Skip to content
2000
image of Colorimetric Determination of Ascorbic Acid Using Peroxidase Activity of Allium Sativum (Garlic) Extract

Abstract

Background

Detection and determination of ascorbic acid (AA) or vitamin C as a potent antioxidant substrate in commercial samples have an emerging significance. In relation to the colorimetry of ascorbic acid, the use of organometallic networks as enzyme peroxidase mimics has been reported many times, which is not cost-effective for commercialization. Therefore, this research, for the first time, examined the peroxidase behavior using garlic extract without additional extraction and purification steps. Peroxidase behavior was examined to measure ascorbic acid.

Methods

In this research work, firstly, allium sativum (AS) extract was prepared simply by crushing, stirring, and sonicating garlic bulbs in water. It exhibited peroxidase activity, which enabled the oxidation of 3, 30, 5, and 50-tetramethylbenzidine (TMB) in the presence of HO to generate blue-colored oxidized TMB (ox-TMB) with a sharp absorption peak at 6526 nm. In continuation, the ox-TMB could be reduced by the addition of AA to the TMB+HO system, leading to a decrease in absorbance and the fading of the blue color. Determination performance was accomplished after optimization of several factors, such as pH, time, TMB, and AS concentration.

Results

The results showed that the decrease in absorbance (ΔA) after AA addition was in a good linear relationship with AA concentration in the range of 9.46-155.24 µM, with a low detection limit of 0.0223 µM. The feasibility of this approach was also assayed in commercial orange drinks and effervescent tablets of vitamin C with a 97.70%-110.17% recovery.

Conclusion

Finally, a sensitive and simple colorimetric sensor for the detection of AA using AS extract as a biocatalyst was developed.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110340856241121064151
2025-01-10
2025-04-25
Loading full text...

Full text loading...

References

  1. Carr A. Maggini S. Vitamin C and immune function. Nutrients 2017 9 11 1211 10.3390/nu9111211 29099763
    [Google Scholar]
  2. Pullar J. Carr A. Vissers M. The roles of vitamin C in skin health. Nutrients 2017 9 8 866 10.3390/nu9080866 28805671
    [Google Scholar]
  3. Kaźmierczak-Barańska J. Boguszewska K. Adamus-Grabicka A. Karwowski B.T. Two faces of vitamin C—Antioxidative and pro-oxidative agent. Nutrients 2020 12 5 1501 10.3390/nu12051501 32455696
    [Google Scholar]
  4. Dioha I.J. Olugbemi O. Onuegbu T.U. Shahru Z. Determination of ascorbic acid content of some tropical fruits by iodometric titration. Int. J. Biol. Chem. Sci. 2012 5 5 2180 2184 10.4314/ijbcs.v5i5.37
    [Google Scholar]
  5. Lenghor N. Jakmunee J. Vilen M. Sara R. Christian G.D. Grudpan K. Sequential injection redox or acid–base titration for determination of ascorbic acid or acetic acid. Talanta 2002 58 6 1139 1144 10.1016/S0039‑9140(02)00444‑7 18968850
    [Google Scholar]
  6. Ismail M. Ali S. Hussain M. Quantitative determination of ascorbic acid in commercial fruit juices by redox titration. Int J Pharm Qual Assur 2014 5 04 22 25
    [Google Scholar]
  7. Romero Rodriguez M.A. Vazquez Oderiz M.L. Lopez Hernandez J. Lozano J.S. Determination of vitamin C and organic acids in various fruits by HPLC. J. Chromatogr. Sci. 1992 30 11 433 437 10.1093/chromsci/30.11.433 1474131
    [Google Scholar]
  8. Yuan J.P. Chen F. Simultaneous separation and determination of sugars, ascorbic acid and furanic compounds by HPLC—dual detection. Food Chem. 1999 64 3 423 427 10.1016/S0308‑8146(98)00091‑0
    [Google Scholar]
  9. Wang S. Schram I.M. Sund R.B. Determination of plasma ascorbic acid by HPLC: Method and stability studies. Eur. J. Pharm. Sci. 1995 3 4 231 239 10.1016/0928‑0987(95)00011‑2
    [Google Scholar]
  10. Pisoschi A.M. Pop A. Serban A.I. Fafaneata C. Electrochemical methods for ascorbic acid determination. Electrochim. Acta 2014 121 443 460 10.1016/j.electacta.2013.12.127
    [Google Scholar]
  11. Mohammadnezhad K. Ahour F. Keshipour S. Electrochemical determination of ascorbic acid using palladium supported on N-doped graphene quantum dot modified electrode. Sci. Rep. 2024 14 1 5982 10.1038/s41598‑024‑56231‑x 38472243
    [Google Scholar]
  12. Guyasa J.N. Beyene T.T. Anshebo S.T. Electrochemical syntheses and characterization of some polydyes and their application for the simultaneous determination of ascorbic acid and uric acid. J. Appl. Electrochem. 2024 1 14 10.1007/s10800‑024‑02126‑8
    [Google Scholar]
  13. Nováková L. Solich P. Solichová D. HPLC methods for simultaneous determination of ascorbic and dehydroascorbic acids. Trends Analyt. Chem. 2008 27 10 942 958 10.1016/j.trac.2008.08.006
    [Google Scholar]
  14. Mouhamed A.A. Eltanany B.M. Mostafa N.M. Nadim A.H. Development of response surface approach for determination of paracetamol, chlorpheniramine maleate, caffeine and ascorbic acid by green HPLC method: A desirability-based optimization. J. Chromatogr. Sci. 2024 62 7 bmae024 10.1093/chromsci/bmae024 38704242
    [Google Scholar]
  15. Moldoveanu S.C. Comparison of several HPLC methods for the analysis of vitamin C. Biomed. Chromatogr. 2024 38 1 e5753 10.1002/bmc.5753 37750455
    [Google Scholar]
  16. do Nascimento W.C. Ramo L.B. da Silva F.F. C U Araujo M. I E de Andrade S. Bichinho K.M. One-step microwave-assisted synthesis of fluorescent carbon quantum dots for determination of ascorbic acid and riboflavin in vitamin supplements. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2024 321 124669 10.1016/j.saa.2024.124669 38909560
    [Google Scholar]
  17. Dong X.X. Chen T.L. Kong X.J. Wu S. Kong F.F. Xiao Q. A facile fluorescence Eu MOF sensor for ascorbic acid and ascorbate oxidase detection. Anal. Methods 2024 16 5 704 708 10.1039/D3AY01978K 38214197
    [Google Scholar]
  18. Sadeghi-chahnasir F. Amiripour F. Ghasemi S. Orange peel-derived carbon dots/Cu-MOF nanohybrid for fluorescence determination of l-ascorbic acid and Fe3+. Anal. Chim. Acta 2024 1287 342066 10.1016/j.aca.2023.342066 38182373
    [Google Scholar]
  19. Wang S.J. Song W. Liu Y. Li Q. You L.X. Xiong G. Ding F. Sun Y-G. A terbium coordination polymer based on mixed rigid and flexible organic ligands as a luminescent sensor for the convenient visual detection of ascorbic acid. Dyes Pigments 2024 231 112403 10.1016/j.dyepig.2024.112403
    [Google Scholar]
  20. Li S. Su K. Liu X. Jiang X. Xiang G. He L. Nitrogen-doped carbon dots enhanced hydrogen carbonate-hydrogen peroxide chemiluminescent reaction and its application in ascorbic acid sensing. J. Fluoresc. 2024 1 10 10.1007/s10895‑023‑03262‑8 39083155
    [Google Scholar]
  21. Zhai Z. Fan Z. Detection of ascorbic acid by persistent luminescent nanoparticles based on CoOOH nanosheets modification. Mikrochim. Acta 2024 191 7 398 10.1007/s00604‑024‑06490‑2 38877344
    [Google Scholar]
  22. Ashour H. Maher H. Kamel S. El-Yazbi F. Novel, cost-effective, eco-friendly spectrophotometric method for the determination of Beta-carotene, Vitamin C, and Vitamin E in their ternary mixtures: Greenness and whiteness appraisal. J Advan Pharm Sci 2024 1 1 22 28 10.21608/japs.2024.259629.1014
    [Google Scholar]
  23. Teixeira R.F. Dias J.L. Rebelatto E.A. Lanza M. First-order derivative spectrophotometry for simultaneous determination of vitamin C and nicotinamide: Application in quantitative analysis of cocrystals. ACS Omega 2024
    [Google Scholar]
  24. Thakre J.S. Salahuddin S.I. Estimation of Vitamin C by Spectrophotometric Method. Pune Fern International Publication 2024
    [Google Scholar]
  25. Lai X. Li R. Zhang B. Zhang T. Ji X. Wang L. Cui Y. Xiao H. Ning D. Colorimetric strategy of Fe/Co-doped porphyrin metal-organic frameworks with enzyme-like activity for the detection of ascorbic acid. Colloids Surf. A Physicochem. Eng. Asp. 2024 680 132645 10.1016/j.colsurfa.2023.132645
    [Google Scholar]
  26. Liu J. Zhang Y. Wang S. Zhao B. Liu Z. Dong X. Feng S. Polyoxometalate-based iron-organic complex nanozymes with peroxidase-like activities for colorimetric detection of hydrogen peroxide and ascorbic acid. Anal. Bioanal. Chem. 2024 1 12 10.1007/s00216‑024‑05440‑4 39046505
    [Google Scholar]
  27. Beyer M. Hladun C. Bou-Abdallah F. Detection of proteins with ascorbic acid-capped gold nanoparticles: A simple and highly sensitive colorimetric assay. Anal. Methods 2024 16 31 5391 5398 10.1039/D4AY01146E 38978467
    [Google Scholar]
  28. Bulgariu L. Bulgariu D. Sârghie I. Spectrophotometric determination of cadmium(II) using p,p′‐dinitro‐SYM‐diphenylcarbazid in aqueous solutions. Anal. Lett. 2005 38 14 2365 2375 10.1080/00032710500316597
    [Google Scholar]
  29. Umapathi R. Sonwal S. Lee M.J. Mohana Rani G. Lee E.S. Jeon T.J. Kang S-M. Oh M-H. Huh Y.S. Colorimetric based on-site sensing strategies for the rapid detection of pesticides in agricultural foods: New horizons, perspectives, and challenges. Coord. Chem. Rev. 2021 446 214061 10.1016/j.ccr.2021.214061
    [Google Scholar]
  30. Umapathi R. Rani G.M. Kim E. Park S.Y. Cho Y. Huh Y.S. Sowing kernels for food safety: Importance of rapid on‐site detction of pesticide residues in agricultural foods. Food Front. 2022 3 4 666 676 10.1002/fft2.166
    [Google Scholar]
  31. Umapathi R. Ghoreishian S.M. Rani G.M. Cho Y. Huh Y.S. Emerging trends in the development of electrochemical devices for the on-site detection of food contaminants. ECS Sens. Plus 2022 1 4 044601 10.1149/2754‑2726/ac9d4a
    [Google Scholar]
  32. Patricia Twala P. Mitema A. Baburam C. Aliye Feto N. Breakthroughs in the discovery and use of different peroxidase isoforms of microbial origin. AIMS Microbiol. 2020 6 3 330 349 10.3934/microbiol.2020020 33134747
    [Google Scholar]
  33. Zhu M. Huang X. Li J. Shen H. Peroxidase-based spectrophotometric methods for the determination of ascorbic acid, norepinephrine, epinephrine, dopamine and levodopa. Anal. Chim. Acta 1997 357 3 261 267 10.1016/S0003‑2670(97)00561‑8
    [Google Scholar]
  34. Liu Z. Wang Q. Mao L. Cai R. Highly sensitive spectrofluorimetric determination of ascorbic acid based on its enhancement effect on a mimetic enzyme-catalyzed reaction. Anal. Chim. Acta 2000 413 1-2 167 173 10.1016/S0003‑2670(00)00774‑1 21565318
    [Google Scholar]
  35. Munteanu I.G. Apetrei C. Analytical methods used in determining antioxidant activity: A review. Int. J. Mol. Sci. 2021 22 7 3380 10.3390/ijms22073380 33806141
    [Google Scholar]
  36. Müftügil N. The peroxidase enzyme activity of some vegetables and its resistance to heat. J. Sci. Food Agric. 1985 36 9 877 880 10.1002/jsfa.2740360918
    [Google Scholar]
  37. Marzouki S.M. Almagro L. Sabater-Jara A.B. Barceló A.R. Pedreño M.A. Kinetic characterization of a basic peroxidase from garlic (Allium sativum L.) cloves. J. Food Sci. 2010 75 9 C740 C746 10.1111/j.1750‑3841.2010.01848.x 21535585
    [Google Scholar]
  38. El Ichi S. Abdelghani A. Hadji I. Helali S. Limam F. Marzouki M.N. A new peroxidase from garlic ( Allium sativum ) bulb: its use in H2O2 biosensing. Biotechnol. Appl. Biochem. 2008 51 1 33 41 10.1042/BA20070141 18269349
    [Google Scholar]
  39. Marzouki S.M. Limam F. Smaali M.I. Ulber R. Marzouki M.N. A new thermostable peroxidase from garlic Allium sativum: Purification, biochemical properties, immobilization, and use in H2O2 detection in milk. Appl. Biochem. Biotechnol. 2005 127 3 201 214 10.1385/ABAB:127:3:201 16377850
    [Google Scholar]
  40. Songa E.A. Okonkwo J.O. Recent approaches to improving selectivity and sensitivity of enzyme-based biosensors for organophosphorus pesticides: A review. Talanta 2016 155 289 304 10.1016/j.talanta.2016.04.046 27216686
    [Google Scholar]
  41. Wolfe M.G. Ali M.M. Brennan J.D. Enzymatic litmus test for selective colorimetric detection of C–C single nucleotide polymorphisms. Anal. Chem. 2019 91 7 4735 4740 10.1021/acs.analchem.9b00235 30869875
    [Google Scholar]
  42. Hormozi Jangi A.R. Hormozi Jangi M.R. Hormozi Jangi S.R. Detection mechanism and classification of design principles of peroxidase mimic based colorimetric sensors: A brief overview. Chin. J. Chem. Eng. 2020 28 6 1492 1503 10.1016/j.cjche.2020.01.020
    [Google Scholar]
  43. Wen M. Li J. Zhong W. Xu J. Qu S. Wei H. Shang L. High-throughput colorimetric analysis of nanoparticle–protein interactions based on the enzyme-mimic properties of nanoparticles. Anal. Chem. 2022 94 24 8783 8791 10.1021/acs.analchem.2c01618 35676761
    [Google Scholar]
  44. Isho R.D. Sher Mohammad N.M. Omer K.M. Enhancing enzymatic activity of Mn@Co3O4 nanosheets as mimetic nanozyme for colorimetric assay of ascorbic acid. Anal. Biochem. 2022 654 114818 10.1016/j.ab.2022.114818 35841925
    [Google Scholar]
  45. Isho R.D. Sher Mohammad N.M. Omer K.M. Synthesis of MnO2 sub-microspheres with effective oxidase-mimicking nanozymes for the colorimetric assay of ascorbic acid in orange fruits and juice. New J. Chem. 2023 47 16 7800 7809 10.1039/D3NJ00136A
    [Google Scholar]
  46. Wang J. Han D. Wang X. Qi B. Zhao M. Polyoxometalates as peroxidase mimetics and their applications in H2O2 and glucose detection. Biosens. Bioelectron. 2012 36 1 18 21 10.1016/j.bios.2012.03.031 22560441
    [Google Scholar]
  47. Chen J. Shu Y. Li H. Xu Q. Hu X. Nickel metal-organic framework 2D nanosheets with enhanced peroxidase nanozyme activity for colorimetric detection of H2O2. Talanta 2018 189 254 261 10.1016/j.talanta.2018.06.075 30086915
    [Google Scholar]
  48. Cui C. Wang Q. Liu Q. Deng X. Liu T. Li D. Zhang X. Porphyrin-based porous organic framework: An efficient and stable peroxidase-mimicking nanozyme for detection of H2O2 and evaluation of antioxidant. Sens. Actuators B Chem. 2018 277 86 94 10.1016/j.snb.2018.08.097
    [Google Scholar]
  49. Hu L. Yuan Y. Zhang L. Zhao J. Majeed S. Xu G. Copper nanoclusters as peroxidase mimetics and their applications to H2O2 and glucose detection. Anal. Chim. Acta 2013 762 83 86 10.1016/j.aca.2012.11.056 23327949
    [Google Scholar]
  50. Lu Y. Ye W. Yang Q. Yu J. Wang Q. Zhou P. Wang C. Xue D. Zhao S. Three-dimensional hierarchical porous PtCu dendrites: A highly efficient peroxidase nanozyme for colorimetric detection of H2O2. Sens. Actuators B Chem. 2016 230 721 730 10.1016/j.snb.2016.02.130
    [Google Scholar]
  51. Gao L. Wu J. Gao D. Enzyme-controlled self-assembly and transformation of nanostructures in a tetramethylbenzidine/horseradish peroxidase/H2O2 system. ACS Nano 2011 5 8 6736 6742 10.1021/nn2023107 21761873
    [Google Scholar]
  52. Nan F. Jia Q. Xue X. Wang S. Liu W. Wang J. Ge J. Wang P. Iron phthalocyanine-derived nanozyme as dual reactive oxygen species generation accelerator for photothermally enhanced tumor catalytic therapy. Biomaterials 2022 284 121495 10.1016/j.biomaterials.2022.121495 35429814
    [Google Scholar]
  53. Zhang W. Hu S. Yin J.J. He W. Lu W. Ma M. Gu N. Zhang Y. Prussian blue nanoparticles as multienzyme mimetics and reactive oxygen species scavengers. J. Am. Chem. Soc. 2016 138 18 5860 5865 10.1021/jacs.5b12070 26918394
    [Google Scholar]
  54. Kailasa S.K. Vajubhai G.N. Koduru J.R. Park T.J. Recent progress of nanomaterials for colorimetric and fluorescence sensing of reactive oxygen species in biological and environmental samples. Trend Environ Anal Chem 2023 37 e00196 10.1016/j.teac.2023.e00196
    [Google Scholar]
  55. Ali S. Sikdar S. Basak S. Mondal M. Mallick K. Salman Haydar M. Ghosh S. Nath Roy M. Assemble multi-enzyme mimic tandem Mn3O4@ g-C3N4 for augment ROS elimination and label free detection. Chem. Eng. J. 2023 463 142355 10.1016/j.cej.2023.142355
    [Google Scholar]
  56. Jiang H. Lin Q. Yu Z. Wang C. Zhang R. Nanotechnologies for reactive oxygen species “turn-on” detection. Front. Bioeng. Biotechnol. 2021 9 780032 10.3389/fbioe.2021.780032 34805126
    [Google Scholar]
  57. El Ichi S. Miodek A. Sauriat-Dorizon H. Mahy J.P. Henry C. Marzouki M.N. Korri-Youssoufi H. Characterization of structure and activity of garlic peroxidase (POX(1B)). J Biol Inorg Chem. 2011 16 1 157 72 10.1007/s00775‑010‑0714‑2.
    [Google Scholar]
  58. El Ichi S. Limam F. Marzouki M.N. Garlic peroxidase immobilized into chitosan matrix suitable for biosensors applications. Mater. Sci. Eng. C 2009 29 5 1662 1667 10.1016/j.msec.2009.01.003
    [Google Scholar]
  59. Osuji A.C. Eze S.O.O. Osayi E.E. Chilaka F.C. Biobleaching of industrial important dyes with peroxidase partially purified from garlic. ScientificWorldJournal 2014 2014 1 8 10.1155/2014/183163 25401128
    [Google Scholar]
  60. Kaushik L. Srivastava S. Panjeta A. Chaudhari D. Ghadi R. Kuche K. Malik R. Preet S. Jain S. Raza K. Exploration of docetaxel palmitate and its solid lipid nanoparticles as a novel option for alleviating the rising concern of multi-drug resistance. Int. J. Pharm. 2020 578 119088 10.1016/j.ijpharm.2020.119088 32001291
    [Google Scholar]
  61. Chandra S. Singh V.K. Yadav P.K. Bano D. Kumar V. Pandey V.K. Talat M. Hasan S.H. Mustard seeds derived fluorescent carbon quantum dots and their peroxidase-like activity for colorimetric detection of H2O2 and ascorbic acid in a real sample. Anal. Chim. Acta 2019 1054 145 156 10.1016/j.aca.2018.12.024 30712585
    [Google Scholar]
  62. Shi W. Wang Q. Long Y. Cheng Z. Chen S. Zheng H. Huang Y. Carbon nanodots as peroxidase mimetics and their applications to glucose detection. Chem. Commun. (Camb.) 2011 47 23 6695 6697 10.1039/c1cc11943e 21562663
    [Google Scholar]
  63. Yang W. Li J. Wang M. Sun X. Liu Y. Yang J. Ng D.H.L. A colorimetric strategy for ascorbic acid sensing based on the peroxidase-like activity of core-shell Fe3O4/CoFe-LDH hybrid. Colloids Surf. B Biointerfaces 2020 188 110742 10.1016/j.colsurfb.2019.110742 31881409
    [Google Scholar]
  64. Yao Z. Li Z. Liu H. Liu Y. Sun Y. Li Z. A novel colorimetric assay based on the peroxidase-like properties of amino functionalized copper metal–organic framework nanoparticles for ascorbic acid sensing. Anal. Methods 2019 11 12 1697 1706 10.1039/C9AY00172G
    [Google Scholar]
  65. Huang X. Jiang M. Zeng H. Wu J. Wu J. Liu X. Zhou L. Yuan Y. Autogenous iron-based peroxidase-like nanozyme from paper mill sludge for ascorbic acid detection. Mater. Today Commun. 2023 36 106775 10.1016/j.mtcomm.2023.106775
    [Google Scholar]
  66. Ding Y. Zhao J. Li B. Zhao X. Wang C. Guo M. Lin Y. The CoOOH-TMB oxidative system for use in colorimetric and test strip based determination of ascorbic acid. Mikrochim. Acta 2018 185 2 131 10.1007/s00604‑018‑2675‑z 29594579
    [Google Scholar]
  67. Shekhovtsova T.N. Muginova S.V. Luchinina J.A. Galimova A.Z. Enzymatic methods in food analysis: Determination of ascorbic acid. Anal. Chim. Acta 2006 573-574 125 132 10.1016/j.aca.2006.05.015 17723515
    [Google Scholar]
  68. Wu A. Ding H. Zhang W. Rao H. Wang L. Chen Y. Lu C. Wang X. A colorimetric and fluorescence turn-on probe for the detection of ascorbic acid in living cells and beverages. Food Chem. 2021 363 130325 10.1016/j.foodchem.2021.130325 34139516
    [Google Scholar]
  69. Shu X. Chang Y. Wen H. Yao X. Wang Y. Colorimetric determination of ascorbic acid based on carbon quantum dots as peroxidase mimetic enzyme. RSC Advances 2020 10 25 14953 14957 10.1039/D0RA02105A 35497159
    [Google Scholar]
  70. Ji D. Du Y. Meng H. Zhang L. Huang Z. Hu Y. Li J. Yu F. Li Z. A novel colorimetric strategy for sensitive and rapid sensing of ascorbic acid using cobalt oxyhydroxide nanoflakes and 3,3′,5,5′-tetramethylbenzidine. Sens. Actuators B Chem. 2018 256 512 519 10.1016/j.snb.2017.10.070
    [Google Scholar]
  71. He L. Wang F. Chen Y. Liu Y. Rapid and sensitive colorimetric detection of ascorbic acid in food based on the intrinsic oxidase‐like activity of MnO 2 nanosheets. Luminescence 2018 33 1 145 152 10.1002/bio.3384 28856794
    [Google Scholar]
  72. Liu X. Hou W. Zhao J. Zhang L. Li A. Ma R. Equipment-free determination of ascorbic acid based on the UV-induced oxidation of 3,3′,5,5′-tetramethylbenzidine in a paper-based analysis device. New J. Chem. 2023 47 35 16735 16740 10.1039/D3NJ02986G
    [Google Scholar]
  73. Ge F. Sun Y. Wang K. Ma G. Li F. Bai Q. Liu Y. Sui N. Colorimetric/electrochemical dual mode detection ascorbic acid based Au@PdNi nanozyme. Microchem. J. 2024 201 110745 10.1016/j.microc.2024.110745
    [Google Scholar]
  74. Liu A. Song W. Zhang C. Shang H. Colorimetry/smartphone dual-mode sensing platform based on nanorod-shaped Ni–Fe MOFs for ascorbic acid detection. ACS Appl. Nano Mater. 2024 7 11 13400 13406 10.1021/acsanm.4c01873
    [Google Scholar]
  75. Gull S. Ali M.M. Ejaz S. Ali S. Rasheed M. Yousef A.F. Stępień P. Chen F. Comprehensive genomic exploration of class III peroxidase genes in guava unravels physiology, evolution, and postharvest storage responses. Sci. Rep. 2024 14 1 1446 10.1038/s41598‑024‑51961‑4 38228714
    [Google Scholar]
  76. Qian Y. Zou J. Zhang J. Wang X. Meng X. Lin Y. Lin W. Zhang M. Wang H. Structural engineering of magnetite nanozymes for enhanced chemodynamic cancer therapy. Chem. Eng. J. 2024 490 151867 10.1016/j.cej.2024.151867
    [Google Scholar]
  77. Li X. Lu X. Zhang L. Cai Z. Tang D. Lai W. A papain-based colorimetric catalytic sensing system for immunoassay detection of carcinoembryonic antigen. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2024 315 124269 10.1016/j.saa.2024.124269 38608561
    [Google Scholar]
  78. Zhou F. Xu D. Xiong S. Chen C. Liu C. Jiang A. Inhibition of wound healing in fresh-cut potatoes by ascorbic acid is associated with control of the levels of reactive oxygen species and the AsA-GSH cycle. Sci. Hortic. (Amsterdam) 2024 323 112472 10.1016/j.scienta.2023.112472
    [Google Scholar]
  79. Zhang W. Lan Y. Chai D.F. Lv J. Dong G. Guo D. A novel “On-Off” colorimetric sensor for ascorbic acid and hydrogen peroxide based on peroxidase activity of CeO2/Co3O4 hollow nanocubes. J. Mol. Struct. 2024 1302 137507 10.1016/j.molstruc.2024.137507
    [Google Scholar]
  80. Ali A. Riaz S. Khalid W. Fatima M. Mubeen U. Babar Q. Manzoor M.F. Zubair Khalid M. Madilo F.K. Potential of ascorbic acid in human health against different diseases: An updated narrative review. Int. J. Food Prop. 2024 27 1 493 515 10.1080/10942912.2024.2327335
    [Google Scholar]
  81. Dadigala R. Bandi R. Han S.Y. Kwon G.J. Lee S.H. Rapid in-situ growth of enzyme-mimicking Pd nanoparticles on TEMPO-oxidized nanocellulose for the efficient detection of ascorbic acid. Int. J. Biol. Macromol. 2023 234 123657 10.1016/j.ijbiomac.2023.123657 36796553
    [Google Scholar]
  82. El-Malla S.F. Mansour F.R. Elattar R.H. Kamal A.H. Redox-based colorimetric sensor for the selective determination of ascorbic acid in fixed-dose combination tablets. J. AOAC Int. 2023 106 2 276 284 10.1093/jaoacint/qsac141 36409015
    [Google Scholar]
  83. Cao B. Gao G. Zhang J. Zhang Z. Sun T. A smartphone-assisted colorimetric sensor based on Fe1-xS nanozyme for detection of glucose and ascorbic-acid in soft drinks. Microchem. J. 2023 193 109018 10.1016/j.microc.2023.109018
    [Google Scholar]
  84. Darabi R. Karimi-Maleh H. Akin M. Arikan K. Zhang Z. Bayat R. Bekmezci M. Sen F. Simultaneous determination of ascorbic acid, dopamine, and uric acid with a highly selective and sensitive reduced graphene oxide/polypyrrole-platinum nanocomposite modified electrochemical sensor. Electrochim. Acta 2023 457 142402 10.1016/j.electacta.2023.142402
    [Google Scholar]
  85. Osman A.M. Hendi A. Osman N.M.A. Multiwalled carbon nanotubes-modified metallic electrode prepared using chemical vapor deposition as sequential injection analysis detector for determination of ascorbic acid. Nanomaterials (Basel) 2023 13 7 1264 10.3390/nano13071264 37049357
    [Google Scholar]
  86. Wang Y. Zhao P. Gao B. Yuan M. Yu J. Wang Z. Chen X. Self-reduction of bimetallic nanoparticles on flexible MXene-graphene electrodes for simultaneous detection of ascorbic acid, dopamine, and uric acid. Microchem. J. 2023 185 108177 10.1016/j.microc.2022.108177
    [Google Scholar]
  87. Singh A. Sharma A. Arya S. Electrochemical sensing of ascorbic acid (AA) from human sweat using Ni–SnO2 modified wearable electrode. Inorg. Chem. Commun. 2023 152 110718 10.1016/j.inoche.2023.110718
    [Google Scholar]
  88. Mirzaei Karazan Z. Roushani M. Electrochemical sensor based on molecularly imprinted copolymer for selective and simultaneous determination of ascorbic acid and tyrosine. Anal Bioanal Chem Res 2023 10 3 269 278
    [Google Scholar]
  89. Chang A.S. Tahira A. Chang F. Solangi A.G. Bhatti M.A. Vigolo B. Nafady A. Ibupoto Z.H. Highly heterogeneous morphology of cobalt oxide nanostructures for the development of sensitive and selective ascorbic acid non-enzymatic sensor. Biosensors (Basel) 2023 13 1 147 10.3390/bios13010147 36671982
    [Google Scholar]
  90. Yadav M. Dhanda M. Arora R. Ahlawat S. Singh G. Nehra K. Lata S. Dual applicability of ceria and silica nanospheres (CeO2@SiO2 NSs) assembled with pencil graphite electrode to sense ascorbic acid, extended with their antibacterial property. Mater. Sci. Eng. B 2023 297 116719 10.1016/j.mseb.2023.116719
    [Google Scholar]
  91. Mazurek A. Włodarczyk-Stasiak M. A new method for the determination of total content of vitamin C, ascorbic and dehydroascorbic acid, in food products with the voltammetric technique with the use of tris(2-carboxyethyl)phosphine as a reducing reagent. Molecules 2023 28 2 812 10.3390/molecules28020812 36677868
    [Google Scholar]
  92. Xie A. Yuan B. Lin J. Pan J. Li M. Wang J. Jiang S. Zhu S. Luo S. Highly sensitive and selective electrochemical sensor based on ZIF-67-derived Co3O4-LaMn0.5Ni0.5O3/MWCNTs for simultaneous detection of protocatechuic acid and ascorbic acid. Surf. Interfaces 2023 36 102550 10.1016/j.surfin.2022.102550
    [Google Scholar]
  93. Xu Y. Qin Y. Gao X. Li J. Xiao D. Defective prussian blue analogue with cobalt for fabrication of an electrochemical sensor for detecting ascorbic acid, dopamine and uric acid. ChemElectroChem 2023 10 16 e202300134 10.1002/celc.202300134
    [Google Scholar]
  94. Jin B. Liu S. Jin D. Electrochemical sensor based on carbon material derived from Physalis alkekengi L. husks for the analysis of ascorbic acid. Asia-Pac. J. Chem. Eng. 2023 18 2 e2871 10.1002/apj.2871
    [Google Scholar]
  95. Choukairi M. Bouchta D. Bounab L. González-Romero E. Achache M. Draoui K. Chaouket F. Raissouni I. Gharous M. A carbon paste electrode modified by bentonite and l‐cysteine for simultaneous determination of ascorbic and uric acids: application in biological fluids. ChemistryOpen 2023 12 2 e202200201 10.1002/open.202200201 36722827
    [Google Scholar]
  96. Sun M. Zhong Z. Wang Y. Yu B. Zhang L. Zhang W. Dual-functional lanthanide-MOF probe nanocomposite based on hydroxyapatite nanowires as fluorescent sensor for ascorbic acid. Mikrochim. Acta 2023 190 3 89 10.1007/s00604‑023‑05667‑5 36781571
    [Google Scholar]
  97. Zhang T. Gong X. Zhang Y. Facile and sustainable synthesis of sodium lignosulfonate derived carbon quantum dots for the detection of total Mn and ascorbic acid. Arab. J. Chem. 2023 16 1 104422 10.1016/j.arabjc.2022.104422
    [Google Scholar]
  98. Xu O. Yang J. Song H. Dong L. Xia J. Zhu X. Novel Zn/Co–N co-doped carbon quantum dot-based “on-off-on” fluorescent sensor for Fe(III) and ascorbic acid. Talanta Open 2023 7 100162 10.1016/j.talo.2022.100162
    [Google Scholar]
  99. Msto R.K. Othman H.O. Al-Hashimi B.R. Salahuddin Ali D. Hassan D.H. Hassan A.Q. Smaoui S. Fluorescence turns on-off-on sensing of ferric ion and l-ascorbic acid by carbon quantum dots. J. Food Qual. 2023 10.1155/2023/5555608.
    [Google Scholar]
  100. Xu G-T. Zhao T-S. Zhang K. Guo L-Z. He Y-Q. Hu J-H. Liao Y-J. Mai X. Li N. Smartphone assisted fluorescent sensor for Fe3+ and ascorbic acid determination based on off-on carbon dots probe. Chin. J. Anal. Chem. 2023 51 1 100206 10.1016/j.cjac.2022.100206
    [Google Scholar]
  101. Ren D. Cheng X. Chen Q. Xu G. Wei F. Yang J. Xu J. Wang L. Hu Q. Cen Y. MXene-derived Ti3C2 quantum dots-based ratiometric fluorescence probe for ascorbic acid and acid phosphatase determination. Microchem. J. 2023 187 108397 10.1016/j.microc.2023.108397
    [Google Scholar]
  102. Li X. Wang C. Li P. Sun X. Shao Z. Xia J. Liu Q. Shen F. Fang Y. Beer-derived nitrogen, phosphorus co-doped carbon quantum dots: Highly selective on–off-on fluorescent probes for the detection of ascorbic acid in fruits. Food Chem. 2023 409 135243 10.1016/j.foodchem.2022.135243 36584525
    [Google Scholar]
  103. Pirot S.M. Omer K.M. Alshatteri A.H. Ali G.K. Shatery O.B.A. Dual-template molecularly surface imprinted polymer on fluorescent metal-organic frameworks functionalized with carbon dots for ascorbic acid and uric acid detection. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023 291 122340 10.1016/j.saa.2023.122340 36702082
    [Google Scholar]
  104. Ahmed Abdel Hamid M. Elagamy S.H. Gamal A. Mansour F.R. Microwave prepared nitrogen and sulfur co-doped carbon quantum dots for rapid determination of ascorbic acid through a turn off–on strategy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023 293 122440 10.1016/j.saa.2023.122440 36774849
    [Google Scholar]
  105. Qi Y. Sun Y. Song D. Wang Y. Xiu F. PVC dechlorination residues as new peroxidase-mimicking nanozyme and chemiluminescence sensing probe with high activity for glucose and ascorbic acid detection. Talanta 2023 253 124039 10.1016/j.talanta.2022.124039
    [Google Scholar]
  106. Huang W. Lu Y. Li J. Zhang X. Wang N. Liu Y. A non-oxidation reduction strategy for highly selective detection of ascorbic acid by “on-off-on” photoluminescence switches. Dyes Pigments 2023 217 111419 10.1016/j.dyepig.2023.111419
    [Google Scholar]
  107. Asgher M. Yaqoob M. Nabi A. Murtaza G. Siddiqi A.R. Waseem A. Flow injection photosensitized chemiluminescence of luminol with Cu(II)-rose bengal: Mechanistic approach and vitamin A and C determination. Int. J. Anal. Chem. 2014 2014 1 1 6 10.1155/2014/109592 25614739
    [Google Scholar]
  108. Peng J. Ling J. Zhang X.Q. Zhang L.Y. Cao Q.E. Ding Z.T. A rapid, sensitive and selective colorimetric method for detection of ascorbic acid. Sens. Actuators B Chem. 2015 221 708 716 10.1016/j.snb.2015.07.002
    [Google Scholar]
  109. Scudi J.V. Ratish H.D. A colorimetric method for the determination of ascorbic acid. Ind. Eng. Chem. Anal. Ed. 1938 10 8 420 423 10.1021/ac50124a008
    [Google Scholar]
  110. Porto I.S.A. Santos Neto J.H. dos Santos L.O. Gomes A.A. Ferreira S.L.C. Determination of ascorbic acid in natural fruit juices using digital image colorimetry. Microchem. J. 2019 149 104031 10.1016/j.microc.2019.104031
    [Google Scholar]
  111. Kong L. Gan Y. Liang T. Zhong L. Pan Y. Kirsanov D. Legin A. Wan H. Wang P. A novel smartphone-based CD-spectrometer for high sensitive and cost-effective colorimetric detection of ascorbic acid. Anal. Chim. Acta 2020 1093 150 159 10.1016/j.aca.2019.09.071 31735208
    [Google Scholar]
  112. He Y. Li N. Lian J. Yang Z. Liu Z. Liu Q. Zhang X. Zhang X. Colorimetric ascorbic acid sensing from a synergetic catalytic strategy based on 5,10,15,20-tetra(4-pyridyl)-21H,23H-porphyrin functionalized CuS nanohexahedrons with the enhanced peroxidase-like activity. Colloids Surf. A Physicochem. Eng. Asp. 2020 598 124855 10.1016/j.colsurfa.2020.124855
    [Google Scholar]
  113. Wang Y. Yang Y. Liu W. Ding F. Zou P. Wang X. Zhao Q. Rao H. A carbon dot-based ratiometric fluorometric and colorimetric method for determination of ascorbic acid and of the activity of ascorbic acid oxidase. Mikrochim. Acta 2019 186 4 246 10.1007/s00604‑019‑3341‑9 30879229
    [Google Scholar]
  114. Fan S. Zhao M. Ding L. Li H. Chen S. Preparation of Co3O4 /crumpled graphene microsphere as peroxidase mimetic for colorimetric assay of ascorbic acid. Biosens. Bioelectron. 2017 89 Pt 2 846 852 10.1016/j.bios.2016.09.108 27816582
    [Google Scholar]
  115. Raj R. Mradula Samanta P. Singh R. Sachdev A. Mishra S. Evaluation of AgNCs@PEI and their integrated hydrogel for colorimetric and fluorometric detection of ascorbic acid. Anal. Biochem. 2024 687 115433 10.1016/j.ab.2023.115433 38128809
    [Google Scholar]
  116. Sanker S.S.S. Thomas S. Jacob D.P. Suniya V.S. Nalini S. Madhusoodanan K.N. Highly sensitive colorimetric detection of ascorbic acid using molecularly imprinted photonic crystal hydrogel sensor. Microchem. J. 2024 206 111435 10.1016/j.microc.2024.111435
    [Google Scholar]
  117. Shahbaz A. Shah M. Asad M. Khan N. Ishtiaq Jan M. Ullah R. Ibrahim M.A. Ali E.A. Ahmad M. Sun W. Badshah A. Nishan U. Nickel doped hydroxyapatite nanocomposite via salt melting approach: A colorimetric sensing platform for the determination of ascorbic acid. Anal. Lett. 2024 1 16 10.1080/00032719.2024.2392648
    [Google Scholar]
  118. Wang X.J. Long Y. Wei C.W. Gao S.Q. Lin Y.W. Peroxidase activity of a Cu–Fe bimetallic hydrogel and applications for colorimetric detection of ascorbic acid. Phys. Chem. Chem. Phys. 2024 26 2 1077 1085 10.1039/D3CP05403A 38098362
    [Google Scholar]
  119. Bezuneh T.T. Bushira F.A. Ofgea N.M. Zhang C. Li H. Jin Y. N/S-GQDs/KMnO4 hybrid as a colorimetric and fluorescent dual-signal readout probe for sensitive and selective detection of ascorbic acid. Microchem. J. 2024 197 109837 10.1016/j.microc.2023.109837
    [Google Scholar]
  120. Badshah A. Noreen S. Shah M. Asad M. Ullah R. Ali E.A. Iqbal J. Sun W. Nishan U. From waste to wealth: Iron oxide doped hydroxyapatite-based biosensor for the colorimetric detection of ascorbic acid. RSC Advances 2024 14 27 19539 19549 10.1039/D4RA02264E 38895531
    [Google Scholar]
  121. Kang X. Cao G. Wang J. Wang J. Zhu X. Fu M. Yu D. Hua L. Gao F. Synergistic action of cavity and catalytic sites in etched Pd–Cu2O octahedra to augment the peroxidase-like activity of Cu2O nanoparticles for the colorimetric detection of isoniazid and ascorbic acid. Biosens. Bioelectron. 2024 246 115880 10.1016/j.bios.2023.115880 38064996
    [Google Scholar]
/content/journals/cac/10.2174/0115734110340856241121064151
Loading
/content/journals/cac/10.2174/0115734110340856241121064151
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: garlic ; Allium sativum ; plant ; determination ; ascorbic acid ; colorimetric
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test