Skip to content
2000
image of Investigation of Voltametric Behavior and Antioxidant Activity of Vanillin-based Chalcone Compound

Abstract

Background

Chalcone-type molecules are significant compounds due to their biocompatible properties. This study aimed to examine the electrochemical properties of vanillin chalcone monomer (VC) and its polymer (PANI-VC), as well as to investigate the antioxidant properties of the vanillin chalcone monomer.

Methods

VC and PANI-VC were synthesized and characterized using FTIR and UV-Vis spectroscopy. The electrochemical properties of both compounds were investigated using cyclic voltammetry. The antioxidant activity of the monomer was assessed using the DPPH (2,2-Diphenyl-1-picrylhydrazyl) assay.

Results

Two oxidation peaks and one reduction peak were observed for both the monomer and polymer at pH 3 using cyclic voltammetry in Britton-Robinson buffer solution. The electrochemical oxidation mechanisms of the monomer and polymer were investigated by cyclic voltammetry, and the effects of pH and scan rate were also studied. The electrochemical oxidation mechanism was further evaluated using density functional theory (DFT) computations, revealing that the electrochemical process is adsorption-controlled. The antioxidant activity of VC was assessed using the DPPH (2,2-Diphenyl-1-picrylhydrazyl) method.

Conclusion

Chalcone-type compounds are known for their potential antioxidant, antimicrobial, antifungal, antibacterial, antiviral, antimalarial, and neuroprotective effects. In this study, the electrochemical properties of the synthesized vanillin chalcone monomer and its polymer were examined, and their electrochemical mechanisms were evaluated through DFT calculations. The antioxidant properties of the monomer were compared to those of ascorbic acid using the DPPH method, revealing that the vanillin chalcone monomer possesses significant antioxidant activity.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110339878240920052420
2024-10-02
2024-11-26
Loading full text...

Full text loading...

References

  1. Zhuang C. Zhang W. Sheng C. Zhang W. Xing C. Miao Z. Chalcone: A privileged structure in medicinal chemistry. Chem. Rev. 2017 117 12 7762 7810 10.1021/acs.chemrev.7b00020 28488435
    [Google Scholar]
  2. Singh P. Anand A. Kumar V. Recent developments in biological activities of chalcones: A mini review. Eur. J. Med. Chem. 2014 85 758 777 10.1016/j.ejmech.2014.08.033 25137491
    [Google Scholar]
  3. Zhou B. Xing C. Diverse molecular targets for chalcones with varied bioactivities. Med. Chem. (Los Angeles) 2015 5 8 388 404 10.4172/2161‑0444.1000291 26798565
    [Google Scholar]
  4. Sharma V. Kumar V. Kumar P. Heterocyclic Chalcone Analogues as Potential Anticancer Agents. Anticancer Agents Med. Chem. 2013 13 3 422 32
    [Google Scholar]
  5. Go M. Wu X. Liu X. Chalcones: An update on cytotoxic and chemoprotective properties. Curr. Med. Chem. 2005 12 4 483 499 10.2174/0929867053363153 15720256
    [Google Scholar]
  6. Zhang Y. Wu J. Ying S. Chen G. Wu B. Xu T. Liu Z. Liu X. Huang L. Shan X. Dai Y. Liang G. Discovery of new MD2 inhibitor from chalcone derivatives with anti-inflammatory effects in LPS-induced acute lung injury. Sci. Rep. 2016 6 1 25130 10.1038/srep25130 27118147
    [Google Scholar]
  7. Mahapatra D.K. Asati V. Bharti S.K. Chalcones and their therapeutic targets for the management of diabetes: Structural and pharmacological perspectives. Eur. J. Med. Chem. 2015 92 839 865 10.1016/j.ejmech.2015.01.051 25638569
    [Google Scholar]
  8. Cole A.L. Hossain S. Cole A.M. Phanstiel O. IV Synthesis and bioevaluation of substituted chalcones, coumaranones and other flavonoids as anti-HIV agents. Bioorg. Med. Chem. 2016 24 12 2768 2776 10.1016/j.bmc.2016.04.045 27161874
    [Google Scholar]
  9. Kumar D. Kumar M. Kumar A. Singh S. Chalcone and curcumin derivatives: A way ahead for malarial treatment. Mini Rev. Med. Chem. 2013 13 14 2116 2133 10.2174/13895575113136660101 24160709
    [Google Scholar]
  10. Mahapatra D.K. Bharti S.K. Therapeutic potential of chalcones as cardiovascular agents. Life Sci. 2016 148 154 172 10.1016/j.lfs.2016.02.048 26876916
    [Google Scholar]
  11. Sahu N.K. Balbhadra S.S. Choudhary J. Kohli D.V. Exploring pharmacological significance of chalcone scaffold: A review. Curr. Med. Chem. 2012 19 2 209 225 10.2174/092986712803414132 22320299
    [Google Scholar]
  12. Jasim H.A. Nahar L. Jasim M.A. Moore S.A. Ritchie K.J. Sarker S.D. Chalcones: Synthetic Chemistry Follows Where Nature Leads. Biomolecules 2021 11 8 1203 10.3390/biom11081203 34439870
    [Google Scholar]
  13. Chen L. Chaisiwamongkhol K. Chen Y. Compton R.G. Rapid Electrochemical Detection of Vanillin in Natural Vanilla. Electroanalysis 2019 31 6 1067 1074 10.1002/elan.201900037
    [Google Scholar]
  14. Demircigil B.T. Özkan S.A. Coruh Ö. Yılmaz S. Electrochemical Behavior of Formoterol Fumarate and Its Determination in Capsules for Inhalation and Human Serum using Differential-Pulse and Square-Wave Voltammetry. Electroanalysis 2002 14 2 122 127 10.1002/1521‑4109(200201)14:2<122::AID‑ELAN122>3.0.CO;2‑1
    [Google Scholar]
  15. Kumar S.A. Tang C.F. Chen S.M. Poly(4-amino-1-1′-azobenzene-3, 4′-disulfonic acid) coated electrode for selective detection of dopamine from its interferences. Talanta 2008 74 4 860 866 10.1016/j.talanta.2007.07.015 18371720
    [Google Scholar]
  16. Diculescu V.C. Kumbhat S. Oliveira-Brett A.M. Electrochemical behaviour of isatin at a glassy carbon electrode. Anal. Chim. Acta 2006 575 2 190 197 10.1016/j.aca.2006.05.091 17723590
    [Google Scholar]
  17. Li G. Qi X. Wu J. Xu L. Wan X. Liu Y. Chen Y. Li Q. Ultrasensitive, label-free voltammetric determination of norfloxacin based on molecularly imprinted polymers and Au nanoparticle-functionalized black phosphorus nanosheet nanocomposite. J. Hazard. Mater. 2022 436 129107 10.1016/j.jhazmat.2022.129107 35569369
    [Google Scholar]
  18. Xia Y. Li G. Zhu Y. He Q. Hu C. Facile preparation of metal-free graphitic-like carbon nitride/graphene oxide composite for simultaneous determination of uric acid and dopamine. Microchem. J. 2023 190 108726 10.1016/j.microc.2023.108726
    [Google Scholar]
  19. Li G. Wu J. Qi X. Wan X. Liu Y. Chen Y. Xu L. Molecularly imprinted polypyrrole film-coated poly(3,4-ethylenedioxythiophene):polystyrene sulfonate-functionalized black phosphorene for the selective and robust detection of norfloxacin. Mater. Today Chem. 2022 26 101043 10.1016/j.mtchem.2022.101043
    [Google Scholar]
  20. Naik K.M. Nandibewoor S.T. Electrochemical Behavior of Chalcone at a Glassy Carbon Electrode and Its Analytical Applications. Am. J. Anal. Chem. 2012 3 9 656 663 10.4236/ajac.2012.39086
    [Google Scholar]
  21. Escarpa A. Food electroanalysis: Sense and simplicity. Chem. Rec. 2012 12 1 72 91 10.1002/tcr.201100033 22121125
    [Google Scholar]
  22. Hoyos-Arbeláez J. Vázquez M. Contreras-Calderón J. Electrochemical methods as a tool for determining the antioxidant capacity of food and beverages: A review. Food Chem. 2017 221 1371 1381 10.1016/j.foodchem.2016.11.017 27979102
    [Google Scholar]
  23. Fernández Arteaga J. Ruiz Montoya M. Palma López A. Alonso Garrido G. Pintado S. Rodríguez Mellado J. M. Comparison of the simple cyclic voltammetry (CV) and DPPH assays for the determination of antioxidant capacity of active principles. Molecules 2012 17 5 5126 38
    [Google Scholar]
  24. Chevion S. Roberts M.A. Chevion M. The use of cyclic voltammetry for the evaluation of antioxidant capacity. Free Radic. Biol. Med. 2000 28 6 860 870 10.1016/S0891‑5849(00)00178‑7 10802216
    [Google Scholar]
  25. Zlatić G. Arapović A. Martinović I. Martinović Bevanda A. Bošković P. Prkić A. Paut A. Vukušić T. Antioxidant Capacity of Herzegovinian Wildflowers Evaluated by UV–VIS and Cyclic Voltammetry Analysis. Molecules 2022 27 17 5466 10.3390/molecules27175466 36080233
    [Google Scholar]
  26. José Jara-Palacios M. Luisa Escudero-Gilete M. Miguel Hernández-Hierro J. Heredia F.J. Hernanz D. Cyclic voltammetry to evaluate the antioxidant potential in winemaking by-products. Talanta 2017 165 211 215 10.1016/j.talanta.2016.12.058 28153244
    [Google Scholar]
  27. Molyneux P. The Use of the Stable Free Radical Diphenylpicrylhydrazyl (DPPH) for Estimating Antioxidant Activity. Songklanakarin J. Sci. Technol. 2004 26 2 211 219
    [Google Scholar]
  28. Brand-Williams W. Cuvelier M.E. Berset C. Use of a free radical method to evaluate antioxidant activity. Lebensm. Wiss. Technol. 1995 28 1 25 30 10.1016/S0023‑6438(95)80008‑5
    [Google Scholar]
  29. Ortiz R. Antilén M. Speisky H. Aliaga M.E. López-Alarcón C. Baugh S. Application of a microplate-based ORAC-pyrogallol red assay for the estimation ofantioxidant capacity: First Action 2012.03. J. AOAC Int. 2012 95 6 1558 1561 10.5740/jaoacint.CS2012_03 23451368
    [Google Scholar]
  30. Monkman A.P. Bloor D. Stevens G.C. Stevens J.C.H. Wilson P. Electronic structure and charge transport mechanisms in polyaniline. Synth. Met. 1989 29 1 277 284 10.1016/0379‑6779(89)90307‑X
    [Google Scholar]
  31. Venkatesan R. Cindrella L. Methyl substituted, azine bridged poly thiophenes and their structure related surface characteristics. Synth. Met. 2018 246 150 163 10.1016/j.synthmet.2018.10.011
    [Google Scholar]
  32. Bard A.J. Faulkner L.R. White H.S. Electrochemical Methods: Fundamentals and Applications. Hoboken, New Jersey, U.S. John Wiley & Sons 2022
    [Google Scholar]
  33. Cossi M. Rega N. Scalmani G. Barone V. Energies, structures, and electronic properties of molecules in solution with the C‐PCM solvation model. J. Comput. Chem. 2003 24 6 669 681 10.1002/jcc.10189 12666158
    [Google Scholar]
  34. Frisch M. J. Trucks G. W. Schlegel H. B. Scuseria G. E. Robb M. A. Cheeseman J. R. Scalmani G. Barone V. Petersson G. A. Nakatsuji H. Molecular modeling and synthesis of ethyl benzyl carbamates as possible ixodicide activity. Computat. Chem. 2018 7 1 2418053
    [Google Scholar]
  35. Runnels P.L. Joseph J.D. Logman M.J. Wightman R.M. Effect of pH and surface functionalities on the cyclic voltammetric responses of carbon-fiber microelectrodes. Anal. Chem. 1999 71 14 2782 2789 10.1021/ac981279t 10424168
    [Google Scholar]
  36. Quintino M.S.M. Yamashita M. Angnes L. Voltammetric Studies and Determination of Levodopa and Carbidopa in Pharmaceutical Products. Electroanalysis 2006 18 7 655 661 10.1002/elan.200503445
    [Google Scholar]
  37. Ghica M.E. Brett C.M.A. Poly(brilliant cresyl blue) modified glassy carbon electrodes: Electrosynthesis, characterisation and application in biosensors. J. Electroanal. Chem. (Lausanne) 2009 629 1-2 35 42 10.1016/j.jelechem.2009.01.019
    [Google Scholar]
  38. Laviron E. Roullier L. Degrand C. A multilayer model for the study of space distributed redox modified electrodes. J. Electroanal. Chem. Interfacial Electrochem. 1980 112 1 11 23 10.1016/S0022‑0728(80)80003‑9
    [Google Scholar]
  39. Yilmaz Ü.T. Calik E. Akdulum B. Yilmaz H. Determination of carnosic acid in Rosmarinus officinalis L. using square wave voltammetry and electrochemical behavior. Yao Wu Shi Pin Fen Xi 2018 26 1 300 308 29389567
    [Google Scholar]
  40. Masood Z. Muhammad H. Tahiri I.A. Comparison of Different Electrochemical Methodologies for Electrode Reactions: A Case Study of Paracetamol. Electrochem 2024 5 1 57 69 10.3390/electrochem5010004
    [Google Scholar]
  41. Zhang D. Chu L. Liu Y. Wang A. Ji B. Wu W. Zhou F. Wei Y. Cheng Q. Cai S. Xie L. Jia G. Analysis of the antioxidant capacities of flavonoids under different spectrophotometric assays using cyclic voltammetry and density functional theory. J. Agric. Food Chem. 2011 59 18 10277 10285 10.1021/jf201773q 21827150
    [Google Scholar]
  42. Zielinska D. Szawara-Nowak D. Zielinski H. Comparison of spectrophotometric and electrochemical methods for the evaluation of the antioxidant capacity of buckwheat products after hydrothermal treatment. J. Agric. Food Chem. 2007 55 15 6124 6131 10.1021/jf071046f 17608502
    [Google Scholar]
  43. Kilmartin P.A. Zou H. Waterhouse A.L. A cyclic voltammetry method suitable for characterizing antioxidant properties of wine and wine phenolics. J. Agric. Food Chem. 2001 49 4 1957 1965 10.1021/jf001044u 11308353
    [Google Scholar]
  44. Roginsky V. Barsukova T. Hsu C.F. Kilmartin P.A. Chain-breaking antioxidant activity and cyclic voltammetry characterization of polyphenols in a range of green, oolong, and black teas. J. Agric. Food Chem. 2003 51 19 5798 5802 10.1021/jf030086q 12952436
    [Google Scholar]
  45. Ndhlala A.R. Moyo M. Van Staden J. Natural antioxidants: Fascinating or mythical biomolecules? Molecules 2010 15 10 6905 6930 10.3390/molecules15106905 20938402
    [Google Scholar]
/content/journals/cac/10.2174/0115734110339878240920052420
Loading
/content/journals/cac/10.2174/0115734110339878240920052420
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Chalcone ; cyclic voltammetry ; aniline ; DFT ; antioxidant
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test