Skip to content
2000
image of Acoustic-assisted Fabrication, Characterization, and Photocatalytic 
Application of Ni2O3/NiO/rGO Nanocomposites

Abstract

Introduction

This study introduces an innovative two-step approach to fabricate a high-performance NiO/NiO/rGO nanocomposite photocatalyst. The process synergistically combines solvothermal precursor synthesis with calcination and high-energy ultrasonic irradiation, enabling the in-situ formation of a thin NiO layer on NiO quasi-sphere nanoparticles anchored to a reduced graphene oxide (rGO) matrix.

Method

The incorporation of rGO significantly enhances charge separation, resulting in a dramatic increase in active surface area from 17.1 m2/g to 131 m2/g, and a substantial improvement in the photocatalytic degradation of the resilient Fluorescein dye—achieving an 81% degradation rate under UV light, compared to 36% with pristine NiO.

Results

Comprehensive characterization, including FTIR, XRD, and XPS analyses, confirmed the NiO-NiO interface transformation, successful reduction of graphene oxide, and critical interactions between NiO and NiO.

Conclusion

This study highlights the promising potential of the NiO/NiO/rGO nanocomposite for environmental remediation, particularly in the degradation of persistent organic pollutants.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110340753240930044207
2024-10-10
2024-11-23
Loading full text...

Full text loading...

References

  1. Hosny N.M. Gomaa I. Elmahgary M.G. Adsorption of polluted dyes from water by transition metal oxides: A review. Applied Surface Science Advances 2023 15 100395 10.1016/j.apsadv.2023.100395
    [Google Scholar]
  2. Cui Z. Liu S. Liu Z. Li Y. Hu X. Tian J. Determination of torasemide by fluorescence quenching method with some dihalogenated fluorescein dyes as probes. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013 114 547 552 10.1016/j.saa.2013.05.080 23792294
    [Google Scholar]
  3. Gui W. Lin J. Liang Y. Qu Y. Zhang L. Zhang H. Li X. A two-step strategy for high-efficiency fluorescent dye removal from wastewater Npj Clean Water 2019 2 1 1 9 10.1038/s41545‑019‑0041‑2
    [Google Scholar]
  4. Ding X. Zhu M. Sun B. Yang Z. Han Y.F. An Overview on Dynamic Phase Transformation and Surface Reconstruction of Iron Catalysts for Catalytic Hydrogenation of CO x for Hydrocarbons. ACS Catal. 2024 14 8 6137 6168 10.1021/acscatal.3c05854
    [Google Scholar]
  5. Chen J. Tee C.K. Shtein M. Martin D.C. Anthony J. Controlled solution deposition and systematic study of charge-transport anisotropy in single crystal and single-crystal textured TIPS pentacene thin films. Org. Electron. 2009 10 4 696 703 10.1016/j.orgel.2009.03.007
    [Google Scholar]
  6. Gunawan R. Adi Wijaya R. Suseno A. Lusiana R.A. Septina W. Harada T. Synthesis of CuInS2 thin film photocathode with variation of sulfurization sources and Pt-In2S3 modification for photoelectrochemical water splitting. J. Electroanal. Chem. (Lausanne) 2023 945 117683 10.1016/j.jelechem.2023.117683
    [Google Scholar]
  7. Ainabayev A. Walls B. Mullarkey D. Caffrey D. Fleischer K. Smith C.M. McGlinchey A. Casey D. McCormack S.J. Shvets I. High-performance p-type V2O3 films by spray pyrolysis for transparent conducting oxide applications Sci. Reports 2024 14 1 1 10 10.1038/s41598‑024‑52024‑4
    [Google Scholar]
  8. Ahn C. Lee J. Kim H.U. Bark H. Jeon M. Ryu G.H. Lee Z. Yeom G.Y. Kim K. Jung J. Kim Y. Lee C. Kim T. Ahn C. Kim H. Bark H. Jeon M. Yeom G.Y. Jung J. Lee C. Kim T. Lee J. Kim Y. Ryu G.H. Lee Z. Low‐temperature synthesis of large‐scale molybdenum disulfide thin films directly on a plastic substrate using plasma‐enhanced chemical vapor deposition Adv. Mater. 2015 27 35 5223 5229 10.1002/adma.201501678 26257314
    [Google Scholar]
  9. Ye Z. Meng H. Wang Y. Qi D. Xu J. One-step facile solution synthesis of α-Ag2S nanoparticles and fabrication of multi-layered thin films. Surf. Interfaces 2024 44 103809 10.1016/j.surfin.2023.103809
    [Google Scholar]
  10. Makhado K.P. Mphahlele-Makgwane M.M. Kumar N. Baker P.G.L. Makgwane P.R. Current updates on p-type nickel oxide (NiO) based photocatalysts towards decontamination of organic pollutants from wastewater. Materials Today Sustainability 2024 25 100664 10.1016/j.mtsust.2023.100664
    [Google Scholar]
  11. Liu M. Wang J. Duan L. Liu X. Zhang L. Nickel oxide modified C3N5 photocatalyst for enhanced hydrogen evolution performance. J. Fuel Chem. Technol. 2022 50 2 243 249 10.1016/S1872‑5813(21)60166‑4
    [Google Scholar]
  12. Santos R.K. Martins T.A. Silva G.N. Conceição M.V.S. Nogueira I.C. Longo E. Botelho G. Ag 3 PO 4 /NiO composites with enhanced photocatalytic activity under visible light ACS Omega 2020 5 34 21651 21661 10.1021/acsomega.0c02456 32905253
    [Google Scholar]
  13. Hashim M. Usman M. Ahmad S. Shah R. Ali A. Rahman N.U. ZnO/NiO nanocomposite with enhanced photocatalytic H2 production Int. J. Photoenergy 2024 2024 1 11 10.1155/2024/2676368
    [Google Scholar]
  14. Dhiman P. Sharma G. Alodhayb A.N. Kumar A. Rana G. Sithole T. ALOthman Z.A. Constructing a visible-active CoFe2O4@Bi2O3/NiO nanoheterojunction as magnetically recoverable photocatalyst with boosted ofloxacin degradation efficiency Molecules 2022 27 23 8234 10.3390/molecules27238234 36500330
    [Google Scholar]
  15. Ding M. Yang H. Yan T. Wang C. Deng X. Zhang S. Huang J. Shao M. Xu X. Fabrication of hierarchical ZnO@NiO core–shell heterostructures for improved photocatalytic performance Nanoscale Res. Lett. 2018 13 1 260 10.1186/s11671‑018‑2676‑1 30167915
    [Google Scholar]
  16. Fatimah I. Sulistyowati R.Z. Wijayana A. Purwiandono G. Sagadevan S. Z-scheme NiO/g-C3N4 nanocomposites prepared using phyto-mediated nickel nanoparticles for the efficient photocatalytic degradation. Heliyon 2023 9 5 e16232 10.1016/j.heliyon.2023.e16232 37251879
    [Google Scholar]
  17. Sadhukhan S. Bhattacharyya A. Rana D. Ghosh T.K. Orasugh J.T. Khatua S. Acharya K. Chattopadhyay D. Synthesis of RGO/NiO nanocomposites adopting a green approach and its photocatalytic and antibacterial properties. Mater. Chem. Phys. 2020 247 122906 10.1016/j.matchemphys.2020.122906
    [Google Scholar]
  18. Subashini K. Prakash S. Anusuya Devi V.S. Sujatha V. Dye degradation efficiency of green synthesized NiO@GO nanocomposite with biological application. J. Phys. Conf. Ser. 2022 2225 1 012005 10.1088/1742‑6596/2225/1/012005
    [Google Scholar]
  19. Vivek P. Sivakumar R. Selva Esakki E. Deivanayaki S. Fabrication of NiO/RGO nanocomposite for enhancing photocatalytic performance through degradation of RhB. J. Phys. Chem. Solids 2023 176 111255 10.1016/j.jpcs.2023.111255
    [Google Scholar]
  20. Saikia P. Borah P. Borah D. Gogoi D. Rout J. Ghosh N.N. Bhattacharjee C.R. Facile green synthesis of rGO and NiO, and fabrication of a novel ternary nanoheterostructure NiO@g-C3N4-rGO as earth abundant superior photocatalyst for dye degradation. Mater. Today Sustain. 2023 24 100595 10.1016/j.mtsust.2023.100595
    [Google Scholar]
  21. Wang Y. Duan C. Li J. Zhao Z. Xu J. Liu L. Qian J. Fabrication of interface-engineered Ni/NiO/rGO nanobush for highly efficient and durable oxygen reduction. Mater. Sci. Semicond. Process. 2023 156 107259 10.1016/j.mssp.2022.107259
    [Google Scholar]
  22. Gnanasekaran L. Manoj D. Rajendran S. Gracia F. Jalil A.A. Chen W.H. Soto-Moscoso M. Gracia-Pinilla M.A. Mesoporous NiO/Ni2O3 nanoflowers for favorable visible light photocatalytic degradation of 4-chlorophenol. Environ. Res. 2023 236 Pt 2 116790 10.1016/j.envres.2023.116790 37517483
    [Google Scholar]
  23. Safeer M. K. Alex C. Jana R. Datta A. John N. S. Remarkable COx tolerance of Ni3+ active species in a Ni2O3 catalyst for sustained electrochemical urea oxidation. J. Mater. Chem. A Mater. Energy Sustain. 2022 10 4209 4221 10.1039/D1TA05753G
    [Google Scholar]
  24. Elseman A.M. Luo L. Song Q.L. Self-doping synthesis of trivalent Ni 2 O 3 as a hole transport layer for high fill factor and efficient inverted perovskite solar cells. Dalton Trans. 2020 49 40 14243 14250 10.1039/D0DT03029E 33025991
    [Google Scholar]
  25. Wu H. Wang L. Wang Y. Guo S. Shen Z. Enhanced microwave performance of highly ordered mesoporous carbon coated by Ni2O3 nanoparticles. J. Alloys Compd. 2012 525 82 86 10.1016/j.jallcom.2012.02.078
    [Google Scholar]
  26. Jouini K. Raouafi A. Dridi W. Daoudi M. Mustapha B. Chtourou R. Hosni F. Investigation of gamma-ray irradiation induced phase change from NiO to Ni2O3 for enhancing photocatalytic performance. Optik 2019 195 163109 10.1016/j.ijleo.2019.163109
    [Google Scholar]
  27. Dey S. Bhattacharjee S. Chaudhuri M.G. Bose R.S. Halder S. Ghosh C.K. Synthesis of pure nickel( iii ) oxide nanoparticles at room temperature for Cr( vi ) ion removal. RSC Advances 2015 5 67 54717 54726 10.1039/C5RA05810D
    [Google Scholar]
  28. Cassir M. Olivry M. Albin V. Malinowska B. Devynck J. Thermodynamic and electrochemical behavior of nickel in molten Li2CO3–Na2CO3 modified by addition of calcium carbonate. J. Electroanal. Chem. 1998 452 1 127 137 10.1016/S0022‑0728(98)00118‑1
    [Google Scholar]
  29. Rosales Pérez A. Esquivel Escalante K. The evolution of sonochemistry: From the beginnings to novel applications. ChemPlusChem 2024 89 6 e202300660 10.1002/cplu.202300660 38369655
    [Google Scholar]
  30. Hosny N.M. Gomaa I. Abd El-Moemen A. Anwar Z.M. Adsorption of Ponceau Xylidine dye by synthesised Mn 2 O 3 nanoparticles. Int. J. Environ. Anal. Chem. 2021 1 17 10.1080/03067319.2021.2014470
    [Google Scholar]
  31. Gomaa I. Hosny N.M. Ibrahim M.A. Self-assembled dendrites of graphene oxide quantum dots via bottom-up lyophilization synthesis. J. Mol. Struct. 2024 1296 136818 10.1016/j.molstruc.2023.136818
    [Google Scholar]
  32. Gomaa I. Abdel-Salam A.I. Khalid A. Soliman T.S. Fabrication, structural, morphological, and optical features of Mn2O3 polyhedron nano-rods and Mn2O3/reduced graphene oxide hybrid nanocomposites. Opt. Laser Technol. 2023 161 109126 10.1016/j.optlastec.2023.109126
    [Google Scholar]
  33. Hosny N.M. Gomaa I. Abd El-Moemen A. Anwar Z.M. Synthesis, magnetic and adsorption of dye onto the surface of NiO nanoparticles. J. Mater. Sci. Mater. Electron. 2020 31 11 8413 8422 10.1007/s10854‑020‑03376‑w
    [Google Scholar]
  34. Elhaes H. Abdel-Salam A.I. Gomaa I. Ibrahim A. Yahia I.S. Zahran H.Y. Ezzat H.A. Zahran M. Abdel-wahab M.S. Refaat A. Ibrahim M.A. Facile synthesis, structural, morphological and electronic investigation of Mn2O3 nano-rice shape and Mn2O3-rGO hybrid nanocomposite. Opt. Quantum Electron. 2023 55 11 947 10.1007/s11082‑023‑05002‑5
    [Google Scholar]
  35. Abdel-Salam A.I. Gomaa I. Khalid A. Soliman T.S. Investigation of raman spectrum, structural, morphological, and optical features of Fe 2 O 3 and Fe 2 O 3 /reduced graphene oxide hybrid nanocomposites. Phys. Scr. 2022 97 12 125807 10.1088/1402‑4896/ac9c38
    [Google Scholar]
  36. Morsy M. Gomaa I. Abd Elhamid A.E.M. Shawkey H. Aly M.A.S. Elzwawy A. Ternary nanocomposite comprising MnO2, GQDs, and PANI as a potential structure for humidity sensing applications Scientific Reports 2023 13 1 1 15 10.1038/s41598‑023‑48928‑2
    [Google Scholar]
  37. Bharath G. Anwer S. Mangalaraja R. V. Alhseinat E. Banat F. Ponpandian N. Sunlight-induced photochemical synthesis of Au nanodots on α-Fe2O3@reduced graphene oxide nanocomposite and their enhanced heterogeneous catalytic properties Scientific Reports 2018 8 1 1 14 10.1038/s41598‑018‑24066‑y
    [Google Scholar]
  38. Heryanto B. Abdullah B. Tahir D. Mahdalia Quantitative analysis of X-Ray diffraction spectra for determine structural properties and deformation energy of Al, Cu and Si. J. Phys. Conf. Ser. 2019 1317 1 012052 10.1088/1742‑6596/1317/1/012052
    [Google Scholar]
  39. Li N. Zhang K. Xie K. Wei W. Gao Y. Bai M. Gao Y. Hou Q. Shen C. Xia Z. Wei B. Li N. Zhang K. Xie K.Y. Wei W.F. Gao Y. Bai M.H. Gao Y.L. Hou Q. Shen C. Xia Z.H. Wei B.Q. Reduced‐graphene‐oxide‐guided directional growth of planar lithium layers Adv. Mater. 2020 32 7 1907079 10.1002/adma.201907079 31867806
    [Google Scholar]
  40. Ramirez-Ubillus M.A. Wang A. Zou S. Chumbimuni-Torres K.Y. Zhai L. Morphological effect on the surface activity and hydrogen evolution catalytic performance of Cu2O and Cu2O/rGO composites J. Compos. Sci. 2023 7 9 403 10.3390/jcs7090403
    [Google Scholar]
  41. Kant R. Sharma K.K. Hybrid material of α-Fe2O3 nanostructure with reduced graphene oxide: Enhanced dielectric and optical properties in relation to their composition and morphology. J. Mol. Struct. 2023 1282 135216 10.1016/j.molstruc.2023.135216
    [Google Scholar]
  42. Aarti A. Gaur A. Chand P. Shah J. Kotnala R.K. Tin oxide (SnO2)-decorated reduced graphene oxide (rGO)-based hydroelectric cells to generate large current ACS Omega 2022 7 48 43647 43656 10.1021/acsomega.2c04553 36506139
    [Google Scholar]
  43. Hassanzadeh-Tabrizi S.A. Precise calculation of crystallite size of nanomaterials: A review. J. Alloys Compd. 2023 968 171914 10.1016/j.jallcom.2023.171914
    [Google Scholar]
  44. Madhu G. Bose V.C. Maniammal K. Aiswarya Raj A.S. Biju V. Microstrain in nanostructured nickel oxide studied using isotropic and anisotropic models. Physica B 2013 421 87 91 10.1016/j.physb.2013.04.028
    [Google Scholar]
  45. David W.I.F. Shankland K. Structure determination from powder diffraction data. Acta Crystallogr. A 2008 64 1 52 64 10.1107/S0108767307064252 18156673
    [Google Scholar]
  46. Rao C.N.R. Vijayakrishnan V. Kulkarni G.U. Rajumon M.K. A comparative study of the interaction of oxygen with clusters and single-crystal surfaces of nickel. Appl. Surf. Sci. 1995 84 3 285 289 10.1016/0169‑4332(94)00548‑6
    [Google Scholar]
  47. Jiang H. Guo Y. Wang T. Zhu P.L. Yu S. Yu Y. Fu X.Z. Sun R. Wong C.P. Electrochemical fabrication of Ni(OH) 2 /Ni 3D porous composite films as integrated capacitive electrodes. RSC Advances 2015 5 17 12931 12936 10.1039/C4RA15092A
    [Google Scholar]
  48. Ramírez-Salgado J. Quintana-Solórzano R. Mejía-Centeno I. Armendáriz-Herrera H. Rodríguez-Hernández A. Guzmán-Castillo M.L. Valente J.S. On the role of oxidation states in the electronic structure via the formation of oxygen vacancies of a doped MoVTeNbOx in propylene oxidation. Appl. Surf. Sci. 2022 573 151428 10.1016/j.apsusc.2021.151428
    [Google Scholar]
  49. Grosvenor A.P. Biesinger M.C. Smart R.S.C. McIntyre N.S. New interpretations of XPS spectra of nickel metal and oxides. Surf. Sci. 2006 600 9 1771 1779 10.1016/j.susc.2006.01.041
    [Google Scholar]
  50. Biesinger M.C. Lau L.W.M. Gerson A.R. Smart R.S.C. The role of the Auger parameter in XPS studies of nickel metal, halides and oxides. Phys. Chem. Chem. Phys. 2012 14 7 2434 2442 10.1039/c2cp22419d 22249653
    [Google Scholar]
  51. Phasuksom K. Prissanaroon-Ouajai W. Sirivat A. A highly responsive methanol sensor based on graphene oxide/polyindole composites. RSC Advances 2020 10 26 15206 15220 10.1039/D0RA00158A 35495439
    [Google Scholar]
  52. Shang Y. Yao M. Liu Z. Fu R. Yan L. Yang L. Zhang Z. Dong J. Zhai C. Hou X. Fei L. Zhang G.J. Ji J. Zhu J. Lin H. Sundqvist B. Liu B. Enhancement of short/medium-range order and thermal conductivity in ultrahard sp3 amorphous carbon by C70 precursor Nat. Commun. 2023 14 1 1 9 10.1038/s41467‑023‑42195‑5
    [Google Scholar]
  53. Wang Y. Sun X. Zhang W. Li T. Liu M. Wu Y. Investigation on the synergistic effect in multiple active centers (Pd/Ni/PdO/NiO/Ni2O3) in situ formed on the surface of the self-assembly β-ketoimide Pd(II)/Ni(II) film anchored on graphene oxide for Suzuki-Miyaura cross-coupling reaction. Molecular Catalysis 2024 555 113843 10.1016/j.mcat.2024.113843
    [Google Scholar]
  54. Payne B.P. Biesinger M.C. McIntyre N.S. Use of oxygen/nickel ratios in the XPS characterisation of oxide phases on nickel metal and nickel alloy surfaces. J. Electron Spectrosc. Relat. Phenom. 2012 185 5-7 159 166 10.1016/j.elspec.2012.06.008
    [Google Scholar]
  55. Mansour A.N. Melendres C.A. Analysis of X-ray absorption spectra of some nickel oxycompounds using theoretical standards J. Phys. Chem. A 1998 102 1 65 81 10.1021/jp9619853
    [Google Scholar]
  56. Kou T. Chen M. Wu F. Smart T.J. Wang S. Wu Y. Zhang Y. Li S. Lall S. Zhang Z. Liu Y.S. Guo J. Wang G. Ping Y. Li Y. Carbon doping switching on the hydrogen adsorption activity of NiO for hydrogen evolution reaction Nat. Commun. 2020 11 1 1 10 2020 10.1038/s41467‑020‑14462‑2
    [Google Scholar]
  57. Shiraishi M. Inagaki M. X-ray Diffraction Methods to Study Crystallite Size and Lattice Constants of Carbon Materials, Carbon Alloy. Nov. Concepts to Dev. Carbon Sci. Technol 2003 161 173 10.1016/B978‑008044163‑4/50010‑3
    [Google Scholar]
  58. Ito Y. Inaba K. Omote K. Characterization of a particle size distribution in a Ni-C granular thin film by grazing incidence small-angle X-ray scattering. J. Phys. Conf. Ser. 2007 83 012015 10.1088/1742‑6596/83/1/012015
    [Google Scholar]
  59. Yadav S. Singh A. Choubey A.K. Composition dependent variation in structural, morphological, optical and magnetic properties of biogenic CuO/NiO mixed oxides nanoparticles. J. Alloys Compd. 2024 979 173422 10.1016/j.jallcom.2024.173422
    [Google Scholar]
  60. Hosny N.M. Synthesis, characterization and optical band gap of NiO nanoparticles derived from anthranilic acid precursors via a thermal decomposition route. Polyhedron 2011 30 3 470 476 10.1016/j.poly.2010.11.020
    [Google Scholar]
  61. Hosny N.M. Gomaa I. Elmahgary M.G. Ibrahim M.A. ZnO doped C: Facile synthesis, characterization and photocatalytic degradation of dyes Scientific Reports 2023 13 1 1 12 10.1038/s41598‑023‑41106‑4
    [Google Scholar]
  62. Saito K. Xu T. Ishikita H. Correlation between C═O Stretching Vibrational Frequency and p K a Shift of Carboxylic Acids. J. Phys. Chem. B 2022 126 27 4999 5006 10.1021/acs.jpcb.2c02193 35763701
    [Google Scholar]
  63. Zhang L. Fu W. Yu Q. Tang T. Zhao Y. Li Y. Effect of citric acid addition on the morphology and activity of Ni2P supported on mesoporous zeolite ZSM-5 for the hydrogenation of 4,6-DMDBT and phenanthrene. J. Catal. 2017 345 295 307 10.1016/j.jcat.2016.11.019
    [Google Scholar]
  64. Hsu J. Eid A.M. Randall C. Houache M.S.E. Abu-Lebdeh Y. Al-Abadleh H.A. Mechanistic in situ ATR-FTIR studies on the adsorption and desorption of major intermediates in CO2 electrochemical reduction on CuO nanoparticles Langmuir 2022 38 48 14789 14798 10.1021/acs.langmuir.2c02445 36417502
    [Google Scholar]
  65. Raul P.K. Senapati S. Sahoo A.K. Umlong I.M. Devi R.R. Thakur A.J. Veer V. CuO nanorods: A potential and efficient adsorbent in water purification. RSC Advances 2014 4 76 40580 40587 10.1039/C4RA04619F
    [Google Scholar]
  66. Zhang W. Wang L. Su Y. Liu Z. Du C. Indium oxide/Halloysite composite as highly efficient adsorbent for tetracycline Removal: Key roles of hydroxyl groups and interfacial interaction. Appl. Surf. Sci. 2021 566 150708 10.1016/j.apsusc.2021.150708
    [Google Scholar]
  67. Salem M.A. El-Damanhoury M. Omer A. El-Ghobashy M. In2O3/Polyaniline nanocomposite as an innovative and effective adsorbent for removing Acid blue 25 from wastewater. Delta J. Sci. 2023 0 0 0 10.21608/djs.2023.212869.1116
    [Google Scholar]
  68. Kanta U. Thongpool V. Sangkhun W. Wongyao N. Wootthikanokkhan J. Preparations, characterizations, and a comparative study on photovoltaic performance of two different types of graphene/TiO2 nanocomposites photoelectrodes. J. Nanomater. 2017 2017 1 13 10.1155/2017/2758294
    [Google Scholar]
  69. Manghnani M.H. Hushur A. Sekine T. Wu J. Stebbins J.F. Williams Q. Raman, Brillouin, and nuclear magnetic resonance spectroscopic studies on shocked borosilicate glass. J. Appl. Phys. 2011 109 11 113509 10.1063/1.3592346
    [Google Scholar]
  70. Zhang J. Yang H. Shen G. Cheng P. Zhang J. Guo S. Reduction of graphene oxide via l -ascorbic acid. Chem. Commun. (Camb.) 2010 46 7 1112 1114 10.1039/B917705A 20126730
    [Google Scholar]
  71. Sulaiman N. Yulizar Y. Spectroscopic, structural, and morphology of nickel oxide nanoparticles prepared using Physalis angulata Leaf Extra ct. Mater. Sci. Forum 2018 917 167 171 10.4028/www.scientific.net/MSF.917.167
    [Google Scholar]
  72. Jawad N.A. Hassan K.H. Structural characterization of NiO nanoparticles prepared by green chemistry synthesis using Arundo donax leaves extract J. Phys. Conf. Ser. 2021 1818 012007 10.1088/1742‑6596/1818/1/012007
    [Google Scholar]
  73. Prior T.J. Rujiwatra A. Chimupala Y. [Ni(1,10-phenanthroline)2(H2O)2](NO3)2: A Simple Coordination Complex with a Remarkably Complicated Structure that Simplifies on Heating, Cryst. 2011 1 178 194 10.3390/cryst1030178
    [Google Scholar]
  74. Hussein N.A. Ali N.A. Ni2O3 nanomaterial: Synthesis and characterization by simple chemical process. AIP Conf. Proc. 2023 2834 030021 10.1063/5.0164690
    [Google Scholar]
  75. Huang W. Ding S. Chen Y. Hao W. Lai X. Peng J. Tu J. Cao Y. Li X. 3D NiO hollow sphere/reduced graphene oxide composite for high-performance glucose biosensor Sci. Reports 71 7 2017 1 11 10.1038/s41598‑017‑05528‑1
    [Google Scholar]
  76. Oleiwe F.H. Structural and optical characterization of nickel oxide thin films prepared by spray pyrolysis technique Eng. Technol. J. 2015 33 1503 1512 10.30684/etj.2015.117191
    [Google Scholar]
  77. Srivastava N. Srivastava P.C. Realizing NiO nanocrystals from a simple chemical method. Bull. Mater. Sci. 2010 33 6 653 656 10.1007/s12034‑011‑0142‑0
    [Google Scholar]
  78. Kayani Z. Riaz S. Naseem S. Zia R. Synthesis and characterization of Ni2O3 Thin Films 2016
    [Google Scholar]
  79. Esmail L.A. Jabbar H.S. Salih S.K. Synthesis of a new carbon dot magnetic nanocomposite (CDs@Fe3O4) from Crocus Cancellatus: Characterization and its photocatalytic degradation of fluorescein dye. Inorg. Chem. Commun. 2024 159 111823 10.1016/j.inoche.2023.111823
    [Google Scholar]
  80. Bardhan M. Mandal G. Ganguly T. Interaction and photodegradation characteristics of fluorescein dye in presence of ZnO nanoparticles. J. Nanosci. Nanotechnol. 2011 11 4 3418 3426 10.1166/jnn.2011.3741 21776719
    [Google Scholar]
  81. Liu Y. Shi J. Peng Q. Li Y. CuO quantum-dot-sensitized mesoporous ZnO for visible-light photocatalysis. Chemistry 2013 19 13 4319 4326 10.1002/chem.201203316 23447144
    [Google Scholar]
  82. Perumal Raj K. Thangaraj V. Uthirakumar A.P. Enhanced photocatalytic behaviour of synthesized nickel oxide nanoparticles on Fluorescein under different irradiations. Optik 2016 127 5 2631 2634 10.1016/j.ijleo.2015.11.222
    [Google Scholar]
  83. Hassan S. El-Shahat M.F. Ahmed M.A. Elmahgary M. Photocatalytic degradation of fluorescein dye (FLU) over SnS2/SnO2 photocatalyst. Egypt. J. Chem. 2024 67 125 140 10.21608/ejchem.2023.168614.7096
    [Google Scholar]
  84. Khan H. Shah M.U.H. Modification strategies of TiO2 based photocatalysts for enhanced visible light activity and energy storage ability: A review. J. Environ. Chem. Eng. 2023 11 6 111532 10.1016/j.jece.2023.111532
    [Google Scholar]
  85. Hernández-Alonso M.D. Fresno F. Suárez S. Coronado J.M. Development of alternative photocatalysts to TiO2: Challenges and opportunities. Energy Environ. Sci. 2009 2 12 1231 1257 10.1039/b907933e
    [Google Scholar]
  86. Zeid S.A. Leprince-Wang Y. Advancements in ZnO-Based Photocatalysts for Water Treatment: A Comprehensive Review Cryst. 2024 2024 14 611 14 10.3390/cryst14070611
    [Google Scholar]
  87. Hezam A. Drmosh Q.A. Ponnamma D. Bajiri M.A. Qamar M. Namratha K. Zare M. Nayan M.B. Onaizi S.A. Byrappa K. Strategies to enhance ZnO photocatalyst’s performance for water treatment: A comprehensive review Chem. Rec. 2022 22 7 e202100299 10.1002/tcr.202100299 35119182
    [Google Scholar]
  88. Dou F.Y. Nishiwaki E. Larson H. Homer M.K. Zion T. Nguyen H.A. Cossairt B.M. Pathways of CdS quantum dot degradation during photocatalysis: Implications for enhancing stability and efficiency for organic synthesis ACS Appl. Nano Mater. 2024 7 13 15781 15785 10.1021/acsanm.4c02976
    [Google Scholar]
  89. Pan B. Xie Y. Zhang S. Lv L. Zhang W. Visible light photocatalytic degradation of RhB by polymer-CdS nanocomposites: Role of the host functional groups. ACS Appl. Mater. Interfaces 2012 4 8 3938 3943 10.1021/am300769b 22780097
    [Google Scholar]
  90. Balakrishnan A. Chinthala M. Comprehensive review on advanced reusability of g-C3N4 based photocatalysts for the removal of organic pollutants. Chemosphere 2022 297 134190 10.1016/j.chemosphere.2022.134190 35248593
    [Google Scholar]
  91. Alaghmandfard A. Ghandi K. A Comprehensive Review of Graphitic Carbon Nitride (g-C3N4)–Metal Oxide-Based Nanocomposites: Potential for Photocatalysis and Sensing Nanomater. 2022, 2022 12 294 12 10.3390/nano12020294
    [Google Scholar]
/content/journals/cac/10.2174/0115734110340753240930044207
Loading
/content/journals/cac/10.2174/0115734110340753240930044207
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test