Skip to content
2000
image of Isolation of Hemolymph-derived Antifungal Product from Marine Crab Dromia dehaani

Abstract

Background

Crab hemolymph are rich in medicinally important secondary metabolites.

Objectives

The objective of this study was to isolate, identify, and establish the crab hemolymph-derived secondary metabolites for the antifungal activity.

Methods

Several brachyuran crabs were investigated against 10 pathogenic strains. The disc diffusion method was used to investigate hemolymph extracts to identify potential brachyuran crabs showing antifungal activity. The moderately purified hemolymph was taken for RP-HPLC using a C-18 column. The obtained GC-MS-NIST formula/compound details were used to unveil the possible structures of obtained compounds. Individual compounds were confirmed by comparing the obtained structures with 1H NMR & 13C NMR results. The isolated Sparsomycin was subjected to a molecular docking Crystal Structure of Fungal RNA Kinase (PDB ID: 5U32).

Results

Notably, most of the crab species in this study exhibited activity against various strains of fungi. The current findings demonstrated that the hemolymph of the crab exhibits broad-spectrum activity against pathogenic fungi. The showed the uppermost antimicrobial activity, and the most potent extracts obtained from the sponge crab, displayed activity against several fungal organisms that included and . was selected for detailed investigations as the hemolymph of has the potential to be developed as an anti-microbial agent to treat infections.

Conclusion

The compounds isolated, identified, and established as antifungal agents could be the future drugs for restricting major fungal infections.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110343339250120103702
2025-01-27
2025-04-02
Loading full text...

Full text loading...

References

  1. Yacobucci K.L. Natural medicines. J. Med. Libr. Assoc. 2016 104 4 371 374 10.3163/1536‑5050.104.4.029
    [Google Scholar]
  2. Molinski T.F. Dalisay D.S. Lievens S.L. Saludes J.P. Drug development from marine natural products. Nat. Rev. Drug Discov. 2009 8 1 69 85 10.1038/nrd2487 19096380
    [Google Scholar]
  3. Malve H. Exploring the ocean for new drug developments: Marine pharmacology. J. Pharm. Bioallied Sci. 2016 8 2 83 91 10.4103/0975‑7406.171700 27134458
    [Google Scholar]
  4. Li G. Guo J. Wang Z. Liu Y. Song H. Wang Q. Marine natural products for drug discovery: First discovery of kealiinines A–C and their derivatives as novel antiviral and antiphytopathogenic fungus agents. J. Agric. Food Chem. 2018 66 28 7310 7318 10.1021/acs.jafc.8b02238 29975055
    [Google Scholar]
  5. Cundliffe E. How antibiotic-producing organisms avoid suicide. Annu. Rev. Microbiol. 1989 43 1 207 233 10.1146/annurev.mi.43.100189.001231 2679354
    [Google Scholar]
  6. Lázaro E. Sanz E. Remacha M. Ballesta J.P.G. Characterization of sparsomycin resistance in Streptomyces sparsogenes. Antimicrob. Agents Chemother. 2002 46 9 2914 2919 10.1128/AAC.46.9.2914‑2919.2002 12183247
    [Google Scholar]
  7. Shirling E.B. Gottlieb D. Methods for characterization of Streptomyces species. Int. J. Syst. Bacteriol. 1966 16 3 313 340 10.1099/00207713‑16‑3‑313
    [Google Scholar]
  8. Ravel J.M. Shorey R.L. Shive W. Relation between peptidyl transferase activity and interaction of ribosomes with phenylalanyl transfer ribonucleic acid-guanosine 5′-triphosphate-TIu complex. Biochemistry 1970 9 25 5028 5033 10.1021/bi00827a030 4921071
    [Google Scholar]
  9. Zylicz Z. Hofs H.P. Wagener D.J. Van Rennes H. Wessels J.M. van den Broek L.A. Ottenheijm H.C. Modulation of the in vitro cytotoxicity of seven anticancer drugs by protein synthesis inhibition using sparsomycin. Anticancer Res. 1989 9 6 1835 1840 2483308
    [Google Scholar]
  10. Remus B.S. Goldgur Y. Shuman S. Structural basis for the GTP specificity of the RNA kinase domain of fungal tRNA ligase. Nucleic Acids Res. 2017 45 22 12945 12953 10.1093/nar/gkx1159 29165709
    [Google Scholar]
  11. Anbuchezian R. Ravichandran S. Karthick Rajan D. Tilivi S. Prabha Devi S. Identification and functional characterization of antimicrobial peptide from the marine crab Dromia dehaani. Microb. Pathog. 2018 125 60 65 10.1016/j.micpath.2018.08.056 30165115
    [Google Scholar]
  12. Durairaj K.R. Saravanan K. Mohan K. Ravichandran S. Purification, characterization and biological functions of metalloprotein isolated from haemolymph of mud crab Scylla serrata (Forskal, 1775). Int. J. Biol. Macromol. 2020 164 3901 3908 10.1016/j.ijbiomac.2020.08.228 32889000
    [Google Scholar]
  13. Bauer A.W. Kirby W.M.M. Sherris J.C. Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1966 45 4_ts 493 496 10.1093/ajcp/45.4_ts.493 5325707
    [Google Scholar]
  14. Zgoda J.R. Porter J.R. A convenient microdilution method for screening natural products against bacteria and fungi. Pharm. Biol. 2001 39 3 221 225 10.1076/phbi.39.3.221.5934
    [Google Scholar]
  15. Manohar C.S. Manikandan A. Sridhar P. Sivakumar A. Siva Kumar B. Reddy S.R. Drug repurposing of novel quinoline acetohydrazide derivatives as potent COX-2 inhibitors and anti-cancer agents. J. Mol. Struct. 2018 1154 437 444 10.1016/j.molstruc.2017.10.075
    [Google Scholar]
  16. Sudhapriya N. Manikandan A. Kumar M.R. Perumal P.T. Cu-mediated synthesis of differentially substituted diazepines as AChE inhibitors; validation through molecular docking and Lipinski’s filter to develop novel anti-neurodegenerative drugs. Bioorg. Med. Chem. Lett. 2019 29 11 1308 1312 10.1016/j.bmcl.2019.04.002 30956014
    [Google Scholar]
  17. Deena G.R.M. Manikandan A. Subha C. Abishek S. Tejaswini P. Jeevitha S. Palaniraja S. EGFR Kinase Inhibiting Amino-enones for Breast Cancer; CADD Approach. Curr Comput Aided Drug Des. 2024 10.2174/0115734099266822231219073332
    [Google Scholar]
  18. Manikandan A. Jeevitha S. Vusa L. Peptidomimetics for CVD screened via TRADD-TRAF2 complex interface assessments. In Silico Pharmacol. 2023 11 1 28 10.1007/s40203‑023‑00166‑0 37899969
    [Google Scholar]
  19. Alagumuthu M. Rajpoot S. Baig M.S. Structure-based design of novel peptidomimetics targeting the SARS-CoV-2 spike protein. Cell. Mol. Bioeng. 2021 14 2 177 185 10.1007/s12195‑020‑00658‑5 33072222
    [Google Scholar]
  20. Jeevitha S. Manikandan A. Pavan P. Rubalakshmi G. Anticandidal effect of new imidazole derivatives over aspartic protease inhibition. Chem Biodivers. 2024 21 1 e202301276 10.1002/cbdv.202301276 38175829
    [Google Scholar]
  21. Charlet M. Lagueux M. Reichhart J.M. Hoffmann D. Braun A. Meister M. Cloning of the gene encoding the antibacterial peptide drosocin involved in Drosophila immunity. Expression studies during the immune response. Eur. J. Biochem. 1996 241 3 699 706 10.1111/j.1432‑1033.1996.00699.x 8944755
    [Google Scholar]
  22. Destoumieux D. Bulet P. Strub J.M. van Dorsselaer A. Bachère E. Recombinant expression and range of activity of penaeidins, antimicrobial peptides from penaeid shrimp. Eur. J. Biochem. 1999 266 2 335 346 10.1046/j.1432‑1327.1999.00855.x 10561573
    [Google Scholar]
  23. Meng M. Ning J. Yu J. Chen D. Meng X. Xu J. Zhang J. Antitumor activity of recombinant antimicrobial peptide penaeidin-2 against kidney cancer cells. J. Huazhong Univ. Sci. Technolog. Med. Sci. 2014 34 4 529 534 10.1007/s11596‑014‑1310‑4 25135722
    [Google Scholar]
  24. RethnaPriya E. Ravichandran S. Gobinath T. Tilvi S. Devi S.P. Functional characterization of anti-cancer sphingolipids from the marine crab Dromia dehanni. Chem. Phys. Lipids 2019 221 73 82 10.1016/j.chemphyslip.2019.03.010 30922836
    [Google Scholar]
  25. Lazaro E. Van den Broek L.A. Felix A.S. Ottenheijm H.C. Ballesta J.P. Chemical, biochemical and genetic endeavors characterizing the interaction of sparsomycin with the ribosome. Biochimie 1991 73 7-8 1137 1143 10.1016/0300‑9084(91)90157‑V 1720666
    [Google Scholar]
  26. Franceschi F. Duffy E.M. Structure-based drug design meets the ribosome. Biochem. Pharmacol. 2006 71 7 1016 1025 10.1016/j.bcp.2005.12.026 16443192
    [Google Scholar]
  27. Ippolito J.A. Kanyo Z.F. Wang D. Franceschi F.J. Moore P.B. Steitz T.A. Duffy E.M. Crystal structure of the oxazolidinone antibiotic linezolid bound to the 50S ribosomal subunit. J. Med. Chem. 2008 51 12 3353 3356 10.1021/jm800379d 18494460
    [Google Scholar]
  28. Nissen P. Hansen J. Ban N. Moore P.B. Steitz T.A. The structural basis of ribosome activity in peptide bond synthesis. Science 2000 289 5481 920 930 10.1126/science.289.5481.920 10937990
    [Google Scholar]
  29. Moore P.B. Steitz T.A. The roles of RNA in the synthesis of protein. Cold Spring Harb. Perspect. Biol. 2011 3 11 a003780 10.1101/cshperspect.a003780 21068149
    [Google Scholar]
  30. Porse B.T. Kirillov S.V. Awayez M.J. Ottenheijm H.C. Garrett R.A. Direct crosslinking of the antitumor antibiotic sparsomycin, and its derivatives, to A2602 in the peptidyl transferase center of 23S-like rRNA within ribosome-tRNA complexes. Proc. Natl. Acad. Sci. USA 1991 96 16 9003 9008 10.1073/pnas.96.16.9003 10430885
    [Google Scholar]
  31. McFARLANE J.R. Yanoff M. Scheie H.G. Toxic retinopathy following sparsomycin therapy. Arch. Ophthalmol. 1966 76 4 532 540 10.1001/archopht.1966.03850010534011 5928140
    [Google Scholar]
  32. Cundliffe E. Thompson J. Ribose methylation and resistance to thiostrepton. Nature 1979 278 5707 859 861 10.1038/278859a0 440414
    [Google Scholar]
  33. Mermer A. Bayrak H. Alyar S. Alagumuthu M. Synthesis, DFT calculations, biological investigation, molecular docking studies of β-lactam derivatives. J. Mol. Struct. 2020 1208 127891 10.1016/j.molstruc.2020.127891
    [Google Scholar]
  34. Samy S. Dangate M.S. Alagumuthu M. Novel pyrazole‐biphenyl‐carboxamides for SARS‐CoV2 entry‐level restriction and microbial infections. J. Heterocycl. Chem. 2024 61 3 514 527 10.1002/jhet.4780
    [Google Scholar]
  35. Lyon G.M. Karatela S. Sunay S. Adiri Y. Candida Surveillance Study Investigators Antifungal susceptibility testing of Candida isolates from the Candida surveillance study. J. Clin. Microbiol. 2010 48 4 1270 1275 10.1128/JCM.02363‑09 20129963
    [Google Scholar]
  36. Abastabar M. Shokohi T. Rouhi Kord R. Badali H. Hashemi S.J. Ghasemi Z. Ghojoghi A. Baghi N. Abdollahi M. Hosseinpoor S. Rahimi N. Seifi Z. Gholami S. Haghani I. Jabari M.R. Pagheh A. In vitro activity of econazole in comparison with three common antifungal agents against clinical Candida strains isolated from superficial infections. Curr. Med. Mycol. 2015 1 4 7 12 10.18869/acadpub.cmm.1.4.7 28680998
    [Google Scholar]
/content/journals/cac/10.2174/0115734110343339250120103702
Loading
/content/journals/cac/10.2174/0115734110343339250120103702
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: hemolymph ; Aspergillus niger ; molecular docking ; brachyuran crabs ; sparsomycin ; Candida albicans
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test