Skip to content
2000
image of Revolutionizing Oral Cancer Care: The Therapeutic Potential of Coenzyme Q10 and Balanced Trace Metals

Abstract

Aims

This case-control study compared the concentrations of coenzyme Q10 in plasma and various trace elements from serum isolated from a patient with oral cancer to those of healthy people.

Background

Oral cancer is a severe and progressive disease related to metabolic disorders and oxidative stress challenges. Impaired in CoQ10, an essential component of the mitochondrial electron transport chain antioxidant. CoQ10, a major scavenger of free radicals, protects mitochondria against oxidative stress. Trace elements, such as Na+, Fe2+, Zn, and Ca2+, are also crucial regarding physiological functions and normal metabolic pathways, including cancer hallmarks.

Objectives

The study aimed to assess CoQ10 and trace metals in patients with oral cancer at various stages and compare them with healthy subjects. The current study deals with metabolic alterations that occur as oral cancer grows to enhance knowledge and potential therapeutic intervention paths.

Methods

Analysis of CoQ10 and trace element: HPLC-DAD Metal concentrations in serum were measured using ICP-OES). 55 oral cancer patients and 30 healthy individuals were recruited for blood collection. The patients were diagnosed as T1N1, T2N2 PT3 N1M8, and T4N. Study duration 2 months. Which includes patients' sex, age, habits, diet, physical characteristics, race, habits, and chronic illness.

Results

As cancer stages increased, CoQ10 levels continuously decreased from 0.5-1.26 mg/L from stage I to 0.6-2.8 mg/L to stage IV. Eight different trace elements, Na+, Fe2+, Zn+, and Ca2+, have levels across different stages of cancer with no discernible change. In healthy individuals, the CoQ10 level changed from 1.43 to 1.67 mg/L, showing age decline.

Conclusions

This study is the first to report a statistically significant reduction in CoQ10 levels related to the stages of oral cancer. In contrast, trace metal levels were kept almost constant. The findings conclude that the observed CoQ10-associated defects or deficiencies in oral cancer patients help to explain a potential cause of metabolic changes relevant to carcinogenesis. These insights are probably potential therapeutic targets for the manipulation of CoQ10 levels and support from supplements retention/balance essential metals, such as cancer care.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110340661250106082808
2025-01-29
2025-05-25
Loading full text...

Full text loading...

References

  1. Yoneda T. Tomofuji T. Ekuni D. Azuma T. Endo Y. Kasuyama K. Machida T. Morita M. Anti-aging effects of co-enzyme Q10 on periodontal tissues. J. Dent. Res. 2013 92 8 735 739 10.1177/0022034513490959 23694931
    [Google Scholar]
  2. Desbats M.A. Lunardi G. Doimo M. Trevisson E. Salviati L. Genetic bases and clinical manifestations of coenzyme Q 10 (CoQ 10 ) deficiency. J. Inherit. Metab. Dis. 2015 38 1 145 156 10.1007/s10545‑014‑9749‑9 25091424
    [Google Scholar]
  3. Ghasempour Dabaghi G. Rabiee Rad M. Mohammad-Zamani M. Karimi Shervedani A. Bahrami-Samani F. Heshmat-Ghahdarijani K. The role of coenzyme Q10 as a preventive and therapeutic agent for the treatment of cancers. Curr. Probl. Cancer 2024 48 101063 10.1016/j.currproblcancer.2024.101063 38330781
    [Google Scholar]
  4. Üstündağ H. Demir Ö. Huyut M.T. Yüce N. Investigating the individual and combined effects of coenzyme Q10 and vitamin C on CLP-induced cardiac injury in rats. Sci. Rep. 2024 14 1 3098 10.1038/s41598‑024‑52932‑5 38326366
    [Google Scholar]
  5. Greenberg S. Frishman W.H. Co-enzyme Q10: a new drug for cardiovascular disease. J. Clin. Pharmacol. 1990 30 7 596 608 10.1002/j.1552‑4604.1990.tb01862.x 2202752
    [Google Scholar]
  6. Littaru G.P. Ho L. Folkers K. Deficiency of coenzyme Q 10 in human heart disease. I. Int. J. Vitam. Nutr. Res. 1972 42 2 291 305 5053855
    [Google Scholar]
  7. Aksoy A. Kurnaz S.Ç. An investigation of oxidative stress and coenzyme Q10 levels in patients with head and neck squamous cell carcinomas. Eur. Arch. Otorhinolaryngol. 2019 276 4 1197 1204 10.1007/s00405‑019‑05328‑5 30729295
    [Google Scholar]
  8. Mellors A. Tappel A.L. Quinones and quinols as inhibitors of lipid peroxidation. Lipids 1966 1 4 282 284 10.1007/BF02531617 17805631
    [Google Scholar]
  9. Ekin S. Oto G. Yardim Y. levent A. Ozgokce F. Kusman T. Protective effect of Hypericum perforatum L. on serum and hair trace elements in rats 7,12-dimethylbenz[a]anthracene-induced oxidative stress. Environ. Toxicol. Pharmacol. 2012 33 3 440 445 10.1016/j.etap.2012.01.010 22387603
    [Google Scholar]
  10. Lenaz G. Genova M.L. Structure and organization of mitochondrial respiratory complexes: a new understanding of an old subject. Antioxid. Redox Signal. 2010 12 8 961 1008 10.1089/ars.2009.2704 19739941
    [Google Scholar]
  11. Golbidi S. Alireza Ebadi S. Laher I. Antioxidants in the treatment of diabetes. Curr. Diabetes Rev. 2011 7 2 106 125 10.2174/157339911794940729 21294707
    [Google Scholar]
  12. Mortazavi Moghadam S.G. Zarban A. Yaghobbi Marakieh R. Allahyari E. Some Beneficial Effects of Coenzyme Q10 Supplementation on Patients with Chronic Obstructive Pulmonary Disease. J. Adv. Med. Biomed. Res. 2023 31 146 238 243 10.30699/jambs.31.146.238
    [Google Scholar]
  13. Aikins A.D.G. Kushitor M. Sanuade O. Dakey S. Dovie D. Kwabena-Adade J. Research on Aging in Ghana from the 1950s to 2016. Ghana Stud. 2016 19 1 173 189 10.3368/gs.19.1.173
    [Google Scholar]
  14. Deavall D.G. Drug-induced oxidative stress and toxicity. J. Toxicol. 2012 2012 645460 10.1155/2012/645460
    [Google Scholar]
  15. Aslan M. Levent A. First voltammetric studies, spectrophotometric and molecular docking investigations of the interaction of an anticancer drug ribociclib-DNA and analytical applications of disposable pencil graphite sensor. Microchem. J. 2024 206 111580 10.1016/j.microc.2024.111580
    [Google Scholar]
  16. Quryshi N. Norwood Toro L. Ait-Aissa K. Kong A. Beyer A. Chemotherapeutic-induced cardiovascular dysfunction: physiological effects, early detection—the role of telomerase to counteract mitochondrial defects and oxidative stress. Int. J. Mol. Sci. 2018 19 3 797 10.3390/ijms19030797 29534446
    [Google Scholar]
  17. Fernandes A.S. Saraiva N. Oliveira N.G. Redox Therapeutics in Breast Cancer: Role of SOD Mimics. Redox-Active Therapeutics. Oxidative Stress in Applied Basic Research and Clinical Practice. Springer, Cham 2016 451 467
    [Google Scholar]
  18. Oto G. Ekin S. Ozdemir H. Levent A. Berber I. The effect of Plantago major Linnaeus on serum total sialic acid, lipid-bound sialic acid, some trace elements and minerals after administration of 7,12-dimethylbenz(a)anthracene in rats. Toxicol. Ind. Health 2012 28 4 334 342 10.1177/0748233711412422 21996710
    [Google Scholar]
  19. Frydrych A. Krośniak M. Jurowski K. The Role of Chosen Essential Elements (Zn, Cu, Se, Fe, Mn) in Food for Special Medical Purposes (FSMPs) Dedicated to Oncology Patients—Critical Review: State-of-the-Art. Nutrients 2023 15 4 1012 10.3390/nu15041012 36839370
    [Google Scholar]
  20. Deng X. He G. Liu J. Luo F. Peng X. Tang S. Gao Z. Lin Q. Keller J.M. Yang T. Keller E.T. Recent advances in bone-targeted therapies of metastatic prostate cancer. Cancer Treat. Rev. 2014 40 6 730 738 10.1016/j.ctrv.2014.04.003 24767837
    [Google Scholar]
  21. Torti S.V. Torti F.M. Iron: The cancer connection. Mol. Aspects Med. 2020 75 100860 10.1016/j.mam.2020.100860 32340745
    [Google Scholar]
  22. Ratanasrimetha P. Workeneh B.T. Seethapathy H. Sodium and potassium dysregulation in the patient with cancer. Adv. Chronic Kidney Dis. 2022 29 2 171 179 10.1053/j.ackd.2022.01.003
    [Google Scholar]
  23. Chasapis C.T. Ntoupa P.S.A. Spiliopoulou C.A. Stefanidou M.E. Recent aspects of the effects of zinc on human health. Arch. Toxicol. 2020 94 5 1443 1460 10.1007/s00204‑020‑02702‑9 32394086
    [Google Scholar]
  24. Jouybari L. Kiani F. Akbari A. Sanagoo A. Sayehmiri F. Aaseth J. Chartrand M.S. Sayehmiri K. Chirumbolo S. Bjørklund G. A meta-analysis of zinc levels in breast cancer. J. Trace Elem. Med. Biol. 2019 56 90 99 10.1016/j.jtemb.2019.06.017 31442959
    [Google Scholar]
  25. Zagzag J. Hu M.I. Fisher S.B. Perrier N.D. Hypercalcemia and cancer: Differential diagnosis and treatment. CA Cancer J. Clin. 2018 68 5 377 386 10.3322/caac.21489 30240520
    [Google Scholar]
  26. Rock C.L. Doyle C. Demark-Wahnefried W. Meyerhardt J. Courneya K.S. Schwartz A.L. Bandera E.V. Hamilton K.K. Grant B. McCullough M. Byers T. Gansler T. Nutrition and physical activity guidelines for cancer survivors. CA Cancer J. Clin. 2012 62 4 242 274 10.3322/caac.21142 22539238
    [Google Scholar]
  27. Levent A. Yardim Y. Demir C. Determination of Trace Metal and Mineral Levels in the Tobacco and Cigarette samples using by FASS. J. Chem. Soc. Pak. 2013 34 3
    [Google Scholar]
  28. Yardim Y. Levent A. Ekin S. Keskin E. Oto G. Senturk Z. Determination of 7,12-dimethylbenz[a]anthracene in orally treated rats by high-performance liquid chromatography and transfer stripping voltammetry. Comb. Chem. High Throughput Screen. 2012 15 5 418 426 10.2174/138620712800194440 22263862
    [Google Scholar]
  29. Chanihoon G.Q. Unar A. Memon A-A. Afridi H-I. Chandio A-R. Jafar T-H. Determination of enzyme Q10 level in Pakistani female patients with breast cancer. Chin. J. Anal. Chem. 2022 50 3 100061 10.1016/j.cjac.2022.100061
    [Google Scholar]
  30. Ye X. Wang H. Cao X. Jin X. Cui F. Bu Y. Liu H. Wu W. Takano T. Liu S. Transcriptome profiling of Puccinellia tenuiflora during seed germination under a long-term saline-alkali stress. BMC Genomics 2019 20 1 589 10.1186/s12864‑019‑5860‑5 31315555
    [Google Scholar]
  31. Kasama K. Mui W. Lee W.J. Lakdawala M. Naitoh T. Seki Y. Sasaki A. Wakabayashi G. Sasaki I. Kawamura I. Kow L. Frydenberg H. Chen A. Narwaria M. Chowbey P. IFSO-APC consensus statements 2011. Obes. Surg. 2012 22 5 677 684 10.1007/s11695‑012‑0610‑7 22367008
    [Google Scholar]
  32. Beal M.F. Oakes D. Shoulson I. Henchcliffe C. Galpern W.R. Haas R. Juncos J.L. Nutt J.G. Voss T.S. Ravina B. Shults C.M. Helles K. Snively V. Lew M.F. Griebner B. Watts A. Gao S. Pourcher E. Bond L. Kompoliti K. Agarwal P. Sia C. Jog M. Cole L. Sultana M. Kurlan R. Richard I. Deeley C. Waters C.H. Figueroa A. Arkun A. Brodsky M. Ondo W.G. Hunter C.B. Jimenez-Shahed J. Palao A. Miyasaki J.M. So J. Tetrud J. Reys L. Smith K. Singer C. Blenke A. Russell D.S. Cotto C. Friedman J.H. Lannon M. Zhang L. Drasby E. Kumar R. Subramanian T. Ford D.S. Grimes D.A. Cote D. Conway J. Siderowf A.D. Evatt M.L. Sommerfeld B. Lieberman A.N. Okun M.S. Rodriguez R.L. Merritt S. Swartz C.L. Martin W.R.W. King P. Stover N. Guthrie S. Watts R.L. Ahmed A. Fernandez H.H. Winters A. Mari Z. Dawson T.M. Dunlop B. Feigin A.S. Shannon B. Nirenberg M.J. Ogg M. Ellias S.A. Thomas C.A. Frei K. Bodis-Wollner I. Glazman S. Mayer T. Hauser R.A. Pahwa R. Langhammer A. Ranawaya R. Derwent L. Sethi K.D. Farrow B. Prakash R. Litvan I. Robinson A. Sahay A. Gartner M. Hinson V.K. Markind S. Pelikan M. Perlmutter J.S. Hartlein J. Molho E. Evans S. Adler C.H. Duffy A. Lind M. Elmer L. Davis K. Spears J. Wilson S. Leehey M.A. Hermanowicz N. Niswonger S. Shill H.A. Obradov S. Rajput A. Cowper M. Lessig S. Song D. Fontaine D. Zadikoff C. Williams K. Blindauer K.A. Bergholte J. Propsom C.S. Stacy M.A. Field J. Mihaila D. Chilton M. Uc E.Y. Sieren J. Simon D.K. Kraics L. Silver A. Boyd J.T. Hamill R.W. Ingvoldstad C. Young J. Thomas K. Kostyk S.K. Wojcieszek J. Pfeiffer R.F. Panisset M. Beland M. Reich S.G. Cines M. Zappala N. Rivest J. Zweig R. Lumina L.P. Hilliard C.L. Grill S. Kellermann M. Tuite P. Rolandelli S. Kang U.J. Young J. Rao J. Cook M.M. Severt L. Boyar K. A randomized clinical trial of high-dosage coenzyme Q10 in early Parkinson disease: no evidence of benefit. JAMA Neurol. 2014 71 5 543 552 10.1001/jamaneurol.2014.131 24664227
    [Google Scholar]
  33. Glenn H.J. Preparation of samples for liquid scintillation and gamma counting. Biologic Applications of Radiotracers. CRC Press 2019 151 170 10.1201/9780429283505‑7
    [Google Scholar]
  34. CIRCABC 3.6 User guide Version 3. Available from: https://circabc.europa.eu/html/docs/CIRCABC_User_Guide.pdf(accessed on 4-11-2024)
  35. Bresson J.L. Scientific opinion on dietary reference values for iron. EFSA J. 2015 13 10 1 115
    [Google Scholar]
  36. Alharby H.F. Impact of application of zinc oxide nanoparticles on callus induction, plant regeneration, element content and antioxidant enzyme activity in tomato (Solanum lycopersicum Mill.) under salt stress. Arch. Biol. Sci. 2017 68 4 723 735
    [Google Scholar]
  37. Smart R.P. Influence of riparian geology and other catchment characteristics on streamwater chemistry at different spatial scales. United Kingdom University of Aberdeen 2002
    [Google Scholar]
  38. Oberhelman A. Chloride signature and transport in an urban-agricultural watershed. Master of Science, Illinois State University, 2019. 10.30707/ETD2019.Oberhelman.A
    [Google Scholar]
  39. Moon J. Kang S.H. Chung Y.S. Lee O.H. Elemental analysis of Korean women’s blood serums using instrumental neutron activation analysis. J. Radioanal. Nucl. Chem. 2007 271 1 155 158 10.1007/s10967‑007‑0122‑4
    [Google Scholar]
  40. Naser A.M. Higgins E.M. Arman S. Ercumen A. Ashraf S. Das K.K. Rahman M. Luby S.P. Unicomb L. Effect of groundwater iron on residual chlorine in water treated with sodium dichloroisocyanurate tablets in rural Bangladesh. Am. J. Trop. Med. Hyg. 2018 98 4 977 983 10.4269/ajtmh.16‑0954 29436334
    [Google Scholar]
  41. Navarro M.C. Pérez-Sirvent C. Martínez-Sánchez M.J. Vidal J. Tovar P.J. Bech J. Abandoned mine sites as a source of contamination by heavy metals: A case study in a semi-arid zone. J. Geochem. Explor. 2008 96 2-3 183 193 10.1016/j.gexplo.2007.04.011
    [Google Scholar]
  42. Hanni F. Hypophosphatemia of genetic origin: a cause of osteomalacia not to be missed! Batna J Med Sci. 2015 2 2 203 207 10.48087/BJMScr.2015.2224
    [Google Scholar]
  43. Welna M. Szymczycha-Madeja A. Pohl P. Novel ICP-OES-based method for the reliable determination of the total content of 15 elements in yerba mate drinks along with the determination of caffeine and the in vitro bioaccessibility of the compounds. Molecules 2023 28 8 3374 10.3390/molecules28083374 37110609
    [Google Scholar]
/content/journals/cac/10.2174/0115734110340661250106082808
Loading
/content/journals/cac/10.2174/0115734110340661250106082808
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test