. Lin J.M. Huie C.W. Yamada M. Simultaneous de-termination of copper(II) and cobalt(II) by ion chromatog-raphy coupled with chemiluminescent detection. Anal. Sci. 2003 19 4 557 563 10.2116/analsci.19.557 12725391
    [Google Scholar]
  31. Göksungur Y. Uren S. Güvenç U. Biosorption of cadmium and lead ions by ethanol treated waste baker’s yeast biomass. Bioresour. Technol. 2005 96 1 103 109 10.1016/j.biortech.2003.04.002 15364087
    [Google Scholar]
  32. Kim J. Flocculation to enhance microfiltration. J. Membr. Sci. 2001 182 1-2 161 172 10.1016/S0376‑7388(00)00564‑0
    [Google Scholar]
  33. Blöcher C. Dorda J. Mavrov V. Chmiel H. Lazaridis N.K. Matis K.A. Hybrid flotation—membrane filtration pro-cess for the removal of heavy metal ions from wastewater. Water Res. 2003 37 16 4018 4026 10.1016/S0043‑1354(03)00314‑2 12909122
    [Google Scholar]
  34. Ma Q. Ma H. Su M. Wang Z. Nie L. Liang S. Determi-nation of nickel by a new chromogenic azocalix[4]arene. Anal. Chim. Acta 2001 439 1 73 79 10.1016/S0003‑2670(01)01009‑1
    [Google Scholar]
  35. Kim T.H. Kim J.S. Kim H. Spectrophotometric and elec-trochemical study of Cu2+ -selective azocalix[4]arene bearing p-carboxyl group. Bull. Korean Chem. Soc. 2013 34 11 3377 3380 10.5012/bkcs.2013.34.11.3377
    [Google Scholar]
  36. Moradi M. Zarabi S. Heydari R. Spectrophotometric de-termination of trace amounts of Sb(III) and Sb(V) in water and biological samples by in-tube dispersive liquid–liquid microextraction and air-assisted liquid–liquid microextrac-tion. Chem. Zvesti 2021 75 12 6499 6508 10.1007/s11696‑021‑01818‑1
    [Google Scholar]
  37. Mohebbi M. Heydari R. Ramezani M. Determination of Cu, Cd, Ni, Pb and Zn in edible oils using reversed-phase ul-trasonic assisted liquid–liquid microextraction and flame atomic absorption spectrometry. J. Anal. Chem. 2018 73 1 30 35 10.1134/S1061934818010069
    [Google Scholar]
  38. Ashram M. Synthesis and extraction properties of new chromogenic azo-calix[4]dibenzothiacrown ethers. J. Incl. Phenom. Macrocycl. Chem. 2007 59 3-4 315 321 10.1007/s10847‑007‑9330‑3
    [Google Scholar]
  39. Dong Y. Kim T.H. Kim H.J. Lee M.H. Lee S.Y. Maha-jan R.K. Kim H. Kim J.S. Spectroscopic and electrochemi-cal studies of two distal diethyl ester azocalix[4]arene deriva-tives. J. Electroanal. Chem. (Lausanne) 2009 628 1-2 119 124 10.1016/j.jelechem.2009.01.015
    [Google Scholar]
  40. Kumar P. Shim Y. A novel cobalt(II)-selective potentiom-etric sensor based on p-(4-n-butylphenylazo)calix[4]arene. Talanta 2009 77 3 1057 1062 10.1016/j.talanta.2008.08.003 19064091
    [Google Scholar]
  41. Jeffery G.H. Bassett J. Mendham J. Denney R.C. Vogel’s Textbook of Chemical Analysis. 5th ed New York John Wiley and Sons 1989
    [Google Scholar]
  42. Marczenko Z. Spectrophotometric Determination of Elements. Chichester Ellis- Horwood Ltd. 1976
    [Google Scholar]
  43. Dean J.A. Lange’s Handbook of Chemistry. 15th ed New York, St. Louis, San Francisco McGraw-Hill, Inc. 1999
    [Google Scholar]
  44. Jain V.K. Kanaiya P.H. Bhojak N. Synthesis, spectral char-acterization of azo dyes derived from calix[4]resorcinarene and their application in dyeing of fibers. Fibers Polym. 2008 9 6 720 726 10.1007/s12221‑008‑0113‑2
    [Google Scholar]
  45. Jain V.K. Kanaiya P.H. Diazo reductive: A new approach to the synthesis of novel “upper rim” functionalized resor-cin[4]arene Schiff-bases. J. Incl. Phenom. Macrocycl. Chem. 2008 62 1-2 111 115 10.1007/s10847‑008‑9445‑1
    [Google Scholar]
  46. Jain V.K. Pillai S.G. Pandya R.A. Agrawal Y.K. Shrivastav P.S. Molecular octopus: Octa functionalized ca-lix[4]resorcinarene-hydroxamicacid [C4RAHA] for selective extraction, separation and preconcentration of U(VI). Talanta 2005 65 446 10.1016/j.talanta.2004.06.033
    [Google Scholar]
  47. Jain V.K. Pillai S.G. Pandya R.A. Agrawal Y.K. Shrivastav P.S. Selective extraction, preconcentration and transport studies of thorium(IV) using octa-functionalized ca-lix[4]resorcinarene-hydroxamic acid. Anal. Sci. 2005 21 2 129 135 10.2116/analsci.21.129 15732472
    [Google Scholar]
/content/journals/cac/10.2174/0115734110346665241016094729
Loading
/content/journals/cac/10.2174/0115734110346665241016094729
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test