Skip to content
2000
image of Brewing Industry By-products: An Innovative Alternative to Hyaluronic Acid Biosynthesis

Abstract

As beer malt bagasse, agro-industrial by-products have raised significant environmental and economic concerns due to their improper disposal and negative impact on process efficiency. Often regarded as waste, these by-products contribute to environmental degradation and resource inefficiency. However, when viewed as potential resources, they offer new opportunities. Beer malt bagasse shows excellent potential as a substrate for cultivating , a bacterium that produces hyaluronic acid. Hyaluronic acid is a high-value biopolymer with wide applications in medicine, biomedicine, food, and cosmetics. Its distinctive properties—such as biocompatibility, viscoelasticity, and moisture retention—make it highly desirable across industries. As a result, the demand for hyaluronic acid has grown significantly in recent years, emphasizing the need for sustainable production methods that meet market demands while reducing environmental impact. Traditional production methods often depend on animal-derived sources or synthetic processes, both of which pose sustainability challenges. This review presents a sustainable alternative: utilizing brewing industry by-products as an eco-friendly and cost-effective source for hyaluronic acid production. This approach aims to create a more sustainable and economically viable production process by harnessing beer malt bagasse, a readily available and low-cost substrate.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110343521241202060530
2025-01-06
2025-07-07
Loading full text...

Full text loading...

References

  1. Massardi MM Massini RMM Silva D de J Chemical characterization of brewer’s spent grains and evaluation of its potential for obtaining value-added products. The J. Engin. Exa. Sci. 2020 6 83 91 10.18540/jcecvl6iss1pp0083‑0091
    [Google Scholar]
  2. Ruiz-Ruiz J.C. Aldana G del CE. Cruz A.I.C. Segura-Campos M.R. Antioxidant activity of polyphenols extracted from hop used in craft beer. Biotechnological Progress and Beverage Consumption The Science of Beverages, Elsevier 2019 19 283 310 10.1016/B978‑0‑12‑816678‑9.00009‑6
    [Google Scholar]
  3. Karlović A. Jurić A. Ćorić N. Habschied K. Krstanović V. Mastanjević K. By-products in the malting and brewing industries-re-usage possibilities. Fermentation (Basel) 2020 6 3 82 10.3390/fermentation6030082
    [Google Scholar]
  4. Armstrong D.C. Cooney M.J. Johns M.R. Growth and amino acid requirements of hyaluronic-acid-producing Streptococcus zooepidemicus. Appl. Microbiol. Biotechnol. 1997 47 3 309 312 10.1007/s002530050932
    [Google Scholar]
  5. Qiu Y. Ma Y. Huang Y. Li S. Xu H. Su E. Current advances in the biosynthesis of hyaluronic acid with variable molecular weights. Carbohydr. Polym. 2021 269 118320 10.1016/j.carbpol.2021.118320 34294332
    [Google Scholar]
  6. Vasvani S. Kulkarni P. Rawtani D. Hyaluronic acid: A review on its biology, aspects of drug delivery, route of administrations and a special emphasis on its approved marketed products and recent clinical studies. Int. J. Biol. Macromol. 2020 151 1012 1029 10.1016/j.ijbiomac.2019.11.066 31715233
    [Google Scholar]
  7. Gunasekaran V. D G. v P. Role of membrane proteins in bacterial synthesis of hyaluronic acid and their potential in industrial production. Int. J. Biol. Macromol. 2020 164 1916 1926 10.1016/j.ijbiomac.2020.08.077 32791275
    [Google Scholar]
  8. Harrer D. Sanchez Armengol E. Friedl J.D. Jalil A. Jelkmann M. Leichner C. Laffleur F. Is hyaluronic acid the perfect excipient for the pharmaceutical need? Int. J. Pharm. 2021 601 120589 10.1016/j.ijpharm.2021.120589 33845151
    [Google Scholar]
  9. Schulz T. Schumacher U. Prehm P. Hyaluronan export by the ABC transporter MRP5 and its modulation by intracellular cGMP. J. Biol. Chem. 2007 282 29 20999 21004 10.1074/jbc.M700915200 17540771
    [Google Scholar]
  10. Amado I.R. Vázquez J.A. Pastrana L. Teixeira J.A. Cheese whey: A cost-effective alternative for hyaluronic acid production by Streptococcus zooepidemicus. Food Chem. 2016 198 54 61 10.1016/j.foodchem.2015.11.062 26769504
    [Google Scholar]
  11. Attia Y.A. Al Nazawi A.M. Elsayed H. Sadik M.W. Carbon nanotubes catalyzed UV-trigger production of hyaluronic acid from Streptococcus equi. Saudi J. Biol. Sci. 2021 28 1 484 491 10.1016/j.sjbs.2020.10.032 33424331
    [Google Scholar]
  12. Pires A.M.B. Macedo A.C. Eguchi S.Y. Santana M.H.A. Microbial production of hyaluronic acid from agricultural resource derivatives. Bioresour. Technol. 2010 101 16 6506 6509 10.1016/j.biortech.2010.03.074 20363616
    [Google Scholar]
  13. Ferreira R.G. Azzoni A.R. Santana M.H.A. Petrides D. Techno-economic analysis of a hyaluronic acid production process utilizing streptococcal fermentation. Processes (Basel) 2021 9 2 241 10.3390/pr9020241
    [Google Scholar]
  14. Moreira T.D. Martins V.B. da Silva Júnior A.H. Sayer C. de Araújo P.H.H. Immich A.P.S. New insights into biomaterials for wound dressings and care: Challenges and trends. Prog. Org. Coat. 2024 187 108118 10.1016/j.porgcoat.2023.108118
    [Google Scholar]
  15. Aycan D. Karaca F. Alemdar N. Development of hyaluronic acid-based electroconductive hydrogel as a sensitive non-enzymatic glucose sensor. Mater. Today Commun. 2023 35 105745 10.1016/j.mtcomm.2023.105745
    [Google Scholar]
  16. Khandan-Nasab N. Mahdipour E. Askarian S. Kalantari M.R. Ramezanian N. Kazemi Oskuee R. Design and characterization of adipose-derived mesenchymal stem cell loaded alginate/pullulan/hyaluronic acid hydrogel scaffold for wound healing applications. Int. J. Biol. Macromol. 2023 241 124556 10.1016/j.ijbiomac.2023.124556 37088191
    [Google Scholar]
  17. Davachi S.M. Haramshahi S.M.A. Akhavirad S.A. Bahrami N. Hassanzadeh S. Ezzatpour S. Hassanzadeh N. Malekzadeh Kebria M. Khanmohammadi M. Bagher Z. Development of chitosan/hyaluronic acid hydrogel scaffolds via enzymatic reaction for cartilage tissue engineering. Mater. Today Commun. 2022 30 103230 10.1016/j.mtcomm.2022.103230
    [Google Scholar]
  18. Mordor Intelligence. Hyaluronic acid market size & share analysis - growth trends & forecasts (2023 - 2028). Global Information. 2023 90 Available from: https://www.giiresearch.com/report/moi1331266-hyaluronic-acid-market-size-share-analysis-growth.html Accessed on: 10 July 2024.
  19. Market Analyses Report. Hyaluronic acid market size, share & trends analysis report by application (dermal fillers, osteoarthritis, ophthalmic, vesicoureteral reflux), and segment forecasts, 2023 - 2030. Grand View Research. 2023 150 Available from: https://www.grandviewresearch.com/industry-analysis/hyaluronic-acid-market Accessed on: 10 July 2024.
  20. Snetkov P. Zakharova K. Morozkina S. Olekhnovich R. Uspenskaya M. Hyaluronic acid: The influence of molecular weight on structural, physical, physico-chemical, and degradable properties of biopolymer. Polymers (Basel) 2020 12 8 1800 10.3390/polym12081800 32796708
    [Google Scholar]
  21. Luo Y. Tan J. Zhou Y. Guo Y. Liao X. He L. Li D. Li X. Liu Y. From crosslinking strategies to biomedical applications of hyaluronic acid-based hydrogels: A review. Int. J. Biol. Macromol. 2023 231 123308 10.1016/j.ijbiomac.2023.123308 36669634
    [Google Scholar]
  22. Zheng M. Wu P. Li L. Yu F. Ma J. Adsorption/desorption behavior of ciprofloxacin on aged biodegradable plastic PLA under different exposure conditions. J. Environ. Chem. Eng. 2023 11 1 109256 10.1016/j.jece.2022.109256
    [Google Scholar]
  23. Xu Q. Torres J.E. Hakim M. Babiak P.M. Pal P. Battistoni C.M. Nguyen M. Panitch A. Solorio L. Liu J.C. Collagen- and hyaluronic acid-based hydrogels and their biomedical applications. Mater. Sci. Eng. Rep. 2021 146 100641 10.1016/j.mser.2021.100641 34483486
    [Google Scholar]
  24. Ying H. Zhou J. Wang M. Su D. Ma Q. Lv G. Chen J. In situ formed collagen-hyaluronic acid hydrogel as biomimetic dressing for promoting spontaneous wound healing. Mater. Sci. Eng. C 2019 101 487 498 10.1016/j.msec.2019.03.093 31029343
    [Google Scholar]
  25. Chang K.C. Lin D.J. Wu Y.R. Chang C.W. Chen C.H. Ko C.L. Chen W.C. Characterization of genipin-crosslinked gelatin/hyaluronic acid-based hydrogel membranes and loaded with hinokitiol: In vitro evaluation of antibacterial activity and biocompatibility. Mater. Sci. Eng. C 2019 105 110074 10.1016/j.msec.2019.110074 31546393
    [Google Scholar]
  26. Zhang X. Wan H. Lan W. Miao F. Qin M. Wei Y. Hu Y. Liang Z. Huang D. Fabrication of adhesive hydrogels based on poly (acrylic acid) and modified hyaluronic acid. J. Mech. Behav. Biomed. Mater. 2022 126 105044 10.1016/j.jmbbm.2021.105044 34915359
    [Google Scholar]
  27. Dromel P.C. Singh D. Andres E. Likes M. Kurisawa M. Alexander-Katz A. Spector M. Young M. A bioinspired gelatin-hyaluronic acid-based hybrid interpenetrating network for the enhancement of retinal ganglion cells replacement therapy. NPJ Regen. Med. 2021 6 1 85 10.1038/s41536‑021‑00195‑3 34930951
    [Google Scholar]
  28. Hao R. Wang C. Yang C. Chang J. Wang X. Yuan B. Xu H. Zhou S. Fan C. Li Z. Transdermal delivery of Protocatechuic aldehyde using hyaluronic acid/gelatin-based microneedles for the prevention and treatment of hypertrophic scars. Eur. J. Pharm. Biopharm. 2023 184 202 213 10.1016/j.ejpb.2023.02.003 36773724
    [Google Scholar]
  29. Hu W.W. Lin Y.T. Alginate/polycaprolactone composite fibers as multifunctional wound dressings. Carbohydr. Polym. 2022 289 119440 10.1016/j.carbpol.2022.119440 35483853
    [Google Scholar]
  30. Serafin A. Culebras M. Collins M.N. Synthesis and evaluation of alginate, gelatin, and hyaluronic acid hybrid hydrogels for tissue engineering applications. Int. J. Biol. Macromol. 2023 233 123438 10.1016/j.ijbiomac.2023.123438 36709805
    [Google Scholar]
  31. Yao Z.Y. Qin J. Gong J.S. Ye Y.H. Qian J.Y. Li H. Xu Z.H. Shi J.S. Versatile strategies for bioproduction of hyaluronic acid driven by synthetic biology. Carbohydr. Polym. 2021 264 118015 10.1016/j.carbpol.2021.118015 33910717
    [Google Scholar]
  32. Meyer K. Palmer J.W. The polysaccharide of the vitreous humor. J. Biol. Chem. 1934 107 3 629 634 10.1016/S0021‑9258(18)75338‑6
    [Google Scholar]
  33. Rohit S.G. Jyoti P.K. Subbi R.R.T. Naresh M. Senthilkumar S. Kinetic modeling of hyaluronic acid production in palmyra palm (Borassus flabellifer) based medium by Streptococcus zooepidemicus MTCC 3523. Biochem. Eng. J. 2018 137 284 293 10.1016/j.bej.2018.06.011
    [Google Scholar]
  34. Wei M. Huang Y. Zhu J. Qiao Y. Xiao N. Jin M. Gao H. Huang Y. Hu X. Li O. Advances in hyaluronic acid production: Biosynthesis and genetic engineering strategies based on Streptococcus — A review. Int. J. Biol. Macromol. 2024 270 Pt 2 132334 10.1016/j.ijbiomac.2024.132334 38744368
    [Google Scholar]
  35. Cheng F. Gong Q. Yu H. Stephanopoulos G. High‐titer biosynthesis of hyaluronic acid by recombinant Corynebacterium glutamicum. Biotechnol. J. 2016 11 4 574 584 10.1002/biot.201500404 26709615
    [Google Scholar]
  36. Amjad Zanjani F.S. Afrasiabi S. Norouzian D. Ahmadian G. Hosseinzadeh S.A. Fayazi Barjin A. Cohan R.A. Keramati M. Hyaluronic acid production and characterization by novel Bacillus subtilis harboring truncated Hyaluronan Synthase. AMB Express 2022 12 1 88 10.1186/s13568‑022‑01429‑3 35821141
    [Google Scholar]
  37. Cerminati S. Leroux M. Anselmi P. Peirú S. Alonso J.C. Priem B. Menzella H.G. Low cost and sustainable hyaluronic acid production in a manufacturing platform based on Bacillus subtilis 3NA strain. Appl. Microbiol. Biotechnol. 2021 105 8 3075 3086 10.1007/s00253‑021‑11246‑6 33818671
    [Google Scholar]
  38. Mao Z. Chen R.R. Recombinant synthesis of hyaluronan by Agrobacterium sp. Biotechnol. Prog. 2007 0 0 0 10.1021/bp070113n 17705506
    [Google Scholar]
  39. Jin P. Kang Z. Yuan P. Du G. Chen J. Production of specific-molecular-weight hyaluronan by metabolically engineered Bacillus subtilis 168. Metab. Eng. 2016 35 21 30 10.1016/j.ymben.2016.01.008 26851304
    [Google Scholar]
  40. Güngör G. Gedikli S. Toptaş Y. Akgün D.E. Demirbilek M. Yazıhan N. Aytar Çelik P. Denkbaş E.B. Çabuk A. Bacterial hyaluronic acid production through an alternative extraction method and its characterization. J. Chem. Technol. Biotechnol. 2019 94 6 1843 1852 10.1002/jctb.5957
    [Google Scholar]
  41. Lai Z.W. Rahim R.A. Ariff A.B. Mohamad R. Biosynthesis of high molecular weight hyaluronic acid by Streptococcus zooepidemicus using oxygen vector and optimum impeller tip speed. J. Biosci. Bioeng. 2012 114 3 286 291 10.1016/j.jbiosc.2012.04.011 22608992
    [Google Scholar]
  42. Don M.M. Shoparwe N.F. Kinetics of hyaluronic acid production by Streptococcus zooepidemicus considering the effect of glucose. Biochem. Eng. J. 2010 49 1 95 103 10.1016/j.bej.2009.12.001
    [Google Scholar]
  43. Chen S.J. Chen J.L. Huang W.C. Chen H.L. Fermentation process development for hyaluronic acid production by Streptococcus zooepidemicus ATCC 39920. Korean J. Chem. Eng. 2009 26 2 428 432 10.1007/s11814‑009‑0072‑3
    [Google Scholar]
  44. Liu J. Wang Y. Li Z. Ren Y. Zhao Y. Zhao G. Efficient production of high-molecular-weight hyaluronic acid with a two-stage fermentation. RSC Advances 2018 8 63 36167 36171 10.1039/C8RA07349J 35558483
    [Google Scholar]
  45. Wang J. He W. Wang T. Li M. Li X. Sucrose-modified iron nanoparticles for highly efficient microbial production of hyaluronic acid by Streptococcus zooepidemicus. Colloids Surf. B Biointerfaces 2021 205 111854 10.1016/j.colsurfb.2021.111854 34022706
    [Google Scholar]
  46. Amado I.R. Vázquez J.A. Pastrana L. Teixeira J.A. Microbial production of hyaluronic acid from agro-industrial by-products: Molasses and corn steep liquor. Biochem. Eng. J. 2017 117 181 187 10.1016/j.bej.2016.09.017
    [Google Scholar]
  47. Flores-Méndez D.A. Pelayo-Ortiz C. Martínez Gómez Á.J. Toriz G. Guatemala-Morales G.M. Corona-González R.I. Evaluation of Agave tequilana by-products for microbial production of hyaluronic acid. Bioresour. Technol. Rep. 2023 21 101366 10.1016/j.biteb.2023.101366
    [Google Scholar]
  48. Flores-Méndez D.A. Ramos-Ibarra J.R. Toriz G. Arriola-Guevara E. Guatemala-Morales G. Corona-González R.I. Rapoport A. Hallsworth J.E. Ruchala J. Dallas T.D. Bored coffee beans for production of hyaluronic acid by Streptococcus zooepidemicus. Fermentation (Basel) 2021 7 3 121 10.3390/fermentation7030121
    [Google Scholar]
  49. Pan N.C. Vignoli A. Baldo C. Cristina H. Pereira B. Sérgio R. Ferreira Da Silva S. Pedrine M.A. Celligoi C. Agroindustrial byproducts for the production of hyaluronic acid by Streptococcus zooepidemicus ATCC 39920. Int J of Sci & Technol Res 2015 4 114 118
    [Google Scholar]
  50. Pan N.C. Vignoli J.A. Baldo C. Pereira H.C.B. Silva R.S.D.S.F. Celligoi M.A.P.C. Effect of fermentation conditions on the production of hyaluronic acid by Streptococcus zooepidemicus ATCC 39920. Acta Sci. Biol. Sci. 2015 37 4 411 417 10.4025/actascibiolsci.v37i4.28176
    [Google Scholar]
  51. Pan N.C. Pereira H.C.B. da Silva M.L.C. Vasconcelos A.F.D. Celligoi M.A.P.C. Improvement production of hyaluronic acid by Streptococcus zooepidemicus in sugarcane molasses. Appl. Biochem. Biotechnol. 2017 182 1 276 293 10.1007/s12010‑016‑2326‑y 27900664
    [Google Scholar]
  52. Patil K.P. Kamalja K.K. Chaudhari B.L. Optimization of medium components for hyaluronic acid production by Streptococcus zooepidemicus MTCC 3523 using a statistical approach. Carbohydr. Polym. 2011 86 4 1573 1577 10.1016/j.carbpol.2011.06.065
    [Google Scholar]
  53. Benedini L.J. Santana M.H.A. Effects of soy peptone on the inoculum preparation of Streptococcus zooepidemicus for production of hyaluronic acid. Bioresour. Technol. 2013 130 798 800 10.1016/j.biortech.2012.12.161 23369518
    [Google Scholar]
  54. Vázquez J.A. Montemayor M.I. Fraguas J. Murado M.A. Hyaluronic acid production by Streptococcus zooepidemicus in marine by-products media from mussel processing wastewaters and tuna peptone viscera. Microb. Cell Fact. 2010 9 1 46 10.1186/1475‑2859‑9‑46 20546615
    [Google Scholar]
  55. Vázquez J.A. Montemayor M.I. Fraguas J. Murado M.A. High production of hyaluronic and lactic acids by Streptococcus zooepidemicus in fed-batch culture using commercial and marine peptones from fishing by-products. Biochem. Eng. J. 2009 44 2-3 125 130 10.1016/j.bej.2008.11.007
    [Google Scholar]
  56. Song J.M. Im J-H. Kang J-H. Kang D-J. A simple method for hyaluronic acid quantification in culture broth. Carbohydr. Polym. 2009 78 3 633 634 10.1016/j.carbpol.2009.04.033
    [Google Scholar]
  57. Huang W.C. Chen S.J. Chen T.L. Production of hyaluronic acid by repeated batch fermentation. Biochem. Eng. J. 2008 40 3 460 464 10.1016/j.bej.2008.01.021
    [Google Scholar]
  58. Arslan N.P. Aydogan M.N. Evaluation of Sheep Wool Protein Hydrolysate and Molasses as Low-Cost Fermentation Substrates for Hyaluronic Acid Production by Streptococcus zooepidemicus ATCC 35246. Waste Biomass Valoriz. 2021 12 2 925 935 10.1007/s12649‑020‑01062‑w
    [Google Scholar]
  59. Shah M.V. Badle S.S. Ramachandran K.B. Hyaluronic acid production and molecular weight improvement by redirection of carbon flux towards its biosynthesis pathway. Biochem. Eng. J. 2013 80 53 60 10.1016/j.bej.2013.09.013
    [Google Scholar]
  60. Patil K.P. Patil D.K. Chaudhari B.L. Chincholkar S.B. Production of hyaluronic acid from Streptococcus zooepidemicus MTCC 3523 and its wound healing activity. J. Biosci. Bioeng. 2011 111 3 286 288 10.1016/j.jbiosc.2010.10.012 21109488
    [Google Scholar]
  61. Dische Z. A new specific color reaction of hexuronic acids. J. Biol. Chem. 1947 167 1 189 198 10.1016/S0021‑9258(17)35155‑4 20281638
    [Google Scholar]
  62. Bitter T. Muir H.M. A modified uronic acid carbazole reaction. Anal. Biochem. 1962 4 4 330 334 10.1016/0003‑2697(62)90095‑7 13971270
    [Google Scholar]
  63. Chen Y.H. Wang Q. Establishment of CTAB Turbidimetric method to determine hyaluronic acid content in fermentation broth. Carbohydr. Polym. 2009 78 1 178 181 10.1016/j.carbpol.2009.04.037
    [Google Scholar]
  64. Oueslati N. Leblanc P. Harscoat-Schiavo C. Rondags E. Meunier S. Kapel R. Marc I. CTAB turbidimetric method for assaying hyaluronic acid in complex environments and under cross-linked form. Carbohydr. Polym. 2014 112 102 108 10.1016/j.carbpol.2014.05.039 25129722
    [Google Scholar]
  65. Di Ferrante N. Turbidimetric measurement of acid mucopolysaccharides and hyaluronidase activity. J. Biol. Chem. 1956 220 1 303 306 10.1016/S0021‑9258(18)65354‑2 13319348
    [Google Scholar]
  66. Blumenkrantz N. Asboe-Hansen G. New method for quantitative determination of uronic acids. Anal. Biochem. 1973 54 2 484 489 10.1016/0003‑2697(73)90377‑1 4269305
    [Google Scholar]
  67. Murado M.A. Vázquez J.A. Montemayor M.I. Cabo M.L. González M.P. Two mathematical models for the correction of carbohydrate and protein interference in the determination of uronic acids by the m ‐hydroxydiphenyl method. Biotechnol. Appl. Biochem. 2005 41 3 209 216 10.1042/BA20040127 15330763
    [Google Scholar]
  68. Oliveira A.H. Ogrodowski C.C. Macedo A.C. Santana M.H.A. Gonçalves L.R.B. Cashew apple juice as microbial cultivation medium for non-immunogenic hyaluronic acid production. Braz. J. Microbiol. 2013 44 4 1097 1104 10.1590/S1517‑83822014005000017 24688498
    [Google Scholar]
  69. Izawa N. Hanamizu T. Sone T. Chiba K. Effects of fermentation conditions and soybean peptide supplementation on hyaluronic acid production by Streptococcus thermophilus strain YIT 2084 in milk. J. Biosci. Bioeng. 2010 109 4 356 360 10.1016/j.jbiosc.2009.10.011 20226377
    [Google Scholar]
  70. de Macedo A.C. Santana M.H.A. Hyaluronic acid depolymerization by ascorbate-redox effects on solid state cultivation of Streptococcus zooepidemicus in cashew apple fruit bagasse. World J. Microbiol. Biotechnol. 2012 28 5 2213 2219 10.1007/s11274‑012‑1028‑z 22806044
    [Google Scholar]
  71. Laurent T.C. Ryan M. Pietruszkiewicz A. Fractionation of hyaluronic acid the polydispersity of hyaluronic acid from the bovine vitreous body. Biochim. Biophys. Acta 1960 42 476 485 10.1016/0006‑3002(60)90826‑X 13759521
    [Google Scholar]
  72. Vázquez J. Pastrana L. Piñeiro C. Teixeira J. Pérez-Martín R. Amado I. Production of hyaluronic acid by Streptococcus zooepidemicus on protein substrates obtained from Scyliorhinus canicula discards. Mar. Drugs 2015 13 10 6537 6549 10.3390/md13106537 26512678
    [Google Scholar]
  73. Global Beer Consumption by Country in 2021. Kirin Holdings 2022
    [Google Scholar]
  74. Beer Market Size, Share & Trends Analysis Report By Product (Lager, Ale, Stout), By Packaging (Bottles, Cans), By Production (Macro, Micro, Craft), By Distribution Channel (On-trade, Off-trade), By Region, And Segment Forecasts, 2022 - 2030. Grand View Research 2022
    [Google Scholar]
  75. Saraiva B.R. Anjo F.A. Vital A.C.P. Silva L.H.M. Ogawa C.Y.L. Sato F. Coimbra L.B. Matumoto-Pintro P.T. Waste from brewing (trub) as a source of protein for the food industry. Int. J. Food Sci. Technol. 2019 54 4 1247 1255 10.1111/ijfs.14101
    [Google Scholar]
  76. Jacob F.F. Striegel L. Rychlik M. Hutzler M. Methner F.J. Yeast extract production using spent yeast from beer manufacture: influence of industrially applicable disruption methods on selected substance groups with biotechnological relevance. Eur. Food Res. Technol. 2019 245 6 1169 1182 10.1007/s00217‑019‑03237‑9
    [Google Scholar]
  77. Vieira E.F. Carvalho J. Pinto E. Cunha S. Almeida A.A. Ferreira I.M.P.L.V.O. Nutritive value, antioxidant activity and phenolic compounds profile of brewer’s spent yeast extract. J. Food Compos. Anal. 2016 52 44 51 10.1016/j.jfca.2016.07.006
    [Google Scholar]
  78. Marson G.V. Machado M.T.C. de Castro R.J.S. Hubinger M.D. Sequential hydrolysis of spent brewer’s yeast improved its physico-chemical characteristics and antioxidant properties: A strategy to transform waste into added-value biomolecules. Process Biochem. 2019 84 91 102 10.1016/j.procbio.2019.06.018
    [Google Scholar]
  79. Jaeger A. Arendt E.K. Zannini E. Sahin A.W. Brewer’s Spent Yeast (BSY), an Underutilized Brewing By-Product. Fermentation (Basel) 2020 6 4 123 10.3390/fermentation6040123
    [Google Scholar]
  80. Mussatto S.I. Brewer’s spent grain: a valuable feedstock for industrial applications. J. Sci. Food Agric. 2014 94 7 1264 1275 10.1002/jsfa.6486 24254316
    [Google Scholar]
  81. Mussatto S.I. Roberto I.C. Acid hydrolysis and fermentation of brewer’s spent grain to produce xylitol. J. Sci. Food Agric. 2005 85 14 2453 2460 10.1002/jsfa.2276
    [Google Scholar]
  82. Mussatto S.I. Moncada J. Roberto I.C. Cardona C.A. Techno-economic analysis for brewer’s spent grains use on a biorefinery concept: The Brazilian case. Bioresour. Technol. 2013 148 302 310 10.1016/j.biortech.2013.08.046 24055973
    [Google Scholar]
  83. Pinheiro T. Coelho E. Romaní A. Domingues L. Intensifying ethanol production from brewer’s spent grain waste: Use of whole slurry at high solid loadings. N. Biotechnol. 2019 53 1 8 10.1016/j.nbt.2019.06.005 31195160
    [Google Scholar]
  84. Sganzerla W.G. Buller L.S. Mussatto S.I. Forster-Carneiro T. Techno-economic assessment of bioenergy and fertilizer production by anaerobic digestion of brewer’s spent grains in a biorefinery concept. J. Clean. Prod. 2021 297 126600 10.1016/j.jclepro.2021.126600
    [Google Scholar]
  85. Nocente F. Taddei F. Galassi E. Gazza L. Upcycling of brewers’ spent grain by production of dry pasta with higher nutritional potential. Lebensm. Wiss. Technol. 2019 114 108421 10.1016/j.lwt.2019.108421
    [Google Scholar]
  86. Outeiriño D. Costa-Trigo I. Pinheiro de Souza Oliveira R. Pérez Guerra N. Domínguez J.M. A novel approach to the biorefinery of brewery spent grain. Process Biochem. 2019 85 135 142 10.1016/j.procbio.2019.06.007
    [Google Scholar]
  87. Emmanuel J.K. Nganyira P.D. Shao G.N. Evaluating the potential applications of brewers’ spent grain in biogas generation, food and biotechnology industry: A review. Heliyon 2022 8 10 e11140 10.1016/j.heliyon.2022.e11140 36340001
    [Google Scholar]
  88. Liang S. Wan C. Carboxylic acid production from brewer’s spent grain via mixed culture fermentation. Bioresour. Technol. 2015 182 179 183 10.1016/j.biortech.2015.01.082 25698409
    [Google Scholar]
  89. Mussatto S.I. Fernandes M. Mancilha I.M. Roberto I.C. Effects of medium supplementation and pH control on lactic acid production from brewer’s spent grain. Biochem. Eng. J. 2008 40 3 437 444 10.1016/j.bej.2008.01.013
    [Google Scholar]
  90. Plaza P.E. Gallego-Morales L.J. Peñuela-Vásquez M. Lucas S. García-Cubero M.T. Coca M. Biobutanol production from brewer’s spent grain hydrolysates by Clostridium beijerinckii. Bioresour. Technol. 2017 244 Pt 1 166 174 10.1016/j.biortech.2017.07.139 28779668
    [Google Scholar]
  91. Weiermüller J. Akermann A. Laudensack W. Chodorski J. Blank L.M. Ulber R. Brewers’ spent grain as carbon source for itaconate production with engineered Ustilago maydis. Bioresour. Technol. 2021 336 125262 10.1016/j.biortech.2021.125262 34044241
    [Google Scholar]
  92. Pabbathi N.P.P. Velidandi A. Pogula S. Gandam P.K. Baadhe R.R. Sharma M. Sirohi R. Thakur V.K. Gupta V.K. Brewer’s spent grains-based biorefineries: A critical review. Fuel 2022 317 123435 10.1016/j.fuel.2022.123435
    [Google Scholar]
  93. Paz A. Outeiriño D. Pérez Guerra N. Domínguez J.M. Enzymatic hydrolysis of brewer’s spent grain to obtain fermentable sugars. Bioresour. Technol. 2019 275 402 409 10.1016/j.biortech.2018.12.082 30605827
    [Google Scholar]
  94. Mussatto S.I. Roberto I.C. Chemical characterization and liberation of pentose sugars from brewer’s spent grain. J. Chem. Technol. Biotechnol. 2006 81 3 268 274 10.1002/jctb.1374
    [Google Scholar]
  95. Rojas-Chamorro J.A. Romero-García J.M. Cara C. Romero I. Castro E. Improved ethanol production from the slurry of pretreated brewers’ spent grain through different co-fermentation strategies. Bioresour. Technol. 2020 296 122367 10.1016/j.biortech.2019.122367 31727558
    [Google Scholar]
  96. Alonso-Riaño P. Melgosa R. Trigueros E. Illera A.E. Beltrán S. Sanz M.T. Valorization of brewer’s spent grain by consecutive supercritical carbon dioxide extraction and enzymatic hydrolysis. Food Chem. 2022 396 133493 10.1016/j.foodchem.2022.133493 35879111
    [Google Scholar]
  97. Østby H. Hansen L.D. Horn S.J. Eijsink V.G.H. Várnai A. Enzymatic processing of lignocellulosic biomass: principles, recent advances and perspectives. J. Ind. Microbiol. Biotechnol. 2020 47 9-10 623 657 10.1007/s10295‑020‑02301‑8 32840713
    [Google Scholar]
  98. Horn S.J. Nguyen Q.D. Westereng B. Nilsen P.J. Eijsink V.G.H. Screening of steam explosion conditions for glucose production from non-impregnated wheat straw. Biomass Bioenergy 2011 35 12 4879 4886 10.1016/j.biombioe.2011.10.013
    [Google Scholar]
  99. Sun S. Sun S. Cao X. Sun R. The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresour. Technol. 2016 199 49 58 10.1016/j.biortech.2015.08.061 26321216
    [Google Scholar]
  100. Xu Z. Huang F. Pretreatment methods for bioethanol production. Appl. Biochem. Biotechnol. 2014 174 1 43 62 10.1007/s12010‑014‑1015‑y 24972651
    [Google Scholar]
  101. Yafetto L. Odamtten G.T. Wiafe-Kwagyan M. Valorization of agro-industrial wastes into animal feed through microbial fermentation: A review of the global and Ghanaian case. Heliyon 2023 9 4 e14814 10.1016/j.heliyon.2023.e14814 37025888
    [Google Scholar]
  102. Amin M, Hadzima-Nyarko M, Saad Agwa I, Zeyad AM, Tayeh BA, Adesina A. Possibilities for the application of agro-industrial wastes in cementitious materials: A brief review of the Brazilian perspective. Cleaner Materials 2022 3 100040 10.1016/j.clema.2021.100040
    [Google Scholar]
  103. Yaashikaa P.R. Senthil Kumar P. Varjani S. Valorization of agro-industrial wastes for biorefinery process and circular bioeconomy: A critical review. Bioresour. Technol. 2022 343 126126 10.1016/j.biortech.2021.126126 34673193
    [Google Scholar]
  104. Kumar V. Sharma N. Umesh M. Selvaraj M. Al-Shehri B.M. Chakraborty P. Duhan L. Sharma S. Pasrija R. Awasthi M.K. Lakkaboyana S.R. Andler R. Bhatnagar A. Maitra S.S. RETRACTED: Emerging challenges for the agro-industrial food waste utilization: A review on food waste biorefinery. Bioresour. Technol. 2022 362 127790 10.1016/j.biortech.2022.127790 35973569
    [Google Scholar]
/content/journals/cac/10.2174/0115734110343521241202060530
Loading
/content/journals/cac/10.2174/0115734110343521241202060530
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test