Skip to content
2000
image of Impact of the Extraction Method and Solvent on the Phenolic Compound Content and Antioxidant Potential of the Aerial Part of Ephedra altissima: In vitro and In silico Studies

Abstract

Background

Despite the widespread use of plant in traditional Algerian medicine, the biological potential of this species has still not been well explored.

Objective

This study, for the first time, focused on determining the effect of extraction methods and solvents on the phenolic content and antioxidant ability of the aerial part of .

Methods

Extraction was carried out by maceration and Soxhlet using the solvents HO, Methanol/HO and Petroleum ether. The chemical profile of was determined by a qualitative HPLC/UV–Visible, and the antioxidant potential was evaluated by and in-silico studies.

Results

The aqueous extract obtained by maceration exhibited the greatest total phenol content, while the petroleum ether prepared by Soxhlet extraction demonstrated the highest total flavonoid and condensed tannin contents. The HPLC profile showed the presence of a variety of phenolic compounds. The assay results indicated good antioxidant potential. Gallic acid and sinapic acid were highlighted as the most potent antioxidants in the Soxhlet hydro-methanolic and petroleum ether extracts, respectively, according to the machine learning model. Molecular docking predicted the possible antioxidant potential of phytocompounds by the interaction with human peroxiredoxin 5, and epicatechin was the most effective ligand. Molecular dynamics simulations confirmed the stability of the epicatechin-Prdx5 complex. Multivariate analysis was used to categorize the extracts into three groups according to their phenolic compound content and antioxidant ability.

Conclusion

Overall, the results of the present study revealed that the choice of solvent and extraction technique directly influence the biomolecule content and bioactivity of aerial part extracts.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110346523241121182122
2025-01-13
2025-07-13
Loading full text...

Full text loading...

References

  1. Kallassy H. Fayyad-Kazan M. Makki R. EL-Makhour Y. Rammal H. Leger D.Y. Sol V. Fayyad-Kazan H. Liagre B. Badran B. Chemical composition and antioxidant, anti-inflammatory, and Antiproliferative activities of Lebanese Ephedra Campylopoda plant. Med. Sci. Monit. Basic Res. 2017 23 313 325 10.12659/MSMBR.905056 28947729
    [Google Scholar]
  2. Mighri H. Akrout A. Bennour N. Eljeni H. Zammouri T. Neffati M. LC/MS method development for the determination of the phenolic compounds of Tunisian Ephedra alata hydro-methanolic extract and its fractions and evaluation of their antioxidant activities. S. Afr. J. Bot. 2019 124 102 110 10.1016/j.sajb.2019.04.029
    [Google Scholar]
  3. Zhou J. Yang Q. Zhu X. Lin T. Hao D. Xu J. Antioxidant activities of Clerodendrum cyrtophyllum Turcz leaf extracts and their major components. PLoS One 2020 15 6 e0234435 10.1371/journal.pone.0234435 32574221
    [Google Scholar]
  4. Saad S. Ouafi S. Meguellati H. Djemouai N. Chemical diversity analysis and biological activities evaluation of different polyphenolic extracts of Marrubium deserti De Noé from Algeria. J. Ethnopharmacol. 2021 281 114494 10.1016/j.jep.2021.114494 34375714
    [Google Scholar]
  5. González-Juárez D.E. Escobedo-Moratilla A. Flores J. Hidalgo-Figueroa S. Martínez-Tagüeña N. Morales-Jiménez J. Muñiz-Ramírez A. Pastor-Palacios G. Pérez-Miranda S. Ramírez-Hernández A. Trujillo J. Bautista E. A review of the Ephedra genus: Distribution, ecology, ethnobotany, phytochemistry and pharmacological properties. Molecules 2020 25 14 3283 10.3390/molecules25143283 32698308
    [Google Scholar]
  6. Jaradat N. Dacca H. Hawash M. Abualhasan M.N. Ephedra alata fruit extracts: phytochemical screening, anti-proliferative activity and inhibition of DPPH, α-amylase, α-glucosidase, and lipase enzymes. BMC Chem. 2021 15 1 41 10.1186/s13065‑021‑00768‑9 34174945
    [Google Scholar]
  7. Elhadef K. Smaoui S. Fourati M. Ben Hlima H. Chakchouk Mtibaa A. Sellem I. Ennouri K. Mellouli L. A review on worldwide Ephedra history and story: From fossils to natural products mass spectroscopy characterization and Biopharmacotherapy potential. Evid. Based Complement. Alternat. Med. 2020 2020 1 1540638 10.1155/2020/1540638 32419789
    [Google Scholar]
  8. Maire R. Guinochet M. Faurel L. Flore de l’Afrique Du Nord Tela Botanica France 1952
    [Google Scholar]
  9. Bouhaous L. Miara M.D. Bendif H. Souilah N. Medicinal plants used by patients to fight cancer in northwestern Algeria. Bull. Cancer 2022 109 3 296 306 10.1016/j.bulcan.2021.09.017 34776117
    [Google Scholar]
  10. Bouafia W. Mouffouk S. Haba H. Quantification of total bioactive contents and evaluation of the antioxidant and antibacterial activities of crude extracts from Ephedra altissima Desf. Acta Sci. Biol. Sci. 2021 43 e52123 10.4025/actascibiolsci.v43i1.52123
    [Google Scholar]
  11. Bouafia W. Hamdi A. Mouffouk S. Rodriguez Arcos R. Jimenez Araujo A. Bejarano R.G. Haba H. Phenolic composition, in vitro Alpha-Amylase and Pancreatic Lipase inhibitory effects, anti-inflammatory and antioxidant activities of Ephedra altissima. Indian J. Pharm. Sci. 2022 84 4 10.36468/pharmaceutical‑sciences.984
    [Google Scholar]
  12. Hossain M.A. AL-Raqmi K.A.S. AL-Mijizy Z.H. Weli A.M. Al-Riyami Q. Study of total phenol, flavonoids contents and phytochemical screening of various leaves crude extracts of locally grown Thymus vulgaris. Asian Pac. J. Trop. Biomed. 2013 3 9 705 710 10.1016/S2221‑1691(13)60142‑2 23998010
    [Google Scholar]
  13. Usman H. Abdulrahman F.I. Usman A. Qualitative phytochemical screening and in vitro antimicrobial effects of methanol stem bark extract of Ficus thonningii (Moraceae). Afr. J. Tradit. Complement. Altern. Med. 2010 6 3 289 295 10.4314/ajtcam.v6i3.57178 20448855
    [Google Scholar]
  14. Alamgir A.N.M. Therapeutic Use of Medicinal Plants and Their Extracts. Springer International Publishing Cham 2018 Vol. 2 10.1007/978‑3‑319‑92387‑1
    [Google Scholar]
  15. Karumi Y. Onyeyili P.A. Ogugbuaja V.O. Identification of active principles of M. Balsamina (Balsam Apple) leaf extract. Journal of Medical Sciences 2004 4 179 182 10.3923/jms.2004.179.182
    [Google Scholar]
  16. Singleton V.L. Rossi J.A. Jr Colorimetry of total phenolics with Phosphomolybdic-Phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965 16 3 144 158 10.5344/ajev.1965.16.3.144
    [Google Scholar]
  17. Müller L. Gnoyke S. Popken A.M. Böhm V. Antioxidant capacity and related parameters of different fruit formulations. Lebensm. Wiss. Technol. 2010 43 6 992 999 10.1016/j.lwt.2010.02.004
    [Google Scholar]
  18. Topçu G. Ay M. Bilici A. Sarıkürkcü C. Öztürk M. Ulubelen A. A new flavone from antioxidant extracts of Pistacia terebinthus. Food Chem. 2007 103 3 816 822 10.1016/j.foodchem.2006.09.028
    [Google Scholar]
  19. Julkunen-Tiitto R. Phenolic constituents in the leaves of northern willows: Methods for the analysis of certain phenolics. J. Agric. Food Chem. 1985 33 2 213 217 10.1021/jf00062a013
    [Google Scholar]
  20. Blois M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958 181 4617 1199 1200 10.1038/1811199a0
    [Google Scholar]
  21. Re R. Pellegrini N. Proteggente A. Pannala A. Yang M. Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999 26 9-10 1231 1237 10.1016/S0891‑5849(98)00315‑3 10381194
    [Google Scholar]
  22. Oyaizu M. Studies on products of browning reaction. Antioxidative activities of products of browning reaction prepared from glucosamine. Eiyogaku Zasshi 1986 44 6 307 315 10.5264/eiyogakuzashi.44.307
    [Google Scholar]
  23. Szydłowskaczerniak A. Dianoczki C. Recseg K. Karlovits G. Szłyk E. Determination of antioxidant capacities of vegetable oils by ferric-ion spectrophotometric methods. Talanta 2008 76 4 899 905 10.1016/j.talanta.2008.04.055 18656676
    [Google Scholar]
  24. St John P.C. Guan Y. Kim Y. Etz B.D. Kim S. Paton R.S. Quantum chemical calculations for over 200,000 organic radical species and 40,000 associated closed-shell molecules. Sci. Data 2020 7 1 244 10.1038/s41597‑020‑00588‑x 32694541
    [Google Scholar]
  25. Dincel E.D. Gürsoy E. Yilmaz-Ozden T. Ulusoy-Güzeldemirci N. Antioxidant activity of novel imidazo[2,1-b]thiazole derivatives: Design, synthesis, biological evaluation, molecular docking study and in silico ADME prediction. Bioorg. Chem. 2020 103 104220 10.1016/j.bioorg.2020.104220 32896742
    [Google Scholar]
  26. Declercq J.P. Evrard C. Clippe A. Stricht D.V. Bernard A. Knoops B. Crystal structure of human peroxiredoxin 5, a novel type of mammalian peroxiredoxin at 1.5 Å resolution. J. Mol. Biol. 2001 311 4 751 759 10.1006/jmbi.2001.4853 11518528
    [Google Scholar]
  27. Hanwell M.D. Curtis D.E. Lonie D.C. Vandermeersch T. Zurek E. Hutchison G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012 4 1 17 10.1186/1758‑2946‑4‑17 22889332
    [Google Scholar]
  28. BIOVIA Dassault Systèmes Discovery Studio Visualizer. Dassault Systèmes San Diego 2023
    [Google Scholar]
  29. Guex N. Peitsch M.C. SWISS‐MODEL and the Swiss‐Pdb viewer: An environment for comparative protein modeling. Electrophoresis 1997 18 15 2714 2723 10.1002/elps.1150181505 9504803
    [Google Scholar]
  30. Dallakyan S. Olson A.J. Small-molecule library screening by docking with PyRx. Methods Mol. Biol. 2015 1263 243 250 10.1007/978‑1‑4939‑2269‑7_19 25618350
    [Google Scholar]
  31. Van Der Spoel D. Lindahl E. Hess B. Groenhof G. Mark A.E. Berendsen H.J.C. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005 26 16 1701 1718 10.1002/jcc.20291 16211538
    [Google Scholar]
  32. Kowalska T. Kaczmarski K. Prus W. Sherma J. Fried B. Theory and Mechanism of Thin-Layer Chromatography. Handbook of Thin-Layer Chromatography. Boca Raton CRC Press 2003 44
    [Google Scholar]
  33. Xuan Cuong D. Xuan Hoan N. Huu Dong D. Thi Minh Thuy L. Van Thanh N. 2020
  34. Cacace J.E. Mazza G. Optimization of extraction of anthocyanins from black currants with aqueous Ethanol. J. Food Sci. 2003 68 1 240 248 10.1111/j.1365‑2621.2003.tb14146.x
    [Google Scholar]
  35. Velickovic D. Nikolova M. Ivancheva S. Stojanovic J. Veljkovic V. Extraction of flavonoids from garden (Salvia officinalis L.) and glutinous (Salvia glutinosa L.) sage by ultrasonic and classical maceration. J. Serb. Chem. Soc. 2007 72 1 73 80 10.2298/JSC0701073V
    [Google Scholar]
  36. Seidel V. Sarker S.D. Nahar L. Totowa, NJ Initial and Bulk Extraction of Natural Products Isolation. Humana Press Natural Products Isolation. 2012 27 41 10.1007/978‑1‑61779‑624‑1_2
    [Google Scholar]
  37. Singh J. Handa S.S. Khanuja S.P.S. Longo G. Rakesh D.D. Maceration, Percolation and Infusion Techniques for the Extraction of Medicinal and Aromatic Plants. Extraction technologies for medicinal and aromatic plants. ICS-UNIDO Trieste, Italy 2008 Vol. 67 32 35
    [Google Scholar]
  38. Marston A. Hostettmann K. Separation and Quantification of Flavonoids. 2006
    [Google Scholar]
  39. Lee K.W. Kim Y.J. Kim D.O. Lee H.J. Lee C.Y. Major phenolics in apple and their contribution to the total antioxidant capacity. J. Agric. Food Chem. 2003 51 22 6516 6520 10.1021/jf034475w 14558772
    [Google Scholar]
  40. Lee K.W. Kim Y.J. Lee H.J. Lee C.Y. Cocoa has more phenolic phytochemicals and a higher antioxidant capacity than teas and red wine. J. Agric. Food Chem. 2003 51 25 7292 7295 10.1021/jf0344385 14640573
    [Google Scholar]
  41. Mezogi J. El Jaafari H. Shibani N. Dali A. Abuelkhair K. Shalabi S. Aburawi S. Abusaida H. Effect of sub toxic dose of Ephedra Altissima methanolic extract on reproductive system of male Albino mice. AlQalam Journal of Medical and Applied Sciences 2020 3 13 22
    [Google Scholar]
  42. Edrah S.M. Aljenkawi A. Omeman A. Alafid F. Qualitative and quantities analysis of phytochemicals of various extract for Ephedra Altissima from Libya. Faslnamah-i Giyahan-i Daruyi 2016 4 119 121
    [Google Scholar]
  43. Keskes H. Mnafgui K. Hamden K. Damak M. El Feki A. Allouche N. In vitro anti-diabetic, anti-obesity and antioxidant proprieties of Juniperus phoenicea L. leaves from Tunisia. Asian Pac. J. Trop. Biomed. 2014 4 S649 S655 10.12980/APJTB.4.201414B114
    [Google Scholar]
  44. Brglez Mojzer E. Knez Hrnčič M. Škerget M. Knez Ž. Bren U. Polyphenols: Extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules 2016 21 7 901 10.3390/molecules21070901 27409600
    [Google Scholar]
  45. Bamba B. Benie C.K.D. Ouattara A. Doukourou D.N. Kamou R.K. Ouattara K. Total phenolic contents, antioxidant activities of macerates and decoctions of the leaves of Uvaria chamae P. Beauv. (Annonaceae). Int. J. Biol. Chem. Sci. 2021 15 1 54 67 10.4314/ijbcs.v15i1.6
    [Google Scholar]
  46. Mamadou R. Moussa I. Philippe S. Yehouenou B. Agbangnan D.C.P. Illagouma A. Abdoulaye A. Sohounhloue D. Ikhiri K. Soc J. Phytochemical study, antioxidant, antibacterial and antifungal activities of Sebastiania chamaelea extracts (L.) Müll.Arg. JWACS 2014 037 10 17
    [Google Scholar]
  47. Kouamé T.K. Siaka S. Kassi A.B.B. Soro Y. Determination of total polyphenol, total flavonoid and tannin contents in young, unopened leaves of Piliostigma thonningii (Caesalpiniaceae). Int. J. Biol. Chem. Sci. 2021 15 1 97 105 10.4314/ijbcs.v15i1.9
    [Google Scholar]
  48. Xu G.H. Chen J.C. Liu D.H. Zhang Y.H. Jiang P. Ye X.Q. Minerals, phenolic compounds, and antioxidant capacity of citrus peel extract by hot water. J. Food Sci. 2008 73 1 C11 C18 10.1111/j.1750‑3841.2007.00546.x 18211343
    [Google Scholar]
  49. Li B.B. Smith B. Hossain M.M. Extraction of phenolics from citrus peels. Separ. Purif. Tech. 2006 48 2 182 188 10.1016/j.seppur.2005.07.005
    [Google Scholar]
  50. Matsuo Y. Miura L.A. Araki T. Riffault-Valois L. Yoshie-Stark Y. Comparison of antioxidant properties of different crude extracts from citrus natsudaidai peel. Food Sci. Technol. Res. 2020 26 6 837 846 10.3136/fstr.26.837
    [Google Scholar]
  51. Ozen T. Demirtas I. Aksit H. Determination of antioxidant activities of various extracts and essential oil compositions of Thymus praecox subsp. skorpilii var. skorpilii. Food Chem. 2011 124 1 58 64 10.1016/j.foodchem.2010.05.103
    [Google Scholar]
  52. Vilas-Boas A.A. Campos D.A. Nunes C. Ribeiro S. Nunes J. Oliveira A. Pintado M. Polyphenol extraction by different techniques for valorisation of non-compliant Portuguese sweet cherries towards a novel antioxidant extract. Sustainability (Basel) 2020 12 14 5556 10.3390/su12145556
    [Google Scholar]
  53. Bastola K.P. Guragain Y.N. Bhadriraju V. Vadlani P.V. Evaluation of standards and interfering compounds in the determination of phenolics by Folin-Ciocalteu assay method for effective bioprocessing of biomass. Am. J. Anal. Chem. 2017 8 6 416 431 10.4236/ajac.2017.86032
    [Google Scholar]
  54. Saija A. Tomaino A. Trombetta D. Pellegrino M.L. Tita B. Messina C. Bonina F.P. Rocco C. Nicolosi G. Castelli F. ‘In vitro’ antioxidant and photoprotective properties and interaction with model membranes of three new quercetin esters. Eur. J. Pharm. Biopharm. 2003 56 2 167 174 10.1016/S0939‑6411(03)00101‑2 12957629
    [Google Scholar]
  55. Calias P. Galanopoulos T. Maxwell M. Khayat A. Graves D. Antoniades H.N. d’Alarcao M. Synthesis of inositol 2-phosphate-quercetin conjugates. Carbohydr. Res. 1996 292 83 90 10.1016/S0008‑6215(96)91029‑0 8870239
    [Google Scholar]
  56. Benavente-García O. Castillo J. Del Baño M.J. Lorente J. Improved water solubility of neohesperidin dihydrochalcone in sweetener blends. J. Agric. Food Chem. 2001 49 1 189 191 10.1021/jf000186l 11170576
    [Google Scholar]
  57. Fraga-Corral M. García-Oliveira P. Pereira A.G. Lourenço-Lopes C. Jimenez-Lopez C. Prieto M.A. Simal-Gandara J. Technological application of Tannin-based extracts. Molecules 2020 25 3 614 10.3390/molecules25030614 32019231
    [Google Scholar]
  58. Duraisamy R. Shuge T. Worku B. Kerebo Berekete A. Ramasamy M. Extraction K. Screening and Spectral Characterization of Tannins from Acacia Xanthophloea (Fever Tree) Bark. Research Journal of Textile and Leather 2020 1 10 10.46590/rjtl.2020.010101
    [Google Scholar]
  59. Rached W. Benamar H. Bennaceur M. Marouf A. Screening of the antioxidant potential of some Algerian indigenous plants. J. Biol. Sci. (Faisalabad, Pak.) 2010 10 4 316 324 10.3923/jbs.2010.316.324
    [Google Scholar]
  60. Ibragic S. Sofić E. Chemical composition of various Ephedra species. Biomol. Biomed. 2015 15 3 21 27 10.17305/bjbms.2015.539 26295290
    [Google Scholar]
  61. Daneshfar A. Ghaziaskar H.S. Homayoun N. Solubility of Gallic acid in Methanol, Ethanol, water, and Ethyl Acetate. J. Chem. Eng. Data 2008 53 3 776 778 10.1021/je700633w
    [Google Scholar]
  62. Toul F. Djendar A. Seladji̇ M. Berroukeche F. Algerian Bunium incrassatum seeds: Effects of extraction solvent polarity on phenolic profile and antioxidant activity. JTCS-A 2022 9 2 415 422 10.18596/jotcsa.1058060
    [Google Scholar]
  63. Some industrial chemicals / World Health Organization, International Agency for Research on Cancer 2000 Available from: https://digitallibrary.un.org/record/465934
  64. Putra N.R. Rizkiyah D.N. Yunus M.A.C. Abdul Aziz A.H. Pamungkas A. Utilizing subcritical methanol extraction for Catechin and Epicatechin recovery from peanut skin as agricultural waste. Separations 2023 10 2 82 10.3390/separations10020082
    [Google Scholar]
  65. Cid-Ortega S. Monroy-Rivera J.A. Extraction of Kaempferol and its Glycosides using supercritical fluids from plant sources: A review. Food Technol. Biotechnol. 2018 56 4 480 493 10.17113/ftb.56.04.18.5870 30923445
    [Google Scholar]
  66. Dehimat A. Azizi I. Barragan-Montero V. Khettal B. In vitro antioxidant and inhibitory potential of leaf extracts of Varthemia sericea against key enzymes linked to type 2 diabetes. Jordan J. Biol. Sci. 2021 14 1 97 104 10.54319/jjbs/140113
    [Google Scholar]
  67. Vieira S.F. Ferreira H. Neves N.M. Antioxidant and anti-inflammatory activities of Cytocompatible Salvia officinalis extracts: A comparison between traditional and Soxhlet extraction. Antioxidants 2020 9 11 1157 10.3390/antiox9111157 33233648
    [Google Scholar]
  68. Chaves N. Santiago A. Alías J.C. Quantification of the antioxidant activity of plant extracts: Analysis of sensitivity and hierarchization based on the method used. Antioxidants 2020 9 1 76 10.3390/antiox9010076 31952329
    [Google Scholar]
  69. Skroza D. Šimat V. Vrdoljak L. Jolić N. Skelin A. Čagalj M. Frleta R. Generalić Mekinić I. Investigation of antioxidant synergisms and antagonisms among Phenolic acids in the model matrices using FRAP and ORAC methods. Antioxidants 2022 11 9 1784 10.3390/antiox11091784 36139858
    [Google Scholar]
  70. P Singh D. Verma S. Prabha R. Investigations on antioxidant potential of phenolic acids and flavonoids: The common phytochemical ingredients in plants. J. Plant Biochem. Physiol. 2018 6 3 10.4172/2329‑9029.1000219
    [Google Scholar]
  71. Kalinowska M. Płońska A. Trusiak M. Gołębiewska E. Gorlewska-Pietluszenko A. Comparing the extraction methods, chemical composition, phenolic contents and antioxidant activity of edible oils from Cannabis sativa and Silybum marianu seeds. Sci. Rep. 2022 12 1 20609 10.1038/s41598‑022‑25030‑7 36446937
    [Google Scholar]
  72. Chen J. Yang J. Ma L. Li J. Shahzad N. Kim C.K. Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. Sci. Rep. 2020 10 1 2611 10.1038/s41598‑020‑59451‑z 32054964
    [Google Scholar]
  73. Lekouaghet A. Boutefnouchet A. Bensuici C. Gali L. Ghenaiet K. Tichati L. In vitro evaluation of antioxidant and anti-inflammatory activities of the hydroalcoholic extract and its fractions from Leuzea conifera L. roots. S. Afr. J. Bot. 2020 132 103 107 10.1016/j.sajb.2020.03.042
    [Google Scholar]
  74. Widowati W. Fauziah N. Herdiman H. Afni M. Afifah E. Kusuma H.S.W. Nufus H. Arumwardana S. Rihibiha D.D. Antioxidant and anti aging assays of Oryza sativa extracts, Vanillin and Coumaric acid. J. Nat. Rem. 2016 16 3 88 10.18311/jnr/2016/7220
    [Google Scholar]
  75. Tian C. Liu X. Chang Y. Wang R. Lv T. Cui C. Liu M. Investigation of the anti-inflammatory and antioxidant activities of luteolin, kaempferol, apigenin and quercetin. S. Afr. J. Bot. 2021 137 257 264 10.1016/j.sajb.2020.10.022
    [Google Scholar]
  76. Ahmadi S.M. Farhoosh R. Sharif A. Rezaie M. Structure‐antioxidant activity relationships of Luteolin and Catechin. J. Food Sci. 2020 85 2 298 305 10.1111/1750‑3841.14994 31957877
    [Google Scholar]
  77. Alminderej F. Bakari S. Almundarij T.I. Snoussi M. Aouadi K. Kadri A. Antioxidant activities of a new chemotype of Piper cubeba L. Fruit Essential Oil (Methyleugenol/Eugenol): in silico molecular docking and ADMET studies. Plants 2020 9 11 1534 10.3390/plants9111534 33182768
    [Google Scholar]
  78. Salaria D. Rolta R. Fadare O.A. Fadare R.Y. Guleria S. Lal U.R. Kumar V. In silico and in vitro antioxidant potential of Thymus serpyllum L. essential oil. Pharmacol. Res. Mod. Chin. Med. 2023 8 100280 10.1016/j.prmcm.2023.100280
    [Google Scholar]
  79. Dincel E.D. Hasbal-Celikok G. Yilmaz-Ozden T. Ulusoy-Güzeldemirci N. Design, synthesis, biological evaluation, molecular docking, and dynamic simulation study of novel imidazo[2,1-b]thiazole derivatives as potent antioxidant agents. J. Mol. Struct. 2022 1258 132673 10.1016/j.molstruc.2022.132673
    [Google Scholar]
/content/journals/cac/10.2174/0115734110346523241121182122
Loading
/content/journals/cac/10.2174/0115734110346523241121182122
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test