Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Background

The detection and extraction of trace metal ions, particularly copper(II), are critical for environmental monitoring and industrial processes. Calixresorcinarene, with its unique cavity structure, offers excellent platforms for designing selective chemosensors and extractants. Functionalization of calixresorcinarene with azo groups can enhance their chromogenic properties, enabling both extraction and detection in a single step.

Objective

This study aimed to evaluate its (Azocalix[4]resorcinaren) efficacy as a selective chemosensor for the liquid-liquid extraction and spectrophotometric determination of Cu(II) ions.

Methods: Application in Extraction and Detection

The ability of the dye to selectively extract Cu(II) ions from aqueous solutions was investigated liquid-liquid extraction experiments. The dye-Cu(II) complex formation was monitored by UV-Vis spectrophotometry, with systematic optimization of experimental conditions, including pH, solvent system, and extraction duration.

Results

The synthesized azocalix[4]resorcinarene dye exhibited a pronounced selectivity towards Cu(II) ions, forming a stable, colored complex. The complexation induced a distinct bathochromic shift in the absorption spectrum, allowing for precise spectrophotometric detection. Optimal extraction was achieved at a specific pH and solvent combination, with the method demonstrating a low detection limit and high sensitivity. The dye showed minimal interference from other metal ions, confirming its selectivity for Cu(II).

Conclusion

The tetrafunctionalized azocalix[4]resorcinarene dye is a highly effective chromogenic agent for the selective extraction and detection of Cu(II) ions. Its robust performance in both extraction efficiency and spectrophotometric detection underscores its potential utility in environmental analysis and industrial applications where trace metal detection is crucial.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110346665241016094729
2024-10-25
2026-02-20
Loading full text...

Full text loading...

References

  1. AtwoodJ.L. SteedJ.W. Encyclopedia of Supramolecular Chemistry.1st edBoca RatonCRC Press2004
    [Google Scholar]
  2. JainV.K. PandyaR.A. PillaiS.G. AgrawalY.K. KanaiyaP.H. Solid-phase extractive preconcentration and separation of lanthanum(III) and cerium(III) using a polymer-supported chelating calix[4]arene resin.J. Anal. Chem.200762210411210.1134/S1061934807020025
    [Google Scholar]
  3. MandaliaH.C. JainV.K. Prodigious azocalix[4] pyrrole super-molecule: Effective reagent for liquid-liquid extraction, preconcentration and transport of Cu(II) ions.Adv. Anal. Chem.2011117
    [Google Scholar]
  4. GutscheC.D. Calixarenes revisited in. In: Monographs in Supramolecular Chemistry. StoddartJ.F. LondonRoyal Society of Chemistry1998
    [Google Scholar]
  5. JainV.K. KanaiyaP.H. Chemistry of calix[4]resorcinarenes.Russ. Chem. Rev.20118017510210.1070/RC2011v080n01ABEH004127
    [Google Scholar]
  6. SongY. PeiW-Y. ZhangJ-Y. XiaoY. A calix[4]resorcinarene-copper(II) based supramolecular nanocapsule with encapsulated polyoxometalates for enhanced photocatalytic activity.ACS Appl. Nano Mater.202361190211911
    [Google Scholar]
  7. KarcıF. Azocalixarenes. 1: Synthesis, characterization and investigation of the absorption spectra of substituted azocalix[4]arenes.Dyes Pigments2003591536110.1016/S0143‑7208(03)00095‑0
    [Google Scholar]
  8. KarcıF. Şenerİ. DeligözH. Azocalixarenes. 2: Synthesis, characterization and investigation of the absorption spectra of azocalix[6]arenes containing chromogenic groups.Dyes Pigments200462213114010.1016/j.dyepig.2003.11.017
    [Google Scholar]
  9. SliwaW. ZujewskaT. BachowskaB. Resorcinarenes.Pol. J. Chem.20033410791082
    [Google Scholar]
  10. MakwanaB.A. BhattK. VyasD. GupteH.S. JainV.K. Synthesis, characterisation, binding behaviour and antimicrobial activity of azocalix[4]resorcine dye derived from 8-aminoquinoline.Sch. Acad. J. Pharm.20143463470
    [Google Scholar]
  11. HeL. LiL. WangS.C. ChanY.T. Sequential self-assembly of calix[4]resorcinarene-based heterobimetallic Cd 8 Pt 8 nano-Saturn complexes.Chem. Commun. (Camb.)20235977115001150310.1039/D3CC03414C 37622211
    [Google Scholar]
  12. JainV.K. PillaiS.G. KanaiyaP.H. Octafunctionalized calix[4]resorcinarene-N-fenil-acetohydroxamic acid for the separation, preconcentration and transport studies of cerium(IV).J. Braz. Chem. Soc.20061771316132210.1590/S0103‑50532006000700018
    [Google Scholar]
  13. LiuJ.L. ZhangP.Z. JiaA.Q. ShiH.T. ZhangQ.F. Supramolecular assemblies of sulfonatomethylated calix[4]resorcinarenes with aquated sodium(I), cesium(I), and aluminum(III) ions.ChemistrySelect202271e20210411810.1002/slct.202104118
    [Google Scholar]
  14. BohmerV. Calixarenes: A Versatile Class of Macrocyclic Compounds.DordrechtKluwer Academic Publishers1991
    [Google Scholar]
  15. JainV.K. PillaiS.G. KanaiyaP.H. Synthesis of calix[4]resorcinarene based dyes and its application in dyeing of fibres.E-J. Chem.2008510371047
    [Google Scholar]
  16. TimmermanP. VerboomW. ReinhoudtD.N. Resorcinarenes.Tetrahedron19965282663270410.1016/0040‑4020(95)00984‑1
    [Google Scholar]
  17. Poleska-MuchladoZ. LubochE. BiernatJ.F. Novel calix[4]resorcinarenes with side azobenzo-15-crown-5 residues.Synth. Commun.200838183062306710.1080/00397910802044298
    [Google Scholar]
  18. FreemantleM.H. Chemistry in Action.LondonMacmillan Education Ltd.1989
    [Google Scholar]
  19. KhalifaM.E. AklM.A. GhazyS.E.S. Selective flotation-spectrophotometric determination of trace copper(II) in natural waters, human blood and drug samples using phenanthraquinone monophenylthiosemicarbazone.Chem. Pharm. Bull. (Tokyo)200149666466810.1248/cpb.49.664 11411513
    [Google Scholar]
  20. SawyerC.N. McCartyP.L. ParkinG.F. Chemistry for Environmental Engineering.4th edNew YorkMcGraw-Hill1996
    [Google Scholar]
  21. GhazyS.E.S. SamraS.E.S. MahdyA.E.F.M. El-MorsyS.M. Flotation-separation of aluminum from some water samples using powdered marble waste and oleic acid.Anal. Sci.200319101401140610.2116/analsci.19.1401 14596406
    [Google Scholar]
  22. KanaiyaP.H. PaniaR. Monitoring and studying the effect of aquatic plants of the chemical profile of water sample.Zeichen J.2022897886
    [Google Scholar]
  23. DiJ. WuY. MaY. A novel spectrophotometric determination of trace copper based on charge transfer complex.Spectrochim. Acta A Mol. Biomol. Spectrosc.200561593794110.1016/j.saa.2004.04.021 15683800
    [Google Scholar]
  24. YamanM. AkdenizI. Sensitivity enhancement in flame atomic absorption spectrometry for determination of copper in human thyroid tissues.Anal. Sci.20042091363136610.2116/analsci.20.1363 15478350
    [Google Scholar]
  25. CabonJ.Y. Determination of Cu and Mn in seawater by graphite furnace atomic absorption spectrometry with the use of hydrofluoric acid as a chemical modifier.Spectrochim. Acta B At. Spectrosc.200257593995010.1016/S0584‑8547(02)00025‑3
    [Google Scholar]
  26. IoannidouM.D. ZachariadisG.A. AnthemidisA.N. StratisJ.A. Direct determination of toxic trace metals in honey and sugars using inductively coupled plasma atomic emission spectrometry.Talanta20056519297 18969769
    [Google Scholar]
  27. KowalewskaZ. RuszczyńskaA. BulskaE. Cu determination in crude oil distillation products by atomic absorption and inductively coupled plasma mass spectrometry after analyte transfer to aqueous solution.Spectrochim. Acta B At. Spectrosc.200560335135910.1016/j.sab.2005.02.002
    [Google Scholar]
  28. KimH. ChoiH.S. Spectrofluorimetric determination of copper(II) by its static quenching effect on the fluorescence of 4,5-dihydroxy-1,3-benzenedisulfonic acid.Talanta200155116316910.1016/S0039‑9140(01)00405‑2 18968358
    [Google Scholar]
  29. BraininaK.Z. StozhkoN.Y. BelyshevaG.M. InzhevatovaO.V. KolyadinaL.I. CremisiniC. GallettiM. Determination of heavy metals in wines by anodic stripping voltammetry with thick-film modified electrode.Anal. Chim. Acta2004514222723410.1016/j.aca.2004.03.047
    [Google Scholar]
  30. LuC. LinJ.M. HuieC.W. YamadaM. Simultaneous determination of copper(II) and cobalt(II) by ion chromatography coupled with chemiluminescent detection.Anal. Sci.200319455756310.2116/analsci.19.557 12725391
    [Google Scholar]
  31. GöksungurY. UrenS. GüvençU. Biosorption of cadmium and lead ions by ethanol treated waste baker’s yeast biomass.Bioresour. Technol.200596110310910.1016/j.biortech.2003.04.002 15364087
    [Google Scholar]
  32. KimJ. Flocculation to enhance microfiltration.J. Membr. Sci.20011821-216117210.1016/S0376‑7388(00)00564‑0
    [Google Scholar]
  33. BlöcherC. DordaJ. MavrovV. ChmielH. LazaridisN.K. MatisK.A. Hybrid flotation—membrane filtration process for the removal of heavy metal ions from wastewater.Water Res.200337164018402610.1016/S0043‑1354(03)00314‑2 12909122
    [Google Scholar]
  34. MaQ. MaH. SuM. WangZ. NieL. LiangS. Determination of nickel by a new chromogenic azocalix[4]arene.Anal. Chim. Acta20014391737910.1016/S0003‑2670(01)01009‑1
    [Google Scholar]
  35. KimT.H. KimJ.S. KimH. Spectrophotometric and electrochemical study of Cu2+ -selective azocalix[4]arene bearing p-carboxyl group.Bull. Korean Chem. Soc.201334113377338010.5012/bkcs.2013.34.11.3377
    [Google Scholar]
  36. MoradiM. ZarabiS. HeydariR. Spectrophotometric determination of trace amounts of Sb(III) and Sb(V) in water and biological samples by in-tube dispersive liquid–liquid microextraction and air-assisted liquid–liquid microextraction.Chem. Zvesti202175126499650810.1007/s11696‑021‑01818‑1
    [Google Scholar]
  37. MohebbiM. HeydariR. RamezaniM. Determination of Cu, Cd, Ni, Pb and Zn in edible oils using reversed-phase ultrasonic assisted liquid–liquid microextraction and flame atomic absorption spectrometry.J. Anal. Chem.2018731303510.1134/S1061934818010069
    [Google Scholar]
  38. AshramM. Synthesis and extraction properties of new chromogenic azo-calix[4]dibenzothiacrown ethers.J. Incl. Phenom. Macrocycl. Chem.2007593-431532110.1007/s10847‑007‑9330‑3
    [Google Scholar]
  39. DongY. KimT.H. KimH.J. LeeM.H. LeeS.Y. MahajanR.K. KimH. KimJ.S. Spectroscopic and electrochemical studies of two distal diethyl ester azocalix[4]arene derivatives.J. Electroanal. Chem. (Lausanne)20096281-211912410.1016/j.jelechem.2009.01.015
    [Google Scholar]
  40. KumarP. ShimY. A novel cobalt(II)-selective potentiometric sensor based on p-(4-n-butylphenylazo)calix[4]arene.Talanta20097731057106210.1016/j.talanta.2008.08.003 19064091
    [Google Scholar]
  41. JefferyG.H. BassettJ. MendhamJ. DenneyR.C. Vogel’s Textbook of Chemical Analysis.5th edNew YorkJohn Wiley and Sons1989
    [Google Scholar]
  42. MarczenkoZ. Spectrophotometric Determination of Elements.ChichesterEllis- Horwood Ltd.1976
    [Google Scholar]
  43. DeanJ.A. Lange’s Handbook of Chemistry.15th edNew York, St. Louis, San FranciscoMcGraw-Hill, Inc.1999
    [Google Scholar]
  44. JainV.K. KanaiyaP.H. BhojakN. Synthesis, spectral characterization of azo dyes derived from calix[4]resorcinarene and their application in dyeing of fibers.Fibers Polym.20089672072610.1007/s12221‑008‑0113‑2
    [Google Scholar]
  45. JainV.K. KanaiyaP.H. Diazo reductive: A new approach to the synthesis of novel “upper rim” functionalized resorcin[4]arene Schiff-bases.J. Incl. Phenom. Macrocycl. Chem.2008621-211111510.1007/s10847‑008‑9445‑1
    [Google Scholar]
  46. JainV.K. PillaiS.G. PandyaR.A. AgrawalY.K. ShrivastavP.S. Molecular octopus: Octa functionalized calix[4]resorcinarene-hydroxamicacid [C4RAHA] for selective extraction, separation and preconcentration of U(VI).Talanta20056544610.1016/j.talanta.2004.06.033
    [Google Scholar]
  47. JainV.K. PillaiS.G. PandyaR.A. AgrawalY.K. ShrivastavP.S. Selective extraction, preconcentration and transport studies of thorium(IV) using octa-functionalized calix[4]resorcinarene-hydroxamic acid.Anal. Sci.200521212913510.2116/analsci.21.129 15732472
    [Google Scholar]
/content/journals/cac/10.2174/0115734110346665241016094729
Loading
/content/journals/cac/10.2174/0115734110346665241016094729
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test