Skip to content
2000
image of Cd2+ Mediated AuNCs for Simultaneous Detection of L-cysteine and Homocysteine

Abstract

Background

L-cysteine (L-Cys) and homocysteine (Hcy) are the most representative of biothiol, which exist widely in organisms. L-Cys is one of the essential amino acids, which can be absorbed from protein-rich food and plays a considerable role in various physiological processes. Hcy is a vital intermediate in normal mammalian metabolism of methionine but does not occur in the diet. Therefore, it is significant to exploit a rapid and sensitive strategy to measure L-Cys and Hcy.

Methods

Herein, we designed an “on-on” fluorescent platform for detecting L-Cys and Hcy with gold nanoclusters (AuNCs) as probes. During the sensing process, cadmium ions (Cd2+) acted as mediating substances to connected AuNCs and L-Cys (or Hcy), and triggered aggregation-induced emission (AIE) effect.

Results

The linear ranges achieved with fluorimetry of L-Cys and Hcy were 0.1-10.0 μM and 0.1-20.0 μM, respectively. Moreover, this fluorescent probe was successfully used to determine the L-Cys concentration in actual samples, and showed excellent recovery.

Conclusion

Furthermore, the mechanism for sensing L-Cys and Hcy has been exhaustively investigated.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110346349241208043105
2025-01-15
2025-04-04
Loading full text...

Full text loading...

References

  1. Li Y. Deng Y. Zhou X. Hu J. A label-free turn-on-off fluorescent sensor for the sensitive detection of cysteine via blocking the Ag+-enhancing glutathione-capped gold nanoclusters. Talanta 2018 179 742 752 10.1016/j.talanta.2017.11.057 29310302
    [Google Scholar]
  2. Xu X. Qiao J. Li N. Qi L. Zhang S. Fluorescent probe for turn-on sensing of l-cysteine by ensemble of AuNCs and polymer protected AuNPs. Anal. Chim. Acta 2015 879 97 103 10.1016/j.aca.2015.03.036 26002483
    [Google Scholar]
  3. Rajaram R. Mathiyarasu J. An electrochemical sensor for homocysteine detection using gold nanoparticle incorporated reduced graphene oxide. Colloids Surf. B Biointerfaces 2018 170 109 114 10.1016/j.colsurfb.2018.05.066 29894830
    [Google Scholar]
  4. Jiang C. Xiao D. Yang P. Tao W. Song Z. He H. Simple and fast detection of homocysteine by cucurbit[7]uril fluorescent probe based on competitive strategy. Chem. Phys. Lett. 2022 792 139382 10.1016/j.cplett.2022.139382
    [Google Scholar]
  5. Beitollahi H. Zaimbashi R. Mahani M.T. Tajik S. A label-free aptasensor for highly sensitive detection of homocysteine based on gold nanoparticles. Bioelectrochemistry 2020 134 107497 10.1016/j.bioelechem.2020.107497 32222669
    [Google Scholar]
  6. Liu F. Han L. Yang Y. Xue Z. Lu X. Liu X. Designable synthesis of a novel layered MXene loaded gold nanocluster composite for efficient electrochemical sensing of homocysteine in biological samples. Chem. Eng. J. 2023 461 141928 10.1016/j.cej.2023.141928
    [Google Scholar]
  7. Johnson J.M. Strobel F.H. Reed M. Pohl J. Jones D.P. A rapid LC-FTMS method for the analysis of cysteine, cystine and cysteine/cystine steady-state redox potential in human plasma. Clin. Chim. Acta 2008 396 1-2 43 48 10.1016/j.cca.2008.06.020 18634771
    [Google Scholar]
  8. Ravula V. Annapurna Singh S. A simple reversed‐phase HPLC method for the estimation of dimethylarginines and homocysteine in plasma and serum. Separ. Sci. Plus 2018 1 6 404 410 10.1002/sscp.201800038
    [Google Scholar]
  9. Chen G. Zhang L. Wang J. Miniaturized capillary electrophoresis system with a carbon nanotube microelectrode for rapid separation and detection of thiols. Talanta 2004 64 4 1018 1023 10.1016/j.talanta.2004.04.022 18969705
    [Google Scholar]
  10. Hua L J Han H Y Zhang X J Size-dependent electrochemiluminescence behavior of water-soluble CdTe quantum dots and selective sensing of l-cysteine. Talanta 2009 77 5 1654 1659
    [Google Scholar]
  11. Nehra N. Ghule V.D. Tittal R.K. Simpler fluorescent probe for homocysteine selective detection. J. Mol. Struct. 2022 1250 131755 10.1016/j.molstruc.2021.131755
    [Google Scholar]
  12. Wu J. Ran P. Zhu S. Mo F. Wang C. Fu Y. A highly sensitive electrochemiluminescence sensor for the detection of l-cysteine based on the rhombus-shaped rubrene microsheets and platinum nanoparticles. Sens. Actuators B Chem. 2019 278 97 102 10.1016/j.snb.2018.09.066
    [Google Scholar]
  13. Gong S. Qin A. Zhang Y. Li M. Chen X. Liang Y. Xu X. Wang Z. Wang S. A new ratiometric AIE fluorescent probe for detecting cysteine in food samples and imaging in the biological system. Food Chem. 2023 400 134108 10.1016/j.foodchem.2022.134108 36084583
    [Google Scholar]
  14. Nebu J. Anjali Devi J.S. Aparna R.S. Aswathy B. Lekha G.M. Sony G. Potassium triiodide-quenched gold nanocluster as a fluorescent turn-on probe for sensing cysteine/homocysteine in human serum. Anal. Bioanal. Chem. 2019 411 5 997 1007 10.1007/s00216‑018‑1511‑y 30637437
    [Google Scholar]
  15. Cheng Z. Fan Y. Zhang L. Wang C. Preparation of co-enhanced gold nanoclusters and its application in the detections of 4-hexylresorcinol and Cr6+. J. Mol. Struct. 2023 1275 134712 10.1016/j.molstruc.2022.134712
    [Google Scholar]
  16. Ru F. Du P. Lu X. Efficient ratiometric fluorescence probe utilizing silicon particles/gold nanoclusters nanohybrid for “on-off-on” bifunctional detection and cellular imaging of mercury (II) ions and cysteine. Anal. Chim. Acta 2020 1105 139 146 10.1016/j.aca.2020.01.020 32138912
    [Google Scholar]
  17. Peng Y. Wang M. Wu X. Wang F. Liu L. Methionine-capped gold nanoclusters as a fluorescence-enhanced probe for cadmium (II) sensing. Sensors 2018 18 2 658 10.3390/s18020658 29473911
    [Google Scholar]
  18. Wang J. Lin X. Su L. Yin J. Shu T. Zhang X. Chemical etching of pH-sensitive aggregation-induced emission-active gold nanoclusters for ultra-sensitive detection of cysteine. Nanoscale 2019 11 1 294 300 10.1039/C8NR08526A 30534733
    [Google Scholar]
  19. Wang S. Meng X. Das A. Li T. Song Y. Cao T. Zhu X. Zhu M. Jin R. A 200-fold quantum yield boost in the photoluminescence of silver-doped Ag(x)Au(25-x) nanoclusters: The 13th silver atom matters. Angew. Chem. Int. Ed. 2014 53 9 2376 2380 10.1002/anie.201307480 24474712
    [Google Scholar]
  20. Gong W.J. Nan H.R. Peng H.B. Wang Y.Q. Dong Z.M. Zhang Z.B. Cao X.H. Liu Y.H. A ratiometric fluorescent sensor for UO22+ detection based on Ag+-modified gold nanoclusters hybrid via photoinduced electron transfer (PET) mechanism. Microchem. J. 2023 190 108725 10.1016/j.microc.2023.108725
    [Google Scholar]
  21. Chen T. Hu Y. Cen Y. Chu X. Lu Y. A dual-emission fluorescent nanocomplex of gold-cluster-decorated silica particles for live cell imaging of highly reactive oxygen species. J. Am. Chem. Soc. 2013 135 31 11595 11602 10.1021/ja4035939 23859158
    [Google Scholar]
  22. Qi S. Zheng H. Niu Y. Zhai H. A novel fluorescence sensor based on Al3+-mediated aggregation of gold nanoclusters for determination of citric acid in beverages. Anal. Sci. 2024 40 8 1489 1498 10.1007/s44211‑024‑00587‑7 38720021
    [Google Scholar]
  23. Ruan S. Zhou Y. Zhang M. Zhang H. Wang Y. Hu P. Rapid determination of cysteine and chiral discrimination of D-/L-cysteine via the aggregation-induced emission enhancement of gold nanoclusters by Ag+. Anal. Sci. 2022 38 3 541 551 10.2116/analsci.21P207 35359272
    [Google Scholar]
  24. Panthi G. Park M. Synthesis of metal nanoclusters and their application in Hg2+ ions detection: A review. J. Hazard. Mater. 2022 424 Pt C 127565 10.1016/j.jhazmat.2021.127565 34736203
    [Google Scholar]
  25. Gao X. Ma Z. Sun M. Liu X. Zhong K. Tang L. Li X. Li J. A highly sensitive ratiometric fluorescent sensor for copper ions and cadmium ions in scallops based on nitrogen doped graphene quantum dots cooperating with gold nanoclusters. Food Chem. 2022 369 130964 10.1016/j.foodchem.2021.130964 34479006
    [Google Scholar]
  26. Zan M. Li C. Zhu D. Rao L. Meng Q.F. Chen B. Xie W. Qie X. Li L. Zeng X. Li Y. Dong W. Liu W. A novel “on–off–on” fluorescence assay for the discriminative detection of Cu( ii ) and l- cysteine based on red-emissive Si-CDs and cellular imaging applications. J. Mater. Chem. B Mater. Biol. Med. 2020 8 5 919 927 10.1039/C9TB02681A 31912848
    [Google Scholar]
  27. Fu B. Zheng X. Li H. Ding L. Wang F. Guo D.Y. Yang W. Pan Q. A highly stable, rapid and sensitive fluorescent probe for ciprofloxacin based on Al3+-enhanced fluorescence of gold nanoclusters. Sens. Actuators B Chem. 2021 346 130502 10.1016/j.snb.2021.130502
    [Google Scholar]
  28. Mo F. Ma Z. Wu T. Liu M. Zhang Y. Li H. Yao S. Holey reduced graphene oxide inducing sensitivity enhanced detection nanoplatform for cadmium ions based on glutathione-gold nanocluster. Sens. Actuators B Chem. 2019 281 486 492 10.1016/j.snb.2018.10.133
    [Google Scholar]
  29. Malferrari D. Brigatti M.F. Laurora A. Pini S. Medici L. Sorption kinetics and chemical forms of Cd(II) sorbed by thiol-functionalized 2:1 clay minerals. J. Hazard. Mater. 2007 143 1-2 73 81 10.1016/j.jhazmat.2006.08.069 17030421
    [Google Scholar]
/content/journals/cac/10.2174/0115734110346349241208043105
Loading
/content/journals/cac/10.2174/0115734110346349241208043105
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: cadmium ions ; aggregation-induced emission ; L-cysteine ; homocysteine ; Gold nanoclusters
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test