Skip to content
2000
image of Catalyst Activation of Peroxymonosulfate for Reactive Species Generation and Organic Pollutant Degradation: A Mini Review

Abstract

This review focuses on the application and mechanisms of peroxymonosulfate (PMS) in advanced oxidation processes (AOPs). It clarifies the significance of PMS in degrading organic pollutants, highlighting its high efficiency in treating persistent contaminants, such as antibiotics. The review details the roles and mechanisms of various catalysts, including single-atom catalysts, metal oxides, non-metal oxides and their composites, as well as metal-organic frameworks (MOFs), in activating PMS. It emphasizes the influence of catalyst surface active sites on both radical and non-radical activation pathways. Key factors affecting PMS activation efficiency, such as PMS concentration, pH value, coexisting ions, and temperature, are examined to underline the importance of optimizing these parameters for effective reaction conditions. By synthesizing existing research, the review not only illustrates the extensive application potential of PMS in AOPs but also identifies future research challenges and directions. This provides a theoretical foundation and technical support for developing efficient, economical, and sustainable water treatment technologies.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110339425241029052047
2024-11-04
2025-01-19
Loading full text...

Full text loading...

References

  1. Bengtsson-Palme J. Larsson D.G.J. Concentrations of antibiotics predicted to select for resistant bacteria: Proposed limits for environmental regulation. Environ. Int. 2016 86 140 149 10.1016/j.envint.2015.10.015 26590482
    [Google Scholar]
  2. Ito K. Jian W. Nishijima W. Baes A.U. Shoto E. Okada M. Comparison of ozonation and AOPs combined with biodegradation for removal of THM precursors in treated sewage effluents. Water Sci. Technol. 1998 38 7 179 186 10.2166/wst.1998.0291
    [Google Scholar]
  3. Ao X. Liu W. Degradation of sulfamethoxazole by medium pressure UV and oxidants: Peroxymonosulfate, persulfate, and hydrogen peroxide. Chem. Eng. J. 2017 313 629 637 10.1016/j.cej.2016.12.089
    [Google Scholar]
  4. Wang J. Wang S. Reactive species in advanced oxidation processes: Formation, identification and reaction mechanism. Chem. Eng. J. 2020 401 126158 10.1016/j.cej.2020.126158
    [Google Scholar]
  5. Kohantorabi M. Moussavi G. Giannakis S. A review of the innovations in metal- and carbon-based catalysts explored for heterogeneous peroxymonosulfate (PMS) activation, with focus on radical vs. non-radical degradation pathways of organic contaminants. Chem. Eng. J. 2021 411 127957 10.1016/j.cej.2020.127957
    [Google Scholar]
  6. Egbedina A.O. Bolade O.P. Ewuzie U. Lima E.C. Emerging trends in the application of carbon-based materials: A review. J. Environ. Chem. Eng. 2022 10 2 107260 10.1016/j.jece.2022.107260
    [Google Scholar]
  7. Ghanbari F. Moradi M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review. Chem. Eng. J. 2017 310 41 62 10.1016/j.cej.2016.10.064
    [Google Scholar]
  8. Kirschning A. Immobilized catalysts: Solid phases, immobilization and applications. Springer Science & Business Media 2004 10.1007/b94543
    [Google Scholar]
  9. Liu W. Wang Q. Wang H. Xin Q. Hou W. Hu E. Lei Z. Adsorption of uranium by chitosan/Chlorella pyrenoidosa composite adsorbent bearing phosphate ligand. Chemosphere 2022 287 Pt 2 132193 10.1016/j.chemosphere.2021.132193 34826906
    [Google Scholar]
  10. Li Z. Wang F. Zhang Y. Lai Y. Fang Q. Duan Y. Activation of peroxymonosulfate by CuFe2O4-CoFe2O4 composite catalyst for efficient bisphenol a degradation: Synthesis, catalytic mechanism and products toxicity assessment. Chem. Eng. J. 2021 423 130093 10.1016/j.cej.2021.130093
    [Google Scholar]
  11. O’Shea K.E. Dionysiou D.D. Advanced oxidation processes for water treatment. J. Phys. Chem. Lett. 2012 3 15 2112 2113 10.1021/jz300929x
    [Google Scholar]
  12. Keshtkar Vanashi A. Ghasemzadeh H. Copper(II) containing chitosan hydrogel as a heterogeneous Fenton-like catalyst for production of hydroxyl radical: A quantitative study. Int. J. Biol. Macromol. 2022 199 348 357 10.1016/j.ijbiomac.2021.12.150 34995667
    [Google Scholar]
  13. Li D. Zhang S. Li S. Tang J. Hua T. Li F. Mechanism of the application of single-atom catalyst-activated PMS/PDS to the degradation of organic pollutants in water environment: A review. J. Clean. Prod. 2023 397 136468 10.1016/j.jclepro.2023.136468
    [Google Scholar]
  14. Huang B. Wu Z. Wang X. Song X. Zhou H. Zhang H. Zhou P. Liu W. Xiong Z. Lai B. Coupled surface-confinement effect and pore engineering in a single-Fe-atom catalyst for ultrafast fenton-like reaction with high-valent iron-oxo complex oxidation. Environ. Sci. Technol. 2023 57 41 15667 15679 10.1021/acs.est.3c05509 37801403
    [Google Scholar]
  15. Chen F. Jiang X. Zhang L. Lang R. Qiao B. Single-atom catalysis: Bridging the homo- and heterogeneous catalysis. Chin. J. Catal. 2018 39 5 893 898 10.1016/S1872‑2067(18)63047‑5
    [Google Scholar]
  16. Yin Y. Shi L. Li W. Li X. Wu H. Ao Z. Tian W. Liu S. Wang S. Sun H. Boosting fenton-like reactions via single atom Fe catalysis. Environ. Sci. Technol. 2019 53 19 11391 11400 10.1021/acs.est.9b03342 31436973
    [Google Scholar]
  17. Li X. Huang X. Xi S. Miao S. Ding J. Cai W. Liu S. Yang X. Yang H. Gao J. Wang J. Huang Y. Zhang T. Liu B. Single cobalt atoms anchored on porous N-doped graphene with dual reaction sites for efficient fenton-like catalysis. J. Am. Chem. Soc. 2018 140 39 12469 12475 10.1021/jacs.8b05992 30165734
    [Google Scholar]
  18. Wang Z. Wang Y. Wang W. Wu D. Wu Q. Hu H. Highly selective production of singlet oxygen by manipulating the spin state of single-atom Co–N moieties and electron localization. Appl. Catal. B 2023 324 122248 10.1016/j.apcatb.2022.122248
    [Google Scholar]
  19. Yang M. Hou Z. Zhang X. Gao B. Li Y. Shang Y. Yue Q. Duan X. Xu X. Unveiling the origins of selective oxidation in single-atom catalysis via Co–N 4 –C intensified radical and nonradical pathways. Environ. Sci. Technol. 2022 56 16 11635 11645 10.1021/acs.est.2c01261 35816761
    [Google Scholar]
  20. Dong C. Fang W. Yi Q. Zhang J. A comprehensive review on reactive oxygen species (ROS) in advanced oxidation processes (AOPs). Chemosphere 2022 308 Pt 1 136205 10.1016/j.chemosphere.2022.136205 36049639
    [Google Scholar]
  21. Zhang B. Zhang Y. Xiang W. Teng Y. Wang Y. Comparison of the catalytic performances of different commercial cobalt oxides for peroxymonosulfate activation during dye degradation. Chem. Res. Chin. Univ. 2017 33 5 822 827 10.1007/s40242‑017‑6413‑6
    [Google Scholar]
  22. Zhao W. Shen Q. Nan T. Zhou M. Xia Y. Hu G. Zheng Q. Wu Y. Bian T. Wei T. Zhang C. Cobalt-based catalysts for heterogeneous peroxymonosulfate (PMS) activation in degradation of organic contaminants: Recent advances and perspectives. J. Alloys Compd. 2023 958 170370 10.1016/j.jallcom.2023.170370
    [Google Scholar]
  23. Chen L. Yang Z. Qian J. Pan B. Interaction between organic compounds and catalyst steers the oxidation pathway and mechanism in the iron oxide-based heterogeneous fenton system. Environ. Sci. Technol. 2022 56 19 14059 14068 10.1021/acs.est.2c04557 36129786
    [Google Scholar]
  24. Liu D. Li K. Zhou L. Lei J. Wang L. Zhang J. Liu Y. N, O co-doping enhanced the ability of carbon/Fe composites for peroxymonosulfate activation to degrade sulfadiazine: The advantages of nitrate saturated MOFs as precursors. Separ. Purif. Tech. 2023 314 123556 10.1016/j.seppur.2023.123556
    [Google Scholar]
  25. Guo Z-Y. Si Y. Xia W-Q. Wang F. Liu H-Q. Yang C. Zhang W-J. Li W-W. Electron delocalization triggers nonradical Fenton-like catalysis over spinel oxides. Proc Natl Acad Sci U S A. 2024 119 31 e2201607119 10.1073/pnas.2201607119
    [Google Scholar]
  26. Huang G.X. Wang C.Y. Yang C.W. Guo P.C. Yu H.Q. Degradation of bisphenol a by peroxymonosulfate catalytically activated with Mn 1.8 Fe 1.2 O 4 nanospheres: Synergism between Mn and Fe. Environ. Sci. Technol. 2017 51 21 12611 12618 10.1021/acs.est.7b03007 28985472
    [Google Scholar]
  27. Qin W. Fang G. Wang Y. Zhou D. Mechanistic understanding of polychlorinated biphenyls degradation by peroxymonosulfate activated with CuFe2O4 nanoparticles: Key role of superoxide radicals. Chem. Eng. J. 2018 348 526 534 10.1016/j.cej.2018.04.215
    [Google Scholar]
  28. Bhaduri B. Dikshit A.K. Kim T. Tripathi K.M. Research progress and prospects of spinel ferrite nanostructures for the removal of nitroaromatics from wastewater. ACS Appl. Nano Mater. 2022 5 11 16000 16026 10.1021/acsanm.2c02684
    [Google Scholar]
  29. Dong X. Ren B. Sun Z. Li C. Zhang X. Kong M. Zheng S. Dionysiou D.D. Monodispersed CuFe2O4 nanoparticles anchored on natural kaolinite as highly efficient peroxymonosulfate catalyst for bisphenol A degradation. Appl. Catal. B 2019 253 206 217 10.1016/j.apcatb.2019.04.052
    [Google Scholar]
  30. Deng J. Xu M. Qiu C. Chen Y. Ma X. Gao N. Li X. Magnetic MnFe2O4 activated peroxymonosulfate processes for degradation of bisphenol A: Performance, mechanism and application feasibility. Appl. Surf. Sci. 2018 459 138 147 10.1016/j.apsusc.2018.07.198
    [Google Scholar]
  31. Wang L. Lu X. Chen G. Zhao Y. Wang S. Synergy between MgFe2O4 and biochar derived from banana pseudo-stem promotes persulfate activation for efficient tetracycline degradation. Chem. Eng. J. 2023 468 143773 10.1016/j.cej.2023.143773
    [Google Scholar]
  32. Xian G. Kong S. Li Q. Zhang G. Zhou N. Du H. Niu L. Synthesis of spinel ferrite MFe2O4 (M = Co, Cu, Mn, and Zn) for persulfate activation to remove aqueous organics: Effects of M-site metal and synthetic method. Front Chem. 2020 8 177 10.3389/fchem.2020.00177
    [Google Scholar]
  33. Li J. Xu M. Yao G. Lai B. Enhancement of the degradation of atrazine through CoFe2O4 activated peroxymonosulfate (PMS) process: Kinetic, degradation intermediates, and toxicity evaluation. Chem. Eng. J. 2018 348 1012 1024 10.1016/j.cej.2018.05.032
    [Google Scholar]
  34. Deng J. Shao Y. Gao N. Tan C. Zhou S. Hu X. CoFe2O4 magnetic nanoparticles as a highly active heterogeneous catalyst of oxone for the degradation of diclofenac in water. J. Hazard. Mater. 2013 262 836 844 10.1016/j.jhazmat.2013.09.049 24140535
    [Google Scholar]
  35. Gan L. Zhong Q. Geng A. Wang L. Song C. Han S. Cui J. Xu L. Cellulose derived carbon nanofiber: A promising biochar support to enhance the catalytic performance of CoFe2O4 in activating peroxymonosulfate for recycled dimethyl phthalate degradation. Sci. Total Environ. 2019 694 133705 10.1016/j.scitotenv.2019.133705 31386955
    [Google Scholar]
  36. Li M. Liu Y. Li F. Shen C. Kaneti Y.V. Yamauchi Y. Yuliarto B. Chen B. Wang C.C. Defect-rich hierarchical porous UiO-66 (Zr) for tunable phosphate removal. Environ. Sci. Technol. 2021 55 19 acs.est.1c01723 10.1021/acs.est.1c01723 34553909
    [Google Scholar]
  37. Hou L. Li X. Yang Q. Chen F. Wang S. Ma Y. Wu Y. Zhu X. Huang X. Wang D. Heterogeneous activation of peroxymonosulfate using Mn-Fe layered double hydroxide: Performance and mechanism for organic pollutant degradation. Sci. Total Environ. 2019 663 453 464 10.1016/j.scitotenv.2019.01.190 30716637
    [Google Scholar]
  38. Xu M. Wei M. Layered double hydroxide‐based catalysts: Recent advances in preparation, structure, and applications. Adv. Funct. Mater. 2018 28 47 1802943 10.1002/adfm.201802943
    [Google Scholar]
  39. Yang Z. Zhang C. Zeng G. Tan X. Wang H. Huang D. Yang K. Wei J. Ma C. Nie K. Design and engineering of layered double hydroxide based catalysts for water depollution by advanced oxidation processes: A review. J. Mater. Chem. A Mater. Energy Sustain. 2020 8 8 4141 4173 10.1039/C9TA13522G
    [Google Scholar]
  40. Xie Z.H. Zhou H.Y. He C.S. Pan Z.C. Yao G. Lai B. Synthesis, application and catalytic performance of layered double hydroxide based catalysts in advanced oxidation processes for wastewater decontamination: A review. Chem. Eng. J. 2021 414 128713 10.1016/j.cej.2021.128713
    [Google Scholar]
  41. Wang X. Fang Y. Shi B. Huang F. Rong F. Que R. Three-dimensional NiCo2O4@NiCo2O4 core–shell nanocones arrays for high-performance supercapacitors. Chem. Eng. J. 2018 344 311 319 10.1016/j.cej.2018.03.061
    [Google Scholar]
  42. Sadeghi M. Zarshenas P. Ultrasound-assisted heterogeneous process for organic dye pollutants destruction using the novel MIL-101(Fe)/ZrO2/MnFe2O4 nanocomposite catalyst from water medium. J. Environ. Health Sci. Eng. 2024 ••• 10.1007/s40201‑024‑00906‑0
    [Google Scholar]
  43. Ma Q. Zhang H. Zhang X. Li B. Guo R. Cheng Q. Cheng X. Synthesis of magnetic CuO/MnFe2O4 nanocompisite and its high activity for degradation of levofloxacin by activation of persulfate. Chem. Eng. J. 2019 360 848 860 10.1016/j.cej.2018.12.036
    [Google Scholar]
  44. Ouyang M. Li X. Xu Q. Tao Z. Yao F. Huang X. Wu Y. Wang D. Yang Q. Chen Z. Pi Z. Heterogeneous activation of persulfate by Ag doped BiFeO3 composites for tetracycline degradation. J. Colloid Interface Sci. 2020 566 33 45 10.1016/j.jcis.2020.01.012 31986307
    [Google Scholar]
  45. Zhang H. Song Y. Nengzi L. Gou J. Li B. Cheng X. Activation of persulfate by a novel magnetic CuFe2O4/Bi2O3 composite for lomefloxacin degradation. Chem. Eng. J. 2020 379 122362 10.1016/j.cej.2019.122362
    [Google Scholar]
  46. Li X. Shang J. Gan X. Cao S. Zhang T. Nie J. Feng D. Cheng X. Recent advances in environmental applications of Semi-coke: Energy storage, adsorption and catalysis. J. Environ. Chem. Eng. 2024 12 2 112430 10.1016/j.jece.2024.112430
    [Google Scholar]
  47. Guo F. Zhang Y. Zhang G. Zhao H. Syngas production by carbon dioxide reforming of methane over different semi-cokes. J. Power Sources 2013 231 82 90 10.1016/j.jpowsour.2013.01.003
    [Google Scholar]
  48. Yu M. Sun C. Wang L. Zang K. Li M. Zhou L. Zheng Y. Semi-coke activated persulfate promotes simultaneous degradation of sulfadiazine and tetracycline in a binary mixture. Chem. Eng. J. 2021 416 129122 10.1016/j.cej.2021.129122
    [Google Scholar]
  49. Tian C. Zhao J. Ou X. Wan J. Cai Y. Lin Z. Dang Z. Xing B. Enhanced adsorption of p-arsanilic acid from water by amine-modified UiO-67 as examined using extended X-ray absorption fine structure, X-ray photoelectron spectroscopy, and density functional theory calculations. Environ. Sci. Technol. 2018 52 6 3466 3475 10.1021/acs.est.7b05761 29385347
    [Google Scholar]
  50. Gao X. Zhai X. Wang Z. Fu F. Li W. Effective adsorption of phenol from aqueous solutions on activated semi-coke. J. Mater. Sci. 2015 50 12 4200 4208 10.1007/s10853‑015‑8971‑7
    [Google Scholar]
  51. Spencer W. Senanayake G. Altarawneh M. Ibana D. Nikoloski A.N. Review of the effects of coal properties and activation parameters on activated carbon production and quality. Miner. Eng. 2024 212 108712 10.1016/j.mineng.2024.108712
    [Google Scholar]
  52. Cheng S. Liu Y. Shen C. Jiang B. Liu F. Li A. Enhanced flow-through electro-Fenton process based on rGO aerogel cathode: Essential role of sodium tetrapolyphosphate. J. Environ. Chem. Eng. 2022 10 6 108842 10.1016/j.jece.2022.108842
    [Google Scholar]
  53. Chen C. Wang J. Wang Z. Ren W. Khairunnisa S. Xiao P. Yang L. Chen F. Wu X.L. Chen J. Paint sludge derived activated carbon encapsulating with cobalt nanoparticles for non-radical activation of peroxymonosulfate. J. Colloid Interface Sci. 2024 658 209 218 10.1016/j.jcis.2023.12.079 38103471
    [Google Scholar]
  54. Yao C. Zhang Y. Du M. Du X. Huang S. Insights into the mechanism of non-radical activation of persulfate via activated carbon for the degradation of p-chloroaniline. Chem. Eng. J. 2019 362 262 268 10.1016/j.cej.2019.01.040
    [Google Scholar]
  55. Jain A. Balasubramanian R. Srinivasan M.P. Hydrothermal conversion of biomass waste to activated carbon with high porosity: A review. Chem. Eng. J. 2016 283 789 805 10.1016/j.cej.2015.08.014
    [Google Scholar]
  56. Liu J. Wen J. Hu J. Ma Y. Wang X. Li H. 2024 10.1002/clen.202300179
  57. Zhu K. Wang X. Geng M. Chen D. Lin H. Zhang H. Catalytic oxidation of clofibric acid by peroxydisulfate activated with wood-based biochar: Effect of biochar pyrolysis temperature, performance and mechanism. Chem. Eng. J. 2019 374 1253 1263 10.1016/j.cej.2019.06.006
    [Google Scholar]
  58. Liang J. Xu X. Qamar Zaman W. Hu X. Zhao L. Qiu H. Cao X. Different mechanisms between biochar and activated carbon for the persulfate catalytic degradation of sulfamethoxazole: Roles of radicals in solution or solid phase. Chem. Eng. J. 2019 375 121908 10.1016/j.cej.2019.121908
    [Google Scholar]
  59. Cui Q. Zhang W. Chai S. Zuo Q. Kim K.H. The potential of green biochar generated from biogas residue as a heterogeneous persulfate activator and its non-radical degradation pathways: Adsorption and degradation of tetracycline. Environ. Res. 2022 204 Pt C 112335 10.1016/j.envres.2021.112335 34774511
    [Google Scholar]
  60. Choong Z.Y. Gasim M.F. Lin K.Y.A. Hamidon T.S. Hussin H. Oh W.D. Unravelling the formation mechanism and performance of nitrogen, sulfur codoped biochar as peroxymonosulfate activator for gatifloxacin removal. Chem. Eng. J. 2023 451 138958 10.1016/j.cej.2022.138958
    [Google Scholar]
  61. Zhong Q. Lin Q. He W. Fu H. Huang Z. Wang Y. Wu L. Study on the nonradical pathways of nitrogen-doped biochar activating persulfate for tetracycline degradation. Separ. Purif. Tech. 2021 276 119354 10.1016/j.seppur.2021.119354
    [Google Scholar]
  62. Fuhrer M.S. Lau C.N. MacDonald A.H. Graphene: Materially better carbon. MRS Bull. 2010 35 4 289 295 10.1557/mrs2010.551
    [Google Scholar]
  63. Song Z. Wang M. Wang Z. Wang Y. Li R. Zhang Y. Liu C. Liu Y. Xu B. Qi F. Insights into heteroatom-doped graphene for catalytic ozonation: Active centers, reactive oxygen species evolution, and catalytic mechanism. Environ. Sci. Technol. 2019 53 9 5337 5348 10.1021/acs.est.9b01361 30997803
    [Google Scholar]
  64. Zheng Y. Jiao Y. Ge L. Jaroniec M. Qiao S. Z. Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis. Angew Chem Int Ed Engl. 2024 52 11 3110 3116 10.1002/anie.201209548
    [Google Scholar]
  65. Tang Z. Zhang J. Zhang Y. Renaissance of one-dimensional nanomaterials. Adv. Funct. Mater. 2024 32 11 2113192 10.1002/adfm.202113192
    [Google Scholar]
  66. Cheng X. Guo H. Zhang Y. Wu X. Liu Y. Non-photochemical production of singlet oxygen via activation of persulfate by carbon nanotubes. Water Res. 2017 113 80 88 10.1016/j.watres.2017.02.016 28199865
    [Google Scholar]
  67. Zhang X. Shi X. Zhao Q. Li Y. Wang J. Yang Y. Bi F. Xu J. Liu N. Defects controlled by acid-modulators and water molecules enabled UiO-67 for exceptional toluene uptakes: An experimental and theoretical study. Chem. Eng. J. 2022 427 131573 10.1016/j.cej.2021.131573
    [Google Scholar]
  68. Dang V.C. Tran D.T. Phan A.T. Pham N.K. Nguyen V.N. Synergistic effect for the degradation of tetracycline by rGO-Co3O4 assisted persulfate activation. J. Phys. Chem. Solids 2021 153 110005 10.1016/j.jpcs.2021.110005
    [Google Scholar]
  69. Cui M. Li Y. Sun Y. Wang H. Li M. Li L. Xu W. Degradation of tetracycline in polluted wastewater by persulfate over copper alginate/graphene oxide composites. J. Polym. Environ. 2021 29 7 2227 2235 10.1007/s10924‑020‑02038‑6
    [Google Scholar]
  70. Ma D. Yang Y. Liu B. Xie G. Chen C. Ren N. Xing D. Zero-valent iron and biochar composite with high specific surface area via K2FeO4 fabrication enhances sulfadiazine removal by persulfate activation. Chem. Eng. J. 2021 408 127992 10.1016/j.cej.2020.127992
    [Google Scholar]
  71. Ma Q. Nengzi L. Li B. Wang Z. Liu L. Cheng X. Heterogeneously catalyzed persulfate with activated carbon coated with CoFe layered double hydroxide (AC@CoFe-LDH) for the degradation of lomefloxacin. Separ. Purif. Tech. 2020 235 116204 10.1016/j.seppur.2019.116204
    [Google Scholar]
  72. Wu S. Zhao M. Xia Z. Liu J. Chen Y. Lv X. Jia Z. Xie Z. Highly dispersed Co on N-doped carbon derived from metal-organic framework composite for enhanced peroxymonosulfate activation toward tetracycline degradation. Diamond Related Materials 2023 140 110544 10.1016/j.diamond.2023.110544
    [Google Scholar]
  73. Xia B. Liu T. Luo W. Cheng G. NiPt–MnO x supported on N-doped porous carbon derived from metal–organic frameworks for highly efficient hydrogen generation from hydrazine. J. Mater. Chem. A Mater. Energy Sustain. 2016 4 15 5616 5622 10.1039/C6TA00766J
    [Google Scholar]
  74. Chen H. Zhang Z. Hu D. Chen C. Zhang Y. He S. Wang J. Catalytic ozonation of norfloxacin using Co3O4/C composite derived from ZIF-67 as catalyst. Chemosphere 2021 265 129047 10.1016/j.chemosphere.2020.129047 33243577
    [Google Scholar]
  75. Zheng W. Sun Y. Gu Y. Assembly of UiO-66 onto Co-doped Fe3O4 nanoparticles to activate peroxymonosulfate for efficient degradation of fenitrothion and simultaneous in-situ adsorption of released phosphate. J. Hazard. Mater. 2022 436 129058 10.1016/j.jhazmat.2022.129058 35526342
    [Google Scholar]
  76. Wang T. Liang Q. Xing Y. Sun M. Luo H. Magnetic Fe/N-codoped carbon derived from modified Fe-base MOFs: Synergism of multiple active sites for peroxymonosulfate activation. J. Environ. Chem. Eng. 2023 11 3 109905 10.1016/j.jece.2023.109905
    [Google Scholar]
  77. Wang L. Li J. Liu X. Zhang J. Wen X. Song Y. Zeng P. High yield M-BTC type MOFs as precursors to prepare N-doped carbon as peroxymonosulfate activator for removing sulfamethazine: The formation mechanism of surface-bound SO4- on Co-Nx site. Chemosphere 2022 295 133946 10.1016/j.chemosphere.2022.133946 35151702
    [Google Scholar]
  78. Yang Q. Ma Y. Chen F. Yao F. Sun J. Wang S. Yi K. Hou L. Li X. Wang D. Recent advances in photo-activated sulfate radical-advanced oxidation process (SR-AOP) for refractory organic pollutants removal in water. Chem. Eng. J. 2019 378 122149 10.1016/j.cej.2019.122149
    [Google Scholar]
  79. Wu G. Qin W. Sun L. Yuan X. Xia D. Role of peroxymonosulfate on enhancing ozonation for micropollutant degradation: Performance evaluation, mechanism insight and kinetics study. Chem. Eng. J. 2019 360 115 123 10.1016/j.cej.2018.11.183
    [Google Scholar]
  80. Chen X. Qiao X. Wang D. Lin J. Chen J. Kinetics of oxidative decolorization and mineralization of Acid Orange 7 by dark and photoassisted Co2+-catalyzed peroxymonosulfate system. Chemosphere 2007 67 4 802 808 10.1016/j.chemosphere.2006.10.032 17156815
    [Google Scholar]
  81. Zhang H. Zhou L. Dong Z. Wang Y. Yang Z. Chang K. Ge C. Liu D. Liu H. Pan L. Ni T. Integrating bimetallic nanoclusters onto a porous g-C3N4 support for efficient degradation of metronidazole: Performance and mechanism study. Separ. Purif. Tech. 2024 330 125239 10.1016/j.seppur.2023.125239
    [Google Scholar]
  82. Gao B. Zhu S. Gu J. Liu Y. Yi X. Zhou H. Superoxide radical mediated Mn(III) formation is the key process in the activation of peroxymonosulfate (PMS) by Mn-incorporated bacterial-derived biochar. J. Hazard. Mater. 2022 431 128549 10.1016/j.jhazmat.2022.128549 35220118
    [Google Scholar]
  83. Zhang Z. Chen W. Ding L. Wu M. Wei S. Research progress on detection methods of active species in the catalytic oxidation degradation of organic pollutants: A review. J. Environ. Chem. Eng. 2024 12 3 112749 10.1016/j.jece.2024.112749
    [Google Scholar]
  84. Maksimchuk N.V. Puiggalí-Jou J. Zalomaeva O.V. Larionov K.P. Evtushok V.Y. Soshnikov I.E. Solé-Daura A. Kholdeeva O.A. Poblet J.M. Carbó J.J. Resolving the mechanism for H 2 O 2 decomposition over Zr(IV)-substituted lindqvist tungstate: Evidence of singlet oxygen intermediacy. ACS Catal. 2023 13 15 10324 10339 10.1021/acscatal.3c02416 37560188
    [Google Scholar]
  85. He L. Yang S. Li Y. Kong D. Wu L. Li B. Chen X. Zhang Z. Yang L. Sludge biochar as an electron shuttle between periodate and sulfamethoxazole: The dominant role of ball mill-loaded Mn2O3. Separ. Purif. Tech. 2023 314 123627 10.1016/j.seppur.2023.123627
    [Google Scholar]
  86. Jiang J. Zhao Z. Gao J. Li T. Li M. Zhou D. Dong S. Nitrogen vacancy-modulated peroxymonosulfate nonradical activation for organic contaminant removal via high-valent Cobalt-Oxo species. Environ. Sci. Technol. 2022 56 9 5611 5619 10.1021/acs.est.2c01913 35442647
    [Google Scholar]
  87. Han Y. Zhao C. Zhang W. Liu Z. Li Z. Han F. Zhang M. Xu F. Zhou W. Cu-doped CoOOH activates peroxymonosulfate to generate high-valent cobalt-oxo species to degrade organic pollutants in saline environments. Appl. Catal. B 2024 340 123224 10.1016/j.apcatb.2023.123224
    [Google Scholar]
  88. Li X. Wen X. Lang J. Wei Y. Miao J. Zhang X. Zhou B. Long M. Alvarez P.J.J. Zhang L. CoN1 O2 single-atom catalyst for efficient peroxymonosulfate activation and selective cobalt(IV)=O generation. Angew Chem Int Ed Engl. 2023 62 27 e202303267 10.1002/anie.202303267
    [Google Scholar]
  89. Pedrosa M. Drazic G. Tavares P.B. Figueiredo J.L. Silva A.M.T. Metal-free graphene-based catalytic membrane for degradation of organic contaminants by persulfate activation. Chem. Eng. J. 2019 369 223 232 10.1016/j.cej.2019.02.211
    [Google Scholar]
  90. Huo X. Zhou P. Zhang J. Liu Y. Cheng X. Liu Y. Li W. Zhang Y. N, S-Doped porous carbons for persulfate activation to remove tetracycline: Nonradical mechanism. J. Hazard. Mater. 2020 391 122055 10.1016/j.jhazmat.2020.122055 32045799
    [Google Scholar]
  91. Song H. Guan Z. Xia D. Xu H. Yang F. Li D. Li X. Copper-oxygen synergistic electronic reconstruction on g-C3N4 for efficient non-radical catalysis for peroxydisulfate and peroxymonosulfate. Separ. Purif. Tech. 2021 257 117957 10.1016/j.seppur.2020.117957
    [Google Scholar]
  92. Wang G. Liu Y. Dong X. Zhang X. Transforming radical to non-radical pathway in peroxymonosulfate activation on nitrogen doped carbon sphere for enhanced removal of organic pollutants: Combined effect of nitrogen species and carbon structure. J. Hazard. Mater. 2022 437 129357 10.1016/j.jhazmat.2022.129357 35716563
    [Google Scholar]
  93. Wang F. Gao Y. Fu H. Liu S.S. Wei Y. Wang P. Zhao C. Wang J.F. Wang C.C. Almost 100 % electron transfer regime over Fe−Co dual-atom catalyst toward pollutants removal: Regulation of peroxymonosulfate adsorption mode. Appl. Catal. B 2023 339 123178 10.1016/j.apcatb.2023.123178
    [Google Scholar]
  94. Chen Y. Chen D. Bai X. Binary MOFs-derived Mn-Co3O4 for efficient peroxymonosulfate activation to remove sulfamethoxazole: Oxygen vacancy-assisted high-valent cobalt-oxo species generation. Chem. Eng. J. 2024 479 147886 10.1016/j.cej.2023.147886
    [Google Scholar]
  95. Zhang Y. Wei J. Xing L. Li J. Xu M. Pan G. Li J. Superoxide radical mediated persulfate activation by nitrogen doped bimetallic MOF (FeCo/N-MOF) for efficient tetracycline degradation. Separ. Purif. Tech. 2022 282 120124 10.1016/j.seppur.2021.120124
    [Google Scholar]
  96. Zhong Q. Lin Q. Huang R. Fu H. Zhang X. Luo H. Xiao R. Oxidative degradation of tetracycline using persulfate activated by N and Cu codoped biochar. Chem. Eng. J. 2020 380 122608 10.1016/j.cej.2019.122608
    [Google Scholar]
  97. Kumari M. Pulimi M. Sulfate radical-based degradation of organic pollutants: A review on application of metal-organic frameworks as catalysts. ACS Omega 2023 8 38 34262 34280 10.1021/acsomega.3c02977 37779959
    [Google Scholar]
  98. Yang Y. Zhu Y. Chen J. Zhou X. Zhang Y. The role of ligand in the activation of peroxymonosulfate by Fe3O4 for the degradation of organic pollutants. Separ. Purif. Tech. 2024 338 126543 10.1016/j.seppur.2024.126543
    [Google Scholar]
  99. Lai S.C. Lin H.H.H. Yang J.S. Hsieh M.C. Lin A.Y.C. Solar photodegradation of the UV filter benzotriazole in the presence of persulfate. J. Environ. Chem. Eng. 2023 11 1 109189 10.1016/j.jece.2022.109189
    [Google Scholar]
  100. Yang X. Wu P. Chu W. Wei G. Peroxymonosulfate/LaCoO3 system for tetracycline degradation: Performance and effects of co-existing inorganic anions and natural organic matter. J. Water Process Eng. 2021 43 102231 10.1016/j.jwpe.2021.102231
    [Google Scholar]
  101. Liu G. Li X. Han B. Chen L. Zhu L. Campos L.C. Efficient degradation of sulfamethoxazole by the Fe(II)/HSO5− process enhanced by hydroxylamine: Efficiency and mechanism. J. Hazard. Mater. 2017 322 Pt B 461 468 10.1016/j.jhazmat.2016.09.062 27745962
    [Google Scholar]
  102. Xie P. Yue S. Ding J. Wan Y. Li X. Ma J. Wang Z. Degradation of organic pollutants by Vacuum-Ultraviolet (VUV): Kinetic model and efficiency. Water Res. 2018 133 69 78 10.1016/j.watres.2018.01.019 29367049
    [Google Scholar]
  103. Berruti I. López M.I.P. Oller I. Laurenti E. Minella M. Calza P. The reactivity of peroxymonosulfate towards sulfamethoxazole. Catal. Today 2023 413-415 113975 10.1016/j.cattod.2022.12.006
    [Google Scholar]
  104. Pang Y. Lei H. Degradation of p-nitrophenol through microwave-assisted heterogeneous activation of peroxymonosulfate by manganese ferrite. Chem. Eng. J. 2016 287 585 592 10.1016/j.cej.2015.11.076
    [Google Scholar]
  105. Asif M.B. Ji B. Maqbool T. Zhang Z. Algogenic organic matter fouling alleviation in membrane distillation by peroxymonosulfate (PMS): Role of PMS concentration and activation temperature. Desalination 2021 516 115225 10.1016/j.desal.2021.115225
    [Google Scholar]
  106. Li F. Wei J. Wang D. Han Y. Han D. Gong J. Ce-doped CuCoO2 delafossite with switchable PMS activation pathway for tetracycline degradation. Chem. Eng. J. 2024 481 148633 10.1016/j.cej.2024.148633
    [Google Scholar]
  107. Li Z. Wang M. Jin C. Kang J. Liu J. Yang H. Zhang Y. Pu Q. Zhao Y. You M. Wu Z. Synthesis of novel Co3O4 hierarchical porous nanosheets via corn stem and MOF-Co templates for efficient oxytetracycline degradation by peroxymonosulfate activation. Chem. Eng. J. 2020 392 123789 10.1016/j.cej.2019.123789
    [Google Scholar]
  108. Wang H. Gao Q. Li H. Han B. Xia K. Zhou C. One-pot synthesis of a novel hierarchical Co(II)-doped TiO2 nanostructure: Toward highly active and durable catalyst of peroxymonosulfate activation for degradation of antibiotics and other organic pollutants. Chem. Eng. J. 2019 368 377 389 10.1016/j.cej.2019.02.124
    [Google Scholar]
/content/journals/cac/10.2174/0115734110339425241029052047
Loading
/content/journals/cac/10.2174/0115734110339425241029052047
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Catalyst ; peroxymonosulfate ; organic pollutants ; excitation ; degradation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test