Skip to content
2000
image of Smartphone-assisted Colorimetric Detection of Hg (II) in an Organized Medium Applying Polyethylene Glycol Monododecyl Ether Stabilized Silver Nanoparticles

Abstract

Background

Mercury (Hg) is a highly neurotoxic pollutant present in different environmental matrices. Herein, a simple and sensitive assay is proposed for Hg detection in environmental water samples employing polyethylene glycol monododecyl ether PGME) stabilized silver nanoparticles (PGME-AgNPs).

Methods

The prepared PGME-AgNPs were characterized by absorption, scanning electron microscopy (SEM), atomic force microscopy (AFM), dynamic light scattering (DLS), and Zeta potential measurements. The addition of Hg(II) to an aqueous matrix changed the color of the sensor, following a decrease in surface plasmon resonance (SPR) band intensity.

Results

The detected response was proportional to Hg (II) concentrations and the analytical response comprised a change in absorbance versus concentrations from 4.0 to 24 × 10-8 mol L-1 (0.8 – 4.8 µg L-1) and the limit of detection (LOD) was 4.0 nmol L-1 (0.08 µg L-1). Additionally, the sensor was integrated with the RGB color values of a smartphone, enabling its use as a portable sensor for rapid Hg(II) at a concentration level ranging from 6.0 to 24 × 10-8 mol L-1 (1.2 - 4.8 µg L-1). Spectrophotometric and RGB color value-based approaches were applied for the quantification of Hg(II) in real water samples with satisfactory recoveries ranging from 98.5 to 105%.

Conclusion

The proposed colorimetric method with a smart assisted approach was proven a very simple, and quick method, demonstrating practical applicability for on-site Hg screening of aqueous matrices.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110338659241216173535
2025-02-10
2025-03-29
Loading full text...

Full text loading...

References

  1. Lin C.Y. Yu C.J. Lin Y.H. Tseng W.L. Colorimetric sensing of silver(I) and mercury(II) ions based on an assembly of Tween 20-stabilized gold nanoparticles. Anal. Chem. 2010 82 16 6830 6837 10.1021/ac1007909 20704372
    [Google Scholar]
  2. Rai L. Gaur J. Kumar H. Phycology and heavy‐metal pollution. Bio. Rev. 1981 56 2 99 151 10.1111/j.1469‑185X.1981.tb00345.x
    [Google Scholar]
  3. Budnik L.T. Casteleyn L. Mercury pollution in modern times and its socio-medical consequences. Sci. Total Environ. 2019 654 720 734 10.1016/j.scitotenv.2018.10.408 30448663
    [Google Scholar]
  4. Feng X. Mercury pollution in China — An overview. Dynamics of Mercury Pollution on Regional and Global Scales Springer Boston, MA. 2005 657 678 10.1007/0‑387‑24494‑8_27
    [Google Scholar]
  5. Boyd A.S. Seger D. Vannucci S. Langley M. Abraham J.L. King L.E. Jr Mercury exposure and cutaneous disease. J. Am. Acad. Dermatol. 2000 43 1 81 90 10.1067/mjd.2000.106360 10863229
    [Google Scholar]
  6. Vicente-Martínez Y. Muñoz-Sandoval M.J. Hernandez-Cordoba M. Lopez-Garcia I. Determination of Hg(II) and Methylmercury by Electrothermal Atomic Absorption Spectrometry after Dispersive Solid-Phase Microextraction with a Graphene Oxide Magnetic Material. Molecules 2022 28 1 14 10.3390/molecules28010014 36615211
    [Google Scholar]
  7. Wang J. Ma L.Q. Letcher R. Bradford S.A. Feng X. Rinklebe J. Biogeochemical cycle of mercury and controlling technologies: Publications in critical reviews in environmental science & technology in the period of 2017–2021. Crit. Rev. Environ. Sci. Technol. 2022 52 24 4325 4330 10.1080/10643389.2022.2071210
    [Google Scholar]
  8. Basta P. de Vasconcellos A. Hallwass G. Yokota D. Pinto D. de Aguiar D. de Souza C. Oliveira-da-Costa M. Risk Assessment of Mercury-Contaminated Fish Consumption in the Brazilian Amazon: An Ecological Study. Toxics 2023 11 9 800 10.3390/toxics11090800 37755810
    [Google Scholar]
  9. Vieira J.C.S. Braga C.P. Queiroz J.V. Cavecci-Mendonça B. Oliveira G. Freitas N.G. Fernandes A.A.H. Fernandes M.S. Buzalaf M.A.R. Adamec J. Zara L.F. Padilha P.M. The effects of mercury exposure on Amazonian fishes: An investigation of potential biomarkers. Chemosphere 2023 316 137779 10.1016/j.chemosphere.2023.137779 36632955
    [Google Scholar]
  10. Chen L. Li J. Chen L. Colorimetric detection of mercury species based on functionalized gold nanoparticles. ACS Appl. Mater. Interfaces 2014 6 18 15897 15904 10.1021/am503531c 25153162
    [Google Scholar]
  11. Kubáň P. Houserová P. Kubáň P. Hauser P.C. Kubáň V. Mercury speciation by CE: A review. Electrophoresis 2007 28 1-2 58 68 10.1002/elps.200600457 17191282
    [Google Scholar]
  12. Pavithra K.G. SundarRajan P. Kumar P.S. Rangasamy G. Mercury sources, contaminations, mercury cycle, detection and treatment techniques: A review. Chemosphere 2023 312 Pt 1 137314 10.1016/j.chemosphere.2022.137314 36410499
    [Google Scholar]
  13. Sánchez Uría J. Sanz-Medel A. Inorganic and methylmercury speciation in environmental samples. Talanta 1998 47 3 509 524 10.1016/S0039‑9140(98)00116‑7 18967353
    [Google Scholar]
  14. Miranda-Andrades J.R. Khan S. Toloza C.A.T. Maciel R.M. Escalfoni R. Jr Tristão M.L.B. Aucelio R.Q. Speciation and ultra trace determination of mercury in produced waters from offshore drilling operations using portable instrumentation and matrix-matching calibration. Microchem. J. 2019 146 1072 1082 10.1016/j.microc.2019.02.045
    [Google Scholar]
  15. Miranda-Andrades J.R. Khan S. Pedrozo-Penãfiel M.J. Alexandre K.C.B. Maciel R.M. Escalfoni R. Jr Tristão M.L.B. Aucelio R.Q. Combination of ultrasonic extraction in a surfactant-rich medium and distillation for mercury speciation in offshore petroleum produced waters by gas chromatography cold vapor atomic fluorescence spectrometry. Spectrochim. Acta B At. Spectrosc. 2019 158 105641 10.1016/j.sab.2019.105641
    [Google Scholar]
  16. Atasoy M. Yildiz D. Kula İ. Vaizoğullar A.İ. Determination and speciation of methyl mercury and total mercury in fish tissue samples by gold-coated W-coil atom trap cold vapor atomic absorption spectrometry. Food Chem. 2023 401 134152 10.1016/j.foodchem.2022.134152 36099824
    [Google Scholar]
  17. Hight S.C. Cheng J. Determination of total mercury in seafood by cold vapor-atomic absorption spectroscopy (CVAAS) after microwave decomposition. Food Chem. 2005 91 3 557 570 10.1016/j.foodchem.2004.10.004
    [Google Scholar]
  18. Morita H. Tanaka H. Shimomura S. Atomic fluorescence spectrometry of mercury: principles and developments. Spectrochim. Acta B At. Spectrosc. 1995 50 1 69 84 10.1016/0584‑8547(94)00116‑D
    [Google Scholar]
  19. Miranda-Andrades J.R. Khan S. Toloza C.A.T. Romani E.C. Freire Júnior F.L. Aucelio R.Q. Thiomersal photo-degradation with visible light mediated by graphene quantum dots: Indirect quantification using optical multipath mercury cold-vapor absorption spectrophotometry. Spectrochim. Acta B At. Spectrosc. 2017 138 81 89 10.1016/j.sab.2017.10.011
    [Google Scholar]
  20. Astolfi M.L. Protano C. Marconi E. Piamonti D. Massimi L. Brunori M. Vitali M. Canepari S. Simple and rapid method for the determination of mercury in human hair by cold vapour generation atomic fluorescence spectrometry. Microchem. J. 2019 150 104186 10.1016/j.microc.2019.104186
    [Google Scholar]
  21. Liu Y. Chen H. Zhu N. Zhang J. Li Y. Xu D. Gao Y. Zhao J. Detection and remediation of mercury contaminated environment by nanotechnology: Progress and challenges. Environ. Pollut. 2022 293 118557 10.1016/j.envpol.2021.118557 34813883
    [Google Scholar]
  22. Xu N. Jin S. Wang L. Metal nanoparticles-based nanoplatforms for colorimetric sensing: A review. Rev. Anal. Chem. 2020 40 1 1 11 10.1515/revac‑2021‑0122
    [Google Scholar]
  23. Proniewicz E. Metallic nanoparticles as effective sensors of bio-molecules. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023 288 122207 10.1016/j.saa.2022.122207 36502763
    [Google Scholar]
  24. Li S. Wang B. Liu G. Li X. Sun C. Zhang Z. Wang X. Achieving ultra-trace analysis and multi-light driven photodegradation toward phenolic derivatives via a bifunctional catalyst derived from a Cu( i )-complex-modified polyoxometalate. Inorg. Chem. Front. 2024 11 5 1561 1572 10.1039/D3QI02513F
    [Google Scholar]
  25. Singh H. Bamrah A. Bhardwaj S.K. Deep A. Khatri M. Brown R.J.C. Bhardwaj N. Kim K.H. Recent advances in the application of noble metal nanoparticles in colorimetric sensors for lead ions. Environ. Sci. Nano 2021 8 4 863 889 10.1039/D0EN00963F
    [Google Scholar]
  26. Du W. Shen Z. Liang Y. Gong S. Meng Z. Li M. Wang Z. Wang S. A highly effective “naked eye” colorimetric and fluorimetric curcumin-based fluorescent sensor for specific and sensitive detection of H 2 O 2 in vivo and in vitro. Analyst (Lond.) 2023 148 8 1824 1837 10.1039/D3AN00340J 36939165
    [Google Scholar]
  27. Dayanidhi K. Sheik Eusuff N. Distinctive detection of Fe 2+ and Fe 3+ by biosurfactant capped silver nanoparticles via naked eye colorimetric sensing. New J. Chem. 2021 45 22 9936 9943 10.1039/D1NJ01342D
    [Google Scholar]
  28. Li S. Sun J. Liu G. Zhang S. Zhang Z. Wang X. A new Keggin-type polyoxometallate-based bifunctional catalyst for trace detection and pH-universal photodegradation of phenol. Chin. Chem. Lett. 2024 35 8 109148 10.1016/j.cclet.2023.109148
    [Google Scholar]
  29. Ali S. Chen X. Shi W. Huang G. Yuan L. Meng L. Chen S. Zhonghao X. Chen X. Recent advances in silver and gold nanoparticles-based colorimetric sensors for heavy metal ions detection: a review. Crit. Rev. Anal. Chem. 2023 53 3 718 750 10.1080/10408347.2021.1973886 34510976
    [Google Scholar]
  30. Sharma R. Dhillon A. Kumar D. Mentha-stabilized silver nanoparticles for high-performance colorimetric detection of Al (III) in aqueous systems. Sci. Rep. 2018 8 1 5189 10.1038/s41598‑018‑23469‑1 29581515
    [Google Scholar]
  31. Girgin A. Akbıyık H. Zaman B.T. Çetin G. Bakırdere S. Colorimetric Sensor Based AgNPs for the Detection of Cyanide using UV‐Vis Spectrophotometry. ChemistrySelect 2023 8 33 e202301663 10.1002/slct.202301663
    [Google Scholar]
  32. Alshareef M. Recent Advances in Organic Sensors for the Detection of Ag + Ions: A Comprehensive Review (2019–2023). Crit. Rev. Anal. Chem. 2023 1 16 10.1080/10408347.2023.2263877 37792301
    [Google Scholar]
  33. Wu G. Dong C. Li Y. Wang Z. Gao Y. Shen Z. Wu A. A novel AgNPs-based colorimetric sensor for rapid detection of Cu 2+ or Mn 2+ via pH control. RSC Advances 2015 5 26 20595 20602 10.1039/C5RA00001G
    [Google Scholar]
  34. Rasheed S. ul Haq M.A. Ahmad N. Sirajuddin Hussain D. Smartphone-integrated colorimetric and microfluidic paper-based analytical devices for the trace-level detection of permethrin. Food Chem. 2023 429 136925 10.1016/j.foodchem.2023.136925 37480777
    [Google Scholar]
  35. Paw R. Hazarika M. Boruah P.K. Kalita A.J. Guha A.K. Das M.R. Tamuly C. Highly sensitive and selective colorimetric detection of dual metal ions (Hg 2+ and Sn 2+ ) in water: an eco-friendly approach. RSC Advances 2021 11 24 14700 14709 10.1039/D0RA09926K 35424016
    [Google Scholar]
  36. Bhattacharjee Y. Chakraborty A. Label-free cysteamine-capped silver nanoparticle-based colorimetric assay for Hg (II) detection in water with subnanomolar exactitude. ACS Sustain. Chem.& Eng. 2014 2 9 2149 2154 10.1021/sc500339n
    [Google Scholar]
  37. Sumesh E. Bootharaju M.S. Anshup Pradeep T. A practical silver nanoparticle-based adsorbent for the removal of Hg2+ from water. J. Hazard. Mater. 2011 189 1-2 450 457 10.1016/j.jhazmat.2011.02.061 21398028
    [Google Scholar]
/content/journals/cac/10.2174/0115734110338659241216173535
Loading
/content/journals/cac/10.2174/0115734110338659241216173535
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: aqueous sample ; RGB ; colorimetric ; mercury ; PGME-AgNPs
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test