Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Introduction

This study introduces an innovative two-step approach to fabricate a high-performance NiO/NiO/rGO nanocomposite photocatalyst. The process synergistically combines solvothermal precursor synthesis with calcination and high-energy ultrasonic irradiation, enabling the formation of a thin NiO layer on NiO quasi-sphere nanoparticles anchored to a reduced graphene oxide (rGO) matrix.

Methods

The incorporation of rGO significantly enhances charge separation, resulting in a dramatic increase in active surface area from 17.1 m2/g to 131 m2/g, and a substantial improvement in the photocatalytic degradation of the resilient Fluorescein dye—achieving an 81% degradation rate under UV light, compared to 36% with pristine NiO.

Results

Comprehensive characterization, including FTIR, XRD, and XPS analyses, confirmed the NiO-NiO interface transformation, successful reduction of graphene oxide, and critical interactions between NiO and NiO.

Conclusion

This study highlights the promising potential of the NiO/NiO/rGO nanocomposite for environmental remediation, particularly in the degradation of persistent organic pollutants.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110340753240930044207
2024-10-10
2026-02-11
Loading full text...

Full text loading...

References

  1. HosnyN.M. GomaaI. ElmahgaryM.G. Adsorption of polluted dyes from water by transition metal oxides: A review.Appl. Surface Sci. Adv.20231510039510.1016/j.apsadv.2023.100395
    [Google Scholar]
  2. CuiZ. LiuS. LiuZ. LiY. HuX. TianJ. Determination of torasemide by fluorescence quenching method with some dihalogenated fluorescein dyes as probes.Spectrochim. Acta A Mol. Biomol. Spectrosc.201311454755210.1016/j.saa.2013.05.080 23792294
    [Google Scholar]
  3. GuiW. LinJ. LiangY. QuY. ZhangL. ZhangH. LiX. A two-step strategy for high-efficiency fluorescent dye removal from wastewater.NPJ Clean Water2019211910.1038/s41545‑019‑0041‑2
    [Google Scholar]
  4. DingX. ZhuM. SunB. YangZ. HanY.F. An Overview on Dynamic Phase Transformation and Surface Reconstruction of Iron Catalysts for Catalytic Hydrogenation of CO x for Hydrocarbons.ACS Catal.20241486137616810.1021/acscatal.3c05854
    [Google Scholar]
  5. ChenJ. TeeC.K. ShteinM. MartinD.C. AnthonyJ. Controlled solution deposition and systematic study of charge-transport anisotropy in single crystal and single-crystal textured TIPS pentacene thin films.Org. Electron.200910469670310.1016/j.orgel.2009.03.007
    [Google Scholar]
  6. GunawanR. Adi WijayaR. SusenoA. LusianaR.A. SeptinaW. HaradaT. Synthesis of CuInS2 thin film photocathode with variation of sulfurization sources and Pt-In2S3 modification for photoelectrochemical water splitting.J. Electroanal. Chem. (Lausanne)202394511768310.1016/j.jelechem.2023.117683
    [Google Scholar]
  7. AinabayevA. WallsB. MullarkeyD. CaffreyD. FleischerK. SmithC.M. McGlincheyA. CaseyD. McCormackS.J. ShvetsI. High-performance p-type V2O3 films by spray pyrolysis for transparent conducting oxide applications.Sci. Rep.202414111010.1038/s41598‑024‑52024‑4
    [Google Scholar]
  8. AhnC. LeeJ. KimH.U. BarkH. JeonM. RyuG.H. LeeZ. YeomG.Y. KimK. JungJ. KimY. LeeC. KimT. AhnC. KimH. BarkH. JeonM. YeomG.Y. JungJ. LeeC. KimT. LeeJ. KimY. RyuG.H. LeeZ. Low‐temperature synthesis of large‐scale molybdenum disulfide thin films directly on a plastic substrate using plasma‐enhanced chemical vapor deposition.Adv. Mater.201527355223522910.1002/adma.201501678 26257314
    [Google Scholar]
  9. YeZ. MengH. WangY. QiD. XuJ. One-step facile solution synthesis of α-Ag2S nanoparticles and fabrication of multi-layered thin films.Surf. Interfaces20244410380910.1016/j.surfin.2023.103809
    [Google Scholar]
  10. MakhadoK.P. Mphahlele-MakgwaneM.M. KumarN. BakerP.G.L. MakgwaneP.R. Current updates on p-type nickel oxide (NiO) based photocatalysts towards decontamination of organic pollutants from wastewater.Materials Today Sustainability20242510066410.1016/j.mtsust.2023.100664
    [Google Scholar]
  11. LiuM. WangJ. DuanL. LiuX. ZhangL. Nickel oxide modified C3N5 photocatalyst for enhanced hydrogen evolution performance.J. Fuel Chem. Technol.202250224324910.1016/S1872‑5813(21)60166‑4
    [Google Scholar]
  12. SantosR.K. MartinsT.A. SilvaG.N. ConceiçãoM.V.S. NogueiraI.C. LongoE. BotelhoG. Ag 3 PO 4/NiO composites with enhanced photocatalytic activity under visible light.ACS Omega2020534216512166110.1021/acsomega.0c02456 32905253
    [Google Scholar]
  13. HashimM. UsmanM. AhmadS. ShahR. AliA. RahmanN.U. ZnO/NiO nanocomposite with enhanced photocatalytic H2 production.Int. J. Photoenergy2024202411110.1155/2024/2676368
    [Google Scholar]
  14. DhimanP. SharmaG. AlodhaybA.N. KumarA. RanaG. SitholeT. ALOthmanZ.A. Constructing a visible-active CoFe2O4@Bi2O3/NiO nanoheterojunction as magnetically recoverable photocatalyst with boosted ofloxacin degradation efficiency.Molecules20222723823410.3390/molecules27238234 36500330
    [Google Scholar]
  15. DingM. YangH. YanT. WangC. DengX. ZhangS. HuangJ. ShaoM. XuX. Fabrication of hierarchical ZnO@NiO core–shell heterostructures for improved photocatalytic performance.Nanoscale Res. Lett.201813126010.1186/s11671‑018‑2676‑1 30167915
    [Google Scholar]
  16. FatimahI. SulistyowatiR.Z. WijayanaA. PurwiandonoG. SagadevanS. Z-scheme NiO/g-C3N4 nanocomposites prepared using phyto-mediated nickel nanoparticles for the efficient photocatalytic degradation.Heliyon202395e1623210.1016/j.heliyon.2023.e16232 37251879
    [Google Scholar]
  17. SadhukhanS. BhattacharyyaA. RanaD. GhoshT.K. OrasughJ.T. KhatuaS. AcharyaK. ChattopadhyayD. Synthesis of RGO/NiO nanocomposites adopting a green approach and its photocatalytic and antibacterial properties.Mater. Chem. Phys.202024712290610.1016/j.matchemphys.2020.122906
    [Google Scholar]
  18. SubashiniK. PrakashS. Anusuya DeviV.S. SujathaV. Dye degradation efficiency of green synthesized NiO@GO nanocomposite with biological application.J. Phys. Conf. Ser.20222225101200510.1088/1742‑6596/2225/1/012005
    [Google Scholar]
  19. VivekP. SivakumarR. Selva EsakkiE. DeivanayakiS. Fabrication of NiO/RGO nanocomposite for enhancing photocatalytic performance through degradation of RhB.J. Phys. Chem. Solids202317611125510.1016/j.jpcs.2023.111255
    [Google Scholar]
  20. SaikiaP. BorahP. BorahD. GogoiD. RoutJ. GhoshN.N. BhattacharjeeC.R. Facile green synthesis of rGO and NiO, and fabrication of a novel ternary nanoheterostructure NiO@g-C3N4-rGO as earth abundant superior photocatalyst for dye degradation.Mater. Today Sustain.20232410059510.1016/j.mtsust.2023.100595
    [Google Scholar]
  21. WangY. DuanC. LiJ. ZhaoZ. XuJ. LiuL. QianJ. Fabrication of interface-engineered Ni/NiO/rGO nanobush for highly efficient and durable oxygen reduction.Mater. Sci. Semicond. Process.202315610725910.1016/j.mssp.2022.107259
    [Google Scholar]
  22. GnanasekaranL. ManojD. RajendranS. GraciaF. JalilA.A. ChenW.H. Soto-MoscosoM. Gracia-PinillaM.A. Mesoporous NiO/Ni2O3 nanoflowers for favorable visible light photocatalytic degradation of 4-chlorophenol.Environ. Res.2023236Pt 211679010.1016/j.envres.2023.116790 37517483
    [Google Scholar]
  23. SafeerM.K. AlexC. JanaR. DattaA. JohnN.S. Remarkable COx tolerance of Ni3+ active species in a Ni2O3 catalyst for sustained electrochemical urea oxidation.J. Mater. Chem. A Mater. Energy Sustain.2022104209422110.1039/D1TA05753G
    [Google Scholar]
  24. ElsemanA.M. LuoL. SongQ.L. Self-doping synthesis of trivalent Ni 2 O 3 as a hole transport layer for high fill factor and efficient inverted perovskite solar cells.Dalton Trans.20204940142431425010.1039/D0DT03029E 33025991
    [Google Scholar]
  25. WuH. WangL. WangY. GuoS. ShenZ. Enhanced microwave performance of highly ordered mesoporous carbon coated by Ni2O3 nanoparticles.J. Alloys Compd.2012525828610.1016/j.jallcom.2012.02.078
    [Google Scholar]
  26. JouiniK. RaouafiA. DridiW. DaoudiM. MustaphaB. ChtourouR. HosniF. Investigation of gamma-ray irradiation induced phase change from NiO to Ni2O3 for enhancing photocatalytic performance.Optik201919516310910.1016/j.ijleo.2019.163109
    [Google Scholar]
  27. DeyS. BhattacharjeeS. ChaudhuriM.G. BoseR.S. HalderS. GhoshC.K. Synthesis of pure nickel(III) oxide nanoparticles at room temperature for Cr(VI) ion removal.RSC Advances2015567547175472610.1039/C5RA05810D
    [Google Scholar]
  28. CassirM. OlivryM. AlbinV. MalinowskaB. DevynckJ. Thermodynamic and electrochemical behavior of nickel in molten Li2CO3–Na2CO3 modified by addition of calcium carbonate.J. Electroanal. Chem.1998452112713710.1016/S0022‑0728(98)00118‑1
    [Google Scholar]
  29. Rosales PérezA. Esquivel EscalanteK. The evolution of sonochemistry: From the beginnings to novel applications.ChemPlusChem2024896e20230066010.1002/cplu.202300660 38369655
    [Google Scholar]
  30. HosnyN.M. GomaaI. Abd El-MoemenA. AnwarZ.M. Adsorption of Ponceau Xylidine dye by synthesised Mn2O3 nanoparticles.Int. J. Environ. Anal. Chem.202111710.1080/03067319.2021.2014470
    [Google Scholar]
  31. GomaaI. HosnyN.M. IbrahimM.A. Self-assembled dendrites of graphene oxide quantum dots via bottom-up lyophilization synthesis.J. Mol. Struct.2024129613681810.1016/j.molstruc.2023.136818
    [Google Scholar]
  32. GomaaI. Abdel-SalamA.I. KhalidA. SolimanT.S. Fabrication, structural, morphological, and optical features of Mn2O3 polyhedron nano-rods and Mn2O3/reduced graphene oxide hybrid nanocomposites.Opt. Laser Technol.202316110912610.1016/j.optlastec.2023.109126
    [Google Scholar]
  33. HosnyN.M. GomaaI. Abd El-MoemenA. AnwarZ.M. Synthesis, magnetic and adsorption of dye onto the surface of NiO nanoparticles.J. Mater. Sci. Mater. Electron.202031118413842210.1007/s10854‑020‑03376‑w
    [Google Scholar]
  34. ElhaesH. Abdel-SalamA.I. GomaaI. IbrahimA. YahiaI.S. ZahranH.Y. EzzatH.A. ZahranM. Abdel-wahabM.S. RefaatA. IbrahimM.A. Facile synthesis, structural, morphological and electronic investigation of Mn2O3 nano-rice shape and Mn2O3-rGO hybrid nanocomposite.Opt. Quantum Electron.2023551194710.1007/s11082‑023‑05002‑5
    [Google Scholar]
  35. Abdel-SalamA.I. GomaaI. KhalidA. SolimanT.S. Investigation of raman spectrum, structural, morphological, and optical features of Fe 2 O 3 and Fe 2 O 3/reduced graphene oxide hybrid nanocomposites.Phys. Scr.2022971212580710.1088/1402‑4896/ac9c38
    [Google Scholar]
  36. MorsyM. GomaaI. Abd ElhamidA.E.M. ShawkeyH. AlyM.A.S. ElzwawyA. Ternary nanocomposite comprising MnO2, GQDs, and PANI as a potential structure for humidity sensing applications.Sci. Rep.202313111510.1038/s41598‑023‑48928‑2
    [Google Scholar]
  37. BharathG. AnwerS. MangalarajaR.V. AlhseinatE. BanatF. PonpandianN. Sunlight-induced photochemical synthesis of Au nanodots on α-Fe2O3@reduced graphene oxide nanocomposite and their enhanced heterogeneous catalytic properties.Sci. Rep.20188111410.1038/s41598‑018‑24066‑y
    [Google Scholar]
  38. HeryantoB. AbdullahB. TahirD. Mahdalia, Quantitative analysis of X-Ray diffraction spectra for determine structural properties and deformation energy of Al, Cu and Si.J. Phys. Conf. Ser.20191317101205210.1088/1742‑6596/1317/1/012052
    [Google Scholar]
  39. LiN. ZhangK. XieK. WeiW. GaoY. BaiM. GaoY. HouQ. ShenC. XiaZ. WeiB. LiN. ZhangK. XieK.Y. WeiW.F. GaoY. BaiM.H. GaoY.L. HouQ. ShenC. XiaZ.H. WeiB.Q. Reduced‐graphene‐oxide‐guided directional growth of planar lithium layers.Adv. Mater.2020327190707910.1002/adma.201907079 31867806
    [Google Scholar]
  40. Ramirez-UbillusM.A. WangA. ZouS. Chumbimuni-TorresK.Y. ZhaiL. Morphological effect on the surface activity and hydrogen evolution catalytic performance of Cu2O and Cu2O/rGO composites.J. Compos. Sci.20237940310.3390/jcs7090403
    [Google Scholar]
  41. KantR. SharmaK.K. Hybrid material of α-Fe2O3 nanostructure with reduced graphene oxide: Enhanced dielectric and optical properties in relation to their composition and morphology.J. Mol. Struct.2023128213521610.1016/j.molstruc.2023.135216
    [Google Scholar]
  42. AartiA. GaurA. ChandP. ShahJ. KotnalaR.K. Tin oxide (SnO2)-decorated reduced graphene oxide (rGO)-based hydroelectric cells to generate large current.ACS Omega2022748436474365610.1021/acsomega.2c04553 36506139
    [Google Scholar]
  43. Hassanzadeh-TabriziS.A. Precise calculation of crystallite size of nanomaterials: A review.J. Alloys Compd.202396817191410.1016/j.jallcom.2023.171914
    [Google Scholar]
  44. MadhuG. BoseV.C. ManiammalK. Aiswarya RajA.S. BijuV. Microstrain in nanostructured nickel oxide studied using isotropic and anisotropic models.Physica B2013421879110.1016/j.physb.2013.04.028
    [Google Scholar]
  45. DavidW.I.F. ShanklandK. Structure determination from powder diffraction data.Acta Crystallogr. A2008641526410.1107/S0108767307064252 18156673
    [Google Scholar]
  46. RaoC.N.R. VijayakrishnanV. KulkarniG.U. RajumonM.K. A comparative study of the interaction of oxygen with clusters and single-crystal surfaces of nickel.Appl. Surf. Sci.199584328528910.1016/0169‑4332(94)00548‑6
    [Google Scholar]
  47. JiangH. GuoY. WangT. ZhuP.L. YuS. YuY. FuX.Z. SunR. WongC.P. Electrochemical fabrication of Ni(OH) 2/Ni 3D porous composite films as integrated capacitive electrodes.RSC Advances2015517129311293610.1039/C4RA15092A
    [Google Scholar]
  48. Ramírez-SalgadoJ. Quintana-SolórzanoR. Mejía-CentenoI. Armendáriz-HerreraH. Rodríguez-HernándezA. Guzmán-CastilloM.L. ValenteJ.S. On the role of oxidation states in the electronic structure via the formation of oxygen vacancies of a doped MoVTeNbOx in propylene oxidation.Appl. Surf. Sci.202257315142810.1016/j.apsusc.2021.151428
    [Google Scholar]
  49. GrosvenorA.P. BiesingerM.C. SmartR.S.C. McIntyreN.S. New interpretations of XPS spectra of nickel metal and oxides.Surf. Sci.200660091771177910.1016/j.susc.2006.01.041
    [Google Scholar]
  50. BiesingerM.C. LauL.W.M. GersonA.R. SmartR.S.C. The role of the Auger parameter in XPS studies of nickel metal, halides and oxides.Phys. Chem. Chem. Phys.20121472434244210.1039/c2cp22419d 22249653
    [Google Scholar]
  51. PhasuksomK. Prissanaroon-OuajaiW. SirivatA. A highly responsive methanol sensor based on graphene oxide/polyindole composites.RSC Advances20201026152061522010.1039/D0RA00158A 35495439
    [Google Scholar]
  52. ShangY. YaoM. LiuZ. FuR. YanL. YangL. ZhangZ. DongJ. ZhaiC. HouX. FeiL. ZhangG.J. JiJ. ZhuJ. LinH. SundqvistB. LiuB. Enhancement of short/medium-range order and thermal conductivity in ultrahard sp3 amorphous carbon by C70 precursor.Nat. Commun.20231411910.1038/s41467‑023‑42195‑5
    [Google Scholar]
  53. WangY. SunX. ZhangW. LiT. LiuM. WuY. Investigation on the synergistic effect in multiple active centers (Pd/Ni/PdO/NiO/Ni2O3) in situ formed on the surface of the self-assembly β-ketoimide Pd(II)/Ni(II) film anchored on graphene oxide for Suzuki-Miyaura cross-coupling reaction.Mol. Catal.202455511384310.1016/j.mcat.2024.113843
    [Google Scholar]
  54. PayneB.P. BiesingerM.C. McIntyreN.S. Use of oxygen/nickel ratios in the XPS characterisation of oxide phases on nickel metal and nickel alloy surfaces.J. Electron Spectrosc. Relat. Phenom.20121855-715916610.1016/j.elspec.2012.06.008
    [Google Scholar]
  55. MansourA.N. MelendresC.A. Analysis of X-ray absorption spectra of some nickel oxycompounds using theoretical standards.J. Phys. Chem. A19981021658110.1021/jp9619853
    [Google Scholar]
  56. KouT. ChenM. WuF. SmartT.J. WangS. WuY. ZhangY. LiS. LallS. ZhangZ. LiuY.S. GuoJ. WangG. PingY. LiY. Carbon doping switching on the hydrogen adsorption activity of NiO for hydrogen evolution reactionNat. Commun.202011111010.1038/s41467‑020‑14462‑2
    [Google Scholar]
  57. ShiraishiM. InagakiM. X-ray Diffraction Methods to Study Crystallite Size and Lattice Constants of Carbon Materials, Carbon Alloy; Nov.Concepts to Dev. Carbon Sci. Technol200316117310.1016/B978‑008044163‑4/50010‑3
    [Google Scholar]
  58. ItoY. InabaK. OmoteK. Characterization of a particle size distribution in a Ni-C granular thin film by grazing incidence small-angle X-ray scattering.J. Phys. Conf. Ser.20078301201510.1088/1742‑6596/83/1/012015
    [Google Scholar]
  59. YadavS. SinghA. ChoubeyA.K. Composition dependent variation in structural, morphological, optical and magnetic properties of biogenic CuO/NiO mixed oxides nanoparticles.J. Alloys Compd.202497917342210.1016/j.jallcom.2024.173422
    [Google Scholar]
  60. HosnyN.M. Synthesis, characterization and optical band gap of NiO nanoparticles derived from anthranilic acid precursors via a thermal decomposition route.Polyhedron201130347047610.1016/j.poly.2010.11.020
    [Google Scholar]
  61. HosnyN.M. GomaaI. ElmahgaryM.G. IbrahimM.A. ZnO doped C: Facile synthesis, characterization and photocatalytic degradation of dyes.Sci. Rep.202313111210.1038/s41598‑023‑41106‑4
    [Google Scholar]
  62. SaitoK. XuT. IshikitaH. Correlation between C═O Stretching Vibrational Frequency and p Ka Shift of Carboxylic Acids.J. Phys. Chem. B2022126274999500610.1021/acs.jpcb.2c02193 35763701
    [Google Scholar]
  63. ZhangL. FuW. YuQ. TangT. ZhaoY. LiY. Effect of citric acid addition on the morphology and activity of Ni2P supported on mesoporous zeolite ZSM-5 for the hydrogenation of 4,6-DMDBT and phenanthrene.J. Catal.201734529530710.1016/j.jcat.2016.11.019
    [Google Scholar]
  64. HsuJ. EidA.M. RandallC. HouacheM.S.E. Abu-LebdehY. Al-AbadlehH.A. Mechanistic in situ ATR-FTIR studies on the adsorption and desorption of major intermediates in CO2 electrochemical reduction on CuO nanoparticles.Langmuir20223848147891479810.1021/acs.langmuir.2c02445 36417502
    [Google Scholar]
  65. RaulP.K. SenapatiS. SahooA.K. UmlongI.M. DeviR.R. ThakurA.J. VeerV. CuO nanorods: A potential and efficient adsorbent in water purification.RSC Advances2014476405804058710.1039/C4RA04619F
    [Google Scholar]
  66. ZhangW. WangL. SuY. LiuZ. DuC. Indium oxide/Halloysite composite as highly efficient adsorbent for tetracycline Removal: Key roles of hydroxyl groups and interfacial interaction.Appl. Surf. Sci.202156615070810.1016/j.apsusc.2021.150708
    [Google Scholar]
  67. SalemM.A. El-DamanhouryM. OmerA. El-GhobashyM. In2O3/Polyaniline nanocomposite as an innovative and effective adsorbent for removing Acid blue 25 from wastewater.Delta J. Sci.2023463497210.21608/djs.2023.212869.1116
    [Google Scholar]
  68. KantaU. ThongpoolV. SangkhunW. WongyaoN. WootthikanokkhanJ. Preparations, characterizations, and a comparative study on photovoltaic performance of two different types of graphene/TiO2 nanocomposites photoelectrodes.J. Nanomater.2017201711310.1155/2017/2758294
    [Google Scholar]
  69. ManghnaniM.H. HushurA. SekineT. WuJ. StebbinsJ.F. WilliamsQ. Raman, Brillouin, and nuclear magnetic resonance spectroscopic studies on shocked borosilicate glass.J. Appl. Phys.20111091111350910.1063/1.3592346
    [Google Scholar]
  70. ZhangJ. YangH. ShenG. ChengP. ZhangJ. GuoS. Reduction of graphene oxide via L -ascorbic acid.Chem. Commun. (Camb.)20104671112111410.1039/B917705A 20126730
    [Google Scholar]
  71. SulaimanN. YulizarY. Spectroscopic, structural, and morphology of nickel oxide nanoparticles prepared using Physalisangulata Leaf Extra ct.Mater. Sci. Forum201891716717110.4028/www.scientific.net/MSF.917.167
    [Google Scholar]
  72. JawadN.A. HassanK.H. Structural characterization of NiO nanoparticles prepared by green chemistry synthesis using Arundo donax leaves extract.J. Phys. Conf. Ser.2021181801200710.1088/1742‑6596/1818/1/012007
    [Google Scholar]
  73. PriorT.J. RujiwatraA. ChimupalaY. [Ni(1,10- phenanthroline)2(H2O)2](NO3)2: A simple coordination complex with a remarkably complicated structure that simplifies on heating.Crystal20111178, 19410.3390/cryst1030178
    [Google Scholar]
  74. HusseinN.A. AliN.A. Ni2O3 nanomaterial: Synthesis and characterization by simple chemical process.AIP Conf. Proc.2023283403002110.1063/5.0164690
    [Google Scholar]
  75. HuangW. DingS. ChenY. HaoW. LaiX. PengJ. TuJ. CaoY. LiX. 3D NiO hollow sphere/reduced graphene oxide composite for high-performance glucose biosensor.Sci. Rep.201771711110.1038/s41598‑017‑05528‑1
    [Google Scholar]
  76. OleiweF.H. Structural and optical characterization of nickel oxide thin films prepared by spray pyrolysis technique Eng.Technol. J.2015331503151210.30684/etj.2015.117191
    [Google Scholar]
  77. SrivastavaN. SrivastavaP.C. Realizing NiO nanocrystals from a simple chemical method.Bull. Mater. Sci.201033665365610.1007/s12034‑011‑0142‑0
    [Google Scholar]
  78. KayaniZ. RiazS. NaseemS. ZiaR. Synthesis and characterization of Ni2O3 Thin Films2016
    [Google Scholar]
  79. EsmailL.A. JabbarH.S. SalihS.K. Synthesis of a new carbon dot magnetic nanocomposite (CDs@Fe3O4) from Crocus Cancellatus: Characterization and its photocatalytic degradation of fluorescein dye.Inorg. Chem. Commun.202415911182310.1016/j.inoche.2023.111823
    [Google Scholar]
  80. BardhanM. MandalG. GangulyT. Interaction and photodegradation characteristics of fluorescein dye in presence of ZnO nanoparticles.J. Nanosci. Nanotechnol.20111143418342610.1166/jnn.2011.3741 21776719
    [Google Scholar]
  81. LiuY. ShiJ. PengQ. LiY. CuO quantum-dot-sensitized mesoporous ZnO for visible-light photocatalysis.Chemistry201319134319432610.1002/chem.201203316 23447144
    [Google Scholar]
  82. Perumal RajK. ThangarajV. UthirakumarA.P. Enhanced photocatalytic behaviour of synthesized nickel oxide nanoparticles on Fluorescein under different irradiations.Optik201612752631263410.1016/j.ijleo.2015.11.222
    [Google Scholar]
  83. HassanS. El-ShahatM.F. AhmedM.A. ElmahgaryM. Photocatalytic degradation of fluorescein dye (FLU) over SnS2/SnO2 photocatalyst.Egypt. J. Chem.20246712514010.21608/ejchem.2023.168614.7096
    [Google Scholar]
  84. KhanH. ShahM.U.H. Modification strategies of TiO2 based photocatalysts for enhanced visible light activity and energy storage ability: A review.J. Environ. Chem. Eng.202311611153210.1016/j.jece.2023.111532
    [Google Scholar]
  85. Hernández-AlonsoM.D. FresnoF. SuárezS. CoronadoJ.M. Development of alternative photocatalysts to TiO2: Challenges and opportunities.Energy Environ. Sci.20092121231125710.1039/b907933e
    [Google Scholar]
  86. ZeidS.A. Leprince-WangY. Advancements in ZnO-Based Photocatalysts for Water Treatment: A Comprehensive Review.Crystals20241461161410.3390/cryst14070611
    [Google Scholar]
  87. HezamA. DrmoshQ.A. PonnammaD. BajiriM.A. QamarM. NamrathaK. ZareM. NayanM.B. OnaiziS.A. ByrappaK. Strategies to enhance ZnO photocatalyst’s performance for water treatment: A comprehensive review.Chem. Rec.2022227e20210029910.1002/tcr.202100299 35119182
    [Google Scholar]
  88. DouF.Y. NishiwakiE. LarsonH. HomerM.K. ZionT. NguyenH.A. CossairtB.M. Pathways of CdS quantum dot degradation during photocatalysis: Implications for enhancing stability and efficiency for organic synthesis.ACS Appl. Nano Mater.2024713157811578510.1021/acsanm.4c02976
    [Google Scholar]
  89. PanB. XieY. ZhangS. LvL. ZhangW. Visible light photocatalytic degradation of RhB by polymer-CdS nanocomposites: Role of the host functional groups.ACS Appl. Mater. Interfaces2012483938394310.1021/am300769b 22780097
    [Google Scholar]
  90. BalakrishnanA. ChinthalaM. Comprehensive review on advanced reusability of g-C3N4 based photocatalysts for the removal of organic pollutants.Chemosphere202229713419010.1016/j.chemosphere.2022.134190 35248593
    [Google Scholar]
  91. AlaghmandfardA. GhandiK. A Comprehensive Review of Graphitic Carbon Nitride (g-C3N4)–Metal Oxide-Based Nanocomposites: Potential for Photocatalysis and Sensing.Nanomater.20221229431210.3390/nano12020294
    [Google Scholar]
/content/journals/cac/10.2174/0115734110340753240930044207
Loading
/content/journals/cac/10.2174/0115734110340753240930044207
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test