Skip to content
2000
image of Identification of Volatile Organic Compounds (Distinct Biomarkers) Emitted by Cancer Cells Using Gas Chromatography-mass Spectrometry – A Review

Abstract

The utilization of Gas Chromatography-Mass Spectrometry (GC-MS) for the detection of Volatile Organic Compounds (VOCs) as potential biomarkers in cancer diagnostics is an evolving and promising field. This review outlines current exploratory and pilot studies that lay a fundamental groundwork for future research. Due to the complexity of the fecal and respiratory volatilome, influenced by a myriad of biological and environmental factors, it is crucial to expand research demographics to enhance data robustness and ensure the applicability of findings across diverse populations. We have also, herein, highlighted the dual capability of VOC analysis to detect cancer and differentiate between its stages, which is vital for customizing patient treatment plans and monitoring therapeutic efficacy. Furthermore, establishing quantifiable thresholds for VOC concentrations is essential for their clinical adoption as reliable indicators of cancer. The integration of GC-MS with machine learning and Artificial Intelligence (AI) could be useful for comprehensive metabolic profiles and facilitating the development of non-invasive and real-time diagnostic tools. The adoption of multi-omics approach promises a deeper understanding of cancer biology, potentially leading to personalized medicine and strategies finely tuned to individual molecular profiles. Hence, the research on VOCs as cancer biomarkers is set to offer transformative advancements in diagnostic technologies, ultimately improving patient outcomes through tailored therapeutic interventions.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110343270241022112317
2024-10-24
2024-11-22
Loading full text...

Full text loading...

References

  1. New report on global cancer burden in 2022 by world region and human development level. 2024 Available from: https://www.iarc.who.int/news-events/new-report-on-global-cancer-burden-in-2022-by-world-region-and-human-development-level/
  2. Balasamy S. Sundramoorthy A.K. EGFR-targeted fluorescence imaging for precision margin assessment in oral cancer surgery. Oral Oncol. 2024 150 106712 10.1016/j.oraloncology.2024.106712 38306756
    [Google Scholar]
  3. Rosen R. Bodnar M. Randolph J. Bailey C.J. Nickel C. Katsoulakis E. Mifsud M. Risk, prevention, screening and management of carotid artery stenosis in head & neck cancer patients - An evidence based review. Oral Oncol. 2024 156 106876 10.1016/j.oraloncology.2024.106876 38908097
    [Google Scholar]
  4. Paramasivam G. Palem V.V. Meenakshy S. Suresh L.K. Gangopadhyay M. Antherjanam S. Sundramoorthy A.K. Advances on carbon nanomaterials and their applications in medical diagnosis and drug delivery. Colloids Surf. B Biointerfaces 2024 241 114032 10.1016/j.colsurfb.2024.114032 38905812
    [Google Scholar]
  5. Sundramoorthy A.K. Senthil Kumar M.C. Ramya T. Atchudan R. Arya S. Biocompatible heteroatom doped carbon dots for cancer cell imaging and analysis. Oral Oncology Reports 2023 7 100089 10.1016/j.oor.2023.100089
    [Google Scholar]
  6. Nagarajan R.D. Kavitha J. Sundramoorthy A.K. Electrochemical detection and isolation of cancer cells using nano-materials based biosensors – A review. Int. J. Electrochem. Sci. 2023 8 7 100203 10.1016/j.ijoes.2023.100203
    [Google Scholar]
  7. Sundramoorthy A.K. Selection of best biomarker for the early detection of oral squamous cell carcinoma. Oral Oncology Reports 2024 9 100197 10.1016/j.oor.2024.100197
    [Google Scholar]
  8. Arumugam P. M, S.M.; Jayaseelan, V.P. A novel m6A reader RBFOX2 expression is increased in oral squamous cell carcinoma and promotes tumorigenesis. J. Stomatol. Oral Maxillofac. Surg. 2024 102041 102041 10.1016/j.jormas.2024.102041 39244024
    [Google Scholar]
  9. Ananya R.G. Pandi C. Kannan B. Pandi A. Prasad P. Jayaseelan V.P. Arumugam P. DYNC1I1 acts as a promising prognostic biomarker and is correlated with immune infiltration in head and neck squamous cell carcinoma. J. Stomatol. Oral Maxillofac. Surg. 2024 125 4 101734 10.1016/j.jormas.2023.101734 38072235
    [Google Scholar]
  10. Kavitha L. Priyadharsini J. V.; P, A.; A, P. Targeting compensatory proliferation signals in oral cancer. J. Oral Biol. Craniofac. Res. 2024 14 4 461 464 10.1016/j.jobcr.2024.05.014 38946920
    [Google Scholar]
  11. Bhardwaj J.K. Siwach A. Sachdeva S.N. Metabolomics and cellular altered pathways in cancer biology: A review. J. Biochem. Mol. Toxicol. 2024 38 9 e23807 10.1002/jbt.23807 39148273
    [Google Scholar]
  12. Giró Benet J. Seo M. Khine M. Gumà Padró J. Pardo Martnez A. Kurdahi F. Breast cancer detection by analyzing the volatile organic compound (VOC) signature in human urine. Sci. Rep. 2022 12 1 14873 10.1038/s41598‑022‑17795‑8 36050339
    [Google Scholar]
  13. Hu S. Ren H. Song Y. Liu F. Qian L. Zuo F. Meng L. Analysis of volatile compounds by GCMS reveals their rice cultivars. Sci. Rep. 2023 13 1 7973 10.1038/s41598‑023‑34797‑2 37198224
    [Google Scholar]
  14. Öncü T. Yüksel B. Binay E. Şen N. LC-MS/MS Investigation of nitrosamine impurities in certain Sartan group medicinal products available in Istanbul, Türkiye. Ann. Pharm. Fr. 2024 82 1 72 83 10.1016/j.pharma.2023.08.002 37567559
    [Google Scholar]
  15. Pandey S. Advances in metabolomics in critically ill patients with Sepsis and Septic Shock. Clin. Exp. Emerg. Med. 2024 10.15441/ceem.24.211 39026452
    [Google Scholar]
  16. Xie Y. Liu B. Wu Z. Identification of serum biomarkers and pathways of systemic lupus erythematosus with skin involvement through GC/MS-based metabolomics analysis. Clin. Cosmet. Investig. Dermatol. 2022 15 77 86 10.2147/CCID.S345372 35082507
    [Google Scholar]
  17. Li X. Shi L. Long Y. Wang C. Qian C. Li W. Tian Y. Duan Y. Volatile organic compounds in exhaled breath: A promising approach for accurate differentiation of lung adenocarcinoma and squamous cell carcinoma. J. Breath Res. 2024 18 4 046007 10.1088/1752‑7163/ad6474 39019071
    [Google Scholar]
  18. Chu Y. Ge D. Zhou J. Liu Y. Zheng X. Liu W. Ke L. Lu Y. Chu Y. Controlling glycolysis to generate characteristic volatile organic compounds of lung cancer cells. Sci. Rep. 2024 14 1 16561 10.1038/s41598‑024‑67379‑x 39020066
    [Google Scholar]
  19. Allard-Coutu A. Singh K. David D. Dobson V. Dahmer L. Heller B. Volatile organic compounds: A promising new frontier for cancer screening. Tumor Discovery 2024 3 2 2061 10.36922/td.2061
    [Google Scholar]
  20. Oxner M. Trang A. Mehta J. Forsyth C. Swanson B. Keshavarzian A. Bhushan A. The versatility and diagnostic potential of VOC Profiling for noninfectious diseases 42023, , 0002. 10.34133/bmef.0002 37849665
    [Google Scholar]
  21. Tumlinson J.H. The importance of volatile organic compounds in ecosystem functioning. J. Chem. Ecol. 2014 40 3 212 213 10.1007/s10886‑014‑0399‑z 24619729
    [Google Scholar]
  22. Lubes G. Goodarzi M. GC–MS based metabolomics used for the identification of cancer volatile organic compounds as biomarkers. J. Pharm. Biomed. Anal. 2018 147 313 322 10.1016/j.jpba.2017.07.013 28750734
    [Google Scholar]
  23. Shen Q. Liu Y. Li G. An T. A review of disrupted biological response associated with volatile organic compound exposure: Insight into identification of biomarkers. Sci. Total Environ. 2024 948 174924 10.1016/j.scitotenv.2024.174924 39047835
    [Google Scholar]
  24. Zhou M. Wang Q. Lu X. Zhang P. Yang R. Chen Y. Xia J. Chen D. Exhaled breath and urinary volatile organic compounds (VOCs) for cancer diagnoses, and microbial-related VOC metabolic pathway analysis: A systematic review and meta-analysis. Int. J. Surg. 2024 110 3 1755 1769 10.1097/JS9.0000000000000999 38484261
    [Google Scholar]
  25. Zheng W. Min Y. Pang K. Wu D. Sample collection and processing in volatile organic compound analysis for gastrointestinal cancers. Diagnostics (Basel) 2024 14 14 1563 10.3390/diagnostics14141563 39061700
    [Google Scholar]
  26. Dandekar S.P. Karekar A.K. Cancer metabolomics: A tool of clinical utility for early diagnosis of gynaecological cancers. Indian J. Med. Res. 2021 154 6 787 796 10.4103/ijmr.IJMR_239_19 35662083
    [Google Scholar]
  27. Zhu G. Wang Y. Wang W. Shang F. Pei B. Zhao Y. Kong D. Fan Z. Untargeted GC-MS-based metabolomics for early detection of colorectal cancer. Front. Oncol. 2021 11 729512 10.3389/fonc.2021.729512 34804922
    [Google Scholar]
  28. Uyanık A. Gas chromatography in anaesthesia. J. Chromatogr., Biomed. Appl. 1997 693 1 1 9 10.1016/S0378‑4347(97)00039‑X 9200513
    [Google Scholar]
  29. Bubli S.Y. Haque F. Khan M.S. Gas Chromatography and Mass Spectroscopy (GC-MS) technique for food analysis. Techniques to Measure Food Safety and Quality; Khan. S. Shafiur Rahman M. Cham Springer 2021 195 217 10.1007/978‑3‑030‑68636‑9_9
    [Google Scholar]
  30. Reichenbach S.E.G.C. article Seven - GC×GC data visualization, processing, and analysis. Comprehensive Analytical Chemistry. Elsevier 2022 185 229 10.1016/bs.coac.2021.10.006
    [Google Scholar]
  31. Fenselau C. Gas chromatography mass spectrometry: A report on the state of the art. Appl. Spectrosc. 1974 28 4 305 317 10.1366/000370274774332308
    [Google Scholar]
  32. Issitt T. Reilly M. Sweeney S.T. Brackenbury W.J. Redeker K.R. GC/MS analysis of hypoxic volatile metabolic markers in the MDA-MB-231 breast cancer cell line. Front. Mol. Biosci. 2023 10 1178269 10.3389/fmolb.2023.1178269 37251079
    [Google Scholar]
  33. Rubio-Sánchez R. Ríos-Reina R. Ubeda C. Effect of chemotherapy on urinary volatile biomarkers for lung cancer by HS‐SPME‐GC‐MS and chemometrics. Thorac. Cancer 2023 14 36 3522 3529 10.1111/1759‑7714.15154 37945317
    [Google Scholar]
  34. Monedeiro F. dos Reis R.B. Peria F.M. Sares C.T.G. De Martinis B.S. Investigation of sweat VOC profiles in assessment of cancer biomarkers using HS-GC-MS. J. Breath Res. 2020 14 2 026009 10.1088/1752‑7163/ab5b3c 31766027
    [Google Scholar]
  35. da Costa B.R.B. De Martinis B.S. Analysis of urinary VOCs using mass spectrometric methods to diagnose cancer: A review. Clin. Mass. Spectrom. 2020 18 27 37 10.1016/j.clinms.2020.10.004 34820523
    [Google Scholar]
  36. Banegas-Luna A.J. Peña-García J. Iftene A. Guadagni F. Ferroni P. Scarpato N. Zanzotto F.M. Bueno-Crespo A. Pérez-Sánchez H. Towards the interpretability of machine learning predictions for medical applications targeting personalised therapies: A cancer case survey. Int. J. Mol. Sci. 2021 22 9 4394 10.3390/ijms22094394 33922356
    [Google Scholar]
  37. Ratiu I.A. Ligor T. Bocos-Bintintan V. Szeliga J. Machała K. Jackowski M. Buszewski B. GC-MS application in determination of volatile profiles emitted by infected and uninfected human tissue. J. Breath Res. 2019 13 2 026003 10.1088/1752‑7163/aaf708 30530935
    [Google Scholar]
  38. Yang M. Jiang J. Hua L. Jiang D. Wang Y. Li D. Wang R. Zhang X. Li H. Rapid detection of volatile organic metabolites in urine by high-pressure photoionization mass spectrometry for breast cancer screening: A pilot study. Metabolites 2023 13 7 870 10.3390/metabo13070870 37512577
    [Google Scholar]
  39. Molnár-Perl I. Vasanits A. Horváth K. Simultaneous GC-MS quantitation of phosphoric, aliphatic and aromatic carboxylic acids, proline and hydroxymethylfurfurol as their trimethylsilyl derivatives: In model solutions II. Chromatographia 1998 48 111 119 10.1007/BF02467526
    [Google Scholar]
  40. Vazquez-Roig P. Pico Y. 2 - Gas chromatography and mass spectroscopy techniques for the detection of chemical contaminants and residues in foods. Chemical Contaminants and Residues in Food. Woodhead Publishing 2012 17 61 10.1533/9780857095794.1.17
    [Google Scholar]
  41. Zhang Y. Ren H. Tang X. Liu Q. Xiao W. Zhang Z. Tian Y A GC×GC-MS method based on solid-state modulator for non-targeted metabolomics: Comparison with traditional GC-MS method. J. Pharm. Biomed. Anal. 2024 243 116068 10.1016/j.jpba.2024.116068 38428247
    [Google Scholar]
  42. Rose A.R. Joshi M. Staretz M.E. Wood M. Brettell T.A. GC–MS analysis of eight aminoindanes using three derivatization reagents. J. Forensic Sci. 2023 68 4 1148 1161 10.1111/1556‑4029.15299 37282977
    [Google Scholar]
  43. Choudhury F.K. Pandey P. Meitei R. Cardona D. Gujar A.C. Shulaev V. GC-MS/MS profiling of plant metabolites. Methods Mol. Biol. 2022 2396 101 115 10.1007/978‑1‑0716‑1822‑6_9 34786679
    [Google Scholar]
  44. Silbergeld E.K. Davis D.L. Role of biomarkers in identifying and understanding environmentally induced disease. Clin. Chem. 1994 40 7 1363 1367 10.1093/clinchem/40.7.1363 8013120
    [Google Scholar]
  45. Meissner A. Biomarkers in medicine, drug discovery and environmental health.Edited by Vishal S. Vaidya and Joseph V. Bonventre. ChemMedChem 2011 6 11 2110 2110 10.1002/cmdc.201100303
    [Google Scholar]
  46. Martínez-Reyes I. Chandel N.S. Cancer metabolism: Looking forward. Nat. Rev. Cancer 2021 21 10 669 680 10.1038/s41568‑021‑00378‑6 34272515
    [Google Scholar]
  47. Viswanath P. Chaumeil M.M. Ronen S.M. Molecular imaging of metabolic reprograming in mutant IDH cells. Front. Oncol. 2016 6 60 10.3389/fonc.2016.00060 27014635
    [Google Scholar]
  48. Thomas A.N. Riazanskaia S. Cheung W. Xu Y. Goodacre R. Thomas C.L.P. Baguneid M.S. Bayat A. Novel noninvasive identification of biomarkers by analytical profiling of chronic wounds using volatile organic compounds. Wound Repair Regen. 2010 18 4 391 400 10.1111/j.1524‑475X.2010.00592.x 20492633
    [Google Scholar]
  49. Kataoka H. Saito K. Kato H. Masuda K. Noninvasive analysis of volatile biomarkers in human emanations for health and early disease diagnosis. Bioanalysis 2013 5 11 1443 1459 10.4155/bio.13.85 23742311
    [Google Scholar]
  50. Scaros O. Fisler R. Biomarker technology roundup: From discovery to clinical applications, a broad set of tools is required to translate from the lab to the clinic. Biotechniques 2005 38 Suppl. 4 30 32 10.2144/05384SU01 16528921
    [Google Scholar]
  51. Davis C.E. Bogan M.J. Sankaran S. Molina M.A. Loyola B.R. Zhao W. Benner W.H. Schivo M. Farquar G.R. Kenyon N.J. Frank M. Analysis of volatile and non-volatile biomarkers in human breath using differential mobility spectrometry (DMS). IEEE Sens. J. 2010 10 1 114 122 10.1109/JSEN.2009.2033562
    [Google Scholar]
  52. Mandal S. Li Z. Chatterjee T. Khanna K. Montoya K. Dai L. Petersen C. Li L. Tewari M. Johnson-Buck A. Walter N.G. Direct kinetic fingerprinting for high-accuracy single-molecule counting of diverse disease biomarkers. Acc. Chem. Res. 2021 54 2 388 402 10.1021/acs.accounts.0c00621 33382587
    [Google Scholar]
  53. Dunn B.K. Jegalian K. Greenwald P. Biomarkers for early detection and as surrogate endpoints in cancer prevention trials: Issues and opportunities. Recent Results Cancer Res. 2010 188 21 47 10.1007/978‑3‑642‑10858‑7_3 21253787
    [Google Scholar]
  54. Warburg O. On the origin of cancer cells. Science 1956 123 3191 309 314 10.1126/science.123.3191.309 13298683
    [Google Scholar]
  55. Poli D. Goldoni M. Corradi M. Acampa O. Carbognani P. Internullo E. Casalini A. Mutti A. Determination of aldehydes in exhaled breath of patients with lung cancer by means of on-fiber-derivatisation SPME–GC/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2010 878 27 2643 2651 10.1016/j.jchromb.2010.01.022 20149763
    [Google Scholar]
  56. Hakim M. Broza Y.Y. Barash O. Peled N. Phillips M. Amann A. Haick H. Volatile organic compounds of lung cancer and possible biochemical pathways. Chem. Rev. 2012 112 11 5949 5966 10.1021/cr300174a 22991938
    [Google Scholar]
  57. Pauling L. Robinson A.B. Teranishi R. Cary P. Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography. Proc. Natl. Acad. Sci. USA 1971 68 10 2374 2376 10.1073/pnas.68.10.2374 5289873
    [Google Scholar]
  58. Gordon S.M. Szidon J.P. Krotoszynski B.K. Gibbons R.D. O’Neill H.J. Volatile organic compounds in exhaled air from patients with lung cancer. Clin. Chem. 1985 31 8 1278 1282 10.1093/clinchem/31.8.1278 4017231
    [Google Scholar]
  59. O’Neill H.J. Gordon S.M. O’Neill M.H. Gibbons R.D. Szidon J.P. A computerized classification technique for screening for the presence of breath biomarkers in lung cancer. Clin. Chem. 1988 34 8 1613 1618 10.1093/clinchem/34.8.1613 3042190
    [Google Scholar]
  60. Gashimova E. Osipova A. Temerdashev A. Porkhanov V. Polyakov I. Perunov D. Dmitrieva E. Exhaled breath analysis using GC-MS and an electronic nose for lung cancer diagnostics. Anal. Methods 2021 13 40 4793 4804 10.1039/D1AY01163D 34581316
    [Google Scholar]
  61. Bajtarevic A. Ager C. Pienz M. Klieber M. Schwarz K. Ligor M. Ligor T. Filipiak W. Denz H. Fiegl M. Hilbe W. Weiss W. Lukas P. Jamnig H. Hackl M. Haidenberger A. Buszewski B. Miekisch W. Schubert J. Amann A. Noninvasive detection of lung cancer by analysis of exhaled breath. BMC Cancer 2009 9 1 348 10.1186/1471‑2407‑9‑348 19788722
    [Google Scholar]
  62. Song G. Qin T. Liu H. Xu G.B. Pan Y.Y. Xiong F.X. Gu K.S. Sun G.P. Chen Z.D. Quantitative breath analysis of volatile organic compounds of lung cancer patients. Lung Cancer 2010 67 2 227 231 10.1016/j.lungcan.2009.03.029 19409642
    [Google Scholar]
  63. Le T. Priefer R. Detection technologies of volatile organic compounds in the breath for cancer diagnoses. Talanta 2023 265 124767 10.1016/j.talanta.2023.124767 37327663
    [Google Scholar]
  64. Filipiak W. Sponring A. Mikoviny T. Ager C. Schubert J. Miekisch W. Amann A. Troppmair J. Release of volatile organic compounds (VOCs) from the lung cancer cell line CALU-1 in vitro. Cancer Cell Int. 2008 8 1 17 10.1186/1475‑2867‑8‑17 19025629
    [Google Scholar]
  65. Chen X. Xu F. Wang Y. Pan Y. Lu D. Wang P. Ying K. Chen E. Zhang W. A study of the volatile organic compounds exhaled by lung cancer cells in vitro for breath diagnosis. Cancer 2007 110 4 835 844 10.1002/cncr.22844 17599760
    [Google Scholar]
  66. Capone S. Tufariello M. Forleo A. Longo V. Giampetruzzi L. Radogna A.V. Casino F. Siciliano P. Chromatographic analysis of VOC patterns in exhaled breath from smokers and nonsmokers. Biomed. Chromatogr. 2018 32 4 e4132 10.1002/bmc.4132 29131420
    [Google Scholar]
  67. Mazzone P.J. Wang X.F. Lim S. Jett J. Choi H. Zhang Q. Beukemann M. Seeley M. Martino R. Rhodes P. Progress in the development of volatile exhaled breath signatures of lung cancer. Ann. Am. Thorac. Soc. 2015 12 5 752 757 10.1513/AnnalsATS.201411‑540OC 25965541
    [Google Scholar]
  68. Wawrzyniak R. Woźniak A. Gebreyohannes Y.K. Dykcik B. Schöffski P. Markuszewski M.J. Volatile organic compounds in gastrointestinal stromal tumour tissue originating from patient-derived xenografts. J. Breath Res. 2017 11 3 037101 10.1088/1752‑7163/aa6d87 28416775
    [Google Scholar]
  69. Schmidt K. Podmore I. Current challenges in volatile organic compounds analysis as potential biomarkers of cancer. J. Biomark. 2015 2015 1 16 10.1155/2015/981458 26317039
    [Google Scholar]
  70. Trefz P. Kamysek S. Fuchs P. Sukul P. Schubert J.K. Miekisch W. Drug detection in breath: Non-invasive assessment of illicit or pharmaceutical drugs. J. Breath Res. 2017 11 2 024001 10.1088/1752‑7163/aa61bf 28220762
    [Google Scholar]
  71. Śmiełowska M. Ligor T. Kupczyk W. Szeliga J. Jackowski M. Buszewski B. Screening for volatile biomarkers of colorectal cancer by analyzing breath and fecal samples using thermal desorption combined with GC-MS (TD-GC-MS). J. Breath Res. 2023 17 4 047102 10.1088/1752‑7163/ace46e 37406626
    [Google Scholar]
  72. Robinson G.A. Waddington K.E. Coelewij L. Radziszewska A. Wincup C. Peckham H. Yiannis Ioannou D.A.I. Ciurtin C. Pineda-Torra I. Jury E.C. Metabolomics in juvenile-onset SLE: Identifying new biomarkers to predict cardiovascular risk. medRxiv 2019 10.1101/19000356
    [Google Scholar]
  73. Wang W. He Z. Kong Y. Liu Z. Gong L. GC-MS-based metabolomics reveals new biomarkers to assist the differentiation of prostate cancer and benign prostatic hyperplasia. Clin. Chim. Acta 2021 519 10 17 10.1016/j.cca.2021.03.021 33831421
    [Google Scholar]
  74. Shigeyama H. Wang T. Ichinose M. Ansai T. Lee S.W. Identification of volatile metabolites in human saliva from patients with oral squamous cell carcinoma via zeolite-based thin-film microextraction coupled with GC–MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2019 1104 49 58 10.1016/j.jchromb.2018.11.002 30445287
    [Google Scholar]
  75. van Winden A.W.J. Gast M.C.W. Beijnen J.H. Rutgers E.J.T. Grobbee D.E. Peeters P.H.M. van Gils C.H. Validation of previously identified serum biomarkers for breast cancer with SELDI-TOF MS: A case control study. BMC Med. Genomics 2009 2 1 4 10.1186/1755‑8794‑2‑4 19152674
    [Google Scholar]
  76. Tan B. Zhang Y. Zhang T. He J. Luo X. Bian X. Wu J. Zou C. Wang Y. Fu L. Identifying potential serum biomarkers of breast cancer through targeted free fatty acid profiles screening based on a GC–MS platform. Biomed. Chromatogr. 2020 34 10 e4922 10.1002/bmc.4922 32537761
    [Google Scholar]
/content/journals/cac/10.2174/0115734110343270241022112317
Loading
/content/journals/cac/10.2174/0115734110343270241022112317
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: bodily fluids ; metabolic alterations ; GC-MS ; VOCs ; cancer cells
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test