Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Background

In recent years, low-cost biomaterials have been used for sustainable applications to reduce the impact of wastewater treatment. The preparation of bio-based materials with a strong affinity for chromate plays a crucial role in the adsorption process.

Methods

In this study, chitosan-halloysite nanotubes composite hydrogel beads (Ch-HNTs) were prepared for the removal of hexavalent chromium (Cr6+) from aqueous solutions. Ch-HNTs hydrogel beads were generated by incorporating HNTs into chitosan using a glutaraldehyde solution to achieve efficient crosslinking. The structure of the Ch-HNTs was characterized by SEM and FTIR analysis. These novel adsorbents were then tested for the adsorption of Cr6+ in serial batch experiments. For this purpose, the effect of pH, contact time, temperature, concentration of adsorbate, and adsorbent concentration on the extent of adsorption were investigated.

Results

The adsorption rate for Cr6+ was maximum at an initial pH of 2 in 60 minutes of contact time. The experimental data were fitted to Langmuir adsorption isotherm. The adsorption data were fitted to the Langmuir adsorption isotherm. The maximum adsorption capacity of 72.22 mg Cr6+/g for Ch-HNTs was obtained according to the Langmuir adsorption isotherm.

Conclusion

It is proposed that Ch-HNTs can be potential adsorbents for Cr6+ removal from dilute solutions. Nonetheless, further studies on adsorbing and removing various heavy metals using these novel beads in column systems can be planned.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110336658240923070104
2025-02-01
2025-01-13
Loading full text...

Full text loading...

References

  1. UmapathiR. Venkateswara RajuC. Majid GhoreishianS. Mohana RaniG. KumarK. OhM.H. Pil ParkJ. Suk HuhY. Recent advances in the use of graphitic carbon nitride-based composites for the electrochemical detection of hazardous contaminants.Coord. Chem. Rev.202247021470810.1016/j.ccr.2022.214708
    [Google Scholar]
  2. SathyaK. NagarajanK. Carlin Geor MalarG. RajalakshmiS. Raja LakshmiP. A comprehensive review on comparison among effluent treatment methods and modern methods of treatment of industrial wastewater effluent from different sources.Appl. Water Sci.20221247010.1007/s13201‑022‑01594‑7 35340731
    [Google Scholar]
  3. SolimanN.K. MoustafaA.F. Industrial solid waste for heavy metals adsorption features and challenges; a review.J. Mater. Res. Technol.202095102351025310.1016/j.jmrt.2020.07.045
    [Google Scholar]
  4. Venkateswara RajuC. Hwan ChoC. Mohana RaniG. ManjuV. UmapathiR. Suk HuhY. Pil ParkJ. Emerging insights into the use of carbon-based nanomaterials for the electrochemical detection of heavy metal ions.Coord. Chem. Rev.202347621492010.1016/j.ccr.2022.214920
    [Google Scholar]
  5. GaoX. HassanI. PengY. HuoS. LingL. Behaviors and influencing factors of the heavy metals adsorption onto microplastics: A review.J. Clean. Prod.202131912877710.1016/j.jclepro.2021.128777
    [Google Scholar]
  6. SarkodieB. AmesimekuJ. FrimpongC. HowardE.K. FengQ. XuZ. Photocatalytic degradation of dyes by novel electrospun nanofibers: A review.Chemosphere202331313765410.1016/j.chemosphere.2022.137654 36581126
    [Google Scholar]
  7. VelardeL. NabaviM.S. EscaleraE. AnttiM.L. AkhtarF. Adsorption of heavy metals on natural zeolites: A review.Chemosphere202332813850810.1016/j.chemosphere.2023.138508 36972873
    [Google Scholar]
  8. CriniG. Non-conventional low-cost adsorbents for dye removal: A review.Bioresour. Technol.20069791061108510.1016/j.biortech.2005.05.001 15993052
    [Google Scholar]
  9. AljeboreeA.M. AlrazzakN.A. AlqaragulyM.B. MahdiM.A. JasimL.S. AlkaimA.F. Adsorption of pollutants by using low-cost (Environment-Friendly): Equilibrium, kinetics and thermodynamic studies: A review.Syst. Rev. Pharm.2020111219881997
    [Google Scholar]
  10. FanL. LuoC. SunM. LiX. QiuH. Highly selective adsorption of lead ions by water-dispersible magnetic chitosan/graphene oxide composites.Colloids Surf. B Biointerfaces201310352352910.1016/j.colsurfb.2012.11.006 23261576
    [Google Scholar]
  11. FutalanC.M. KanC.C. DalidaM.L. HsienK.J. PascuaC. WanM.W. Comparative and competitive adsorption of copper, lead, and nickel using chitosan immobilized on bentonite.Carbohydr. Polym.201183252853610.1016/j.carbpol.2010.08.013
    [Google Scholar]
  12. RaniG.M. GhoreishianS.M. UmapathiR. VivekananthanV. HuhY.S. A biocompatible triboelectric nanogenerator-based edible electronic skin for morse code transmitters and smart healthcare applications.Nano Energy202412810989910.1016/j.nanoen.2024.109899
    [Google Scholar]
  13. MotoraK.G. WuC.M. JoseC.R.M. RaniG.M. Waste‐to‐Energy: Development of a Highly Efficient Keratin Enhanced Chitosan Bio‐Waste‐Derived Triboelectric Nanogenerator for Energy Harvesting and Real Applications.Adv. Funct. Mater.20243422231506910.1002/adfm.202315069
    [Google Scholar]
  14. WangL. WangA. Adsorption characteristics of Congo Red onto the chitosan/montmorillonite nanocomposite.J. Hazard. Mater.2007147397998510.1016/j.jhazmat.2007.01.145 17349744
    [Google Scholar]
  15. Wan NgahW.S. AriffN.F.M. HanafiahM.A.K.M. Preparation, characterization, and environmental application of crosslinked chitosan-coated bentonite for tartrazine adsorption from aqueous solutions.Water Air Soil Pollut.20102061-422523610.1007/s11270‑009‑0098‑5
    [Google Scholar]
  16. KalyaniS. PriyaJ.A. RaoP.S. KrishnaiahA. Removal of copper and nickel from aqueous solutions using chitosan coated on perlite as biosorbent.Sep. Sci. Technol.20054071483149510.1081/SS‑200055940
    [Google Scholar]
  17. PandeyS. MishraS.B. Organic–inorganic hybrid of chitosan/organoclay bionanocomposites for hexavalent chromium uptake.J. Colloid Interface Sci.2011361250952010.1016/j.jcis.2011.05.031 21679960
    [Google Scholar]
  18. KahramanH.T. Development of an adsorbent via chitosan nano-organoclay assembly to remove hexavalent chromium from wastewater.Int. J. Biol. Macromol., 201794Pt A20220910.1016/j.ijbiomac.2016.09.11127725174
    [Google Scholar]
  19. MaityJ. RayS.K. Enhanced adsorption of methyl violet and congo red by using semi and full IPN of polymethacrylic acid and chitosan.Carbohydr. Polym.201410481610.1016/j.carbpol.2013.12.086 24607153
    [Google Scholar]
  20. CavallaroG. GianguzzaA. LazzaraG. MiliotoS. PiazzeseD. Alginate gel beads filled with halloysite nanotubes.Appl. Clay Sci.20137213213710.1016/j.clay.2012.12.001
    [Google Scholar]
  21. Sargınİ. KayaM. ArslanG. BaranT. CeterT. Preparation and characterisation of biodegradable pollen–chitosan microcapsules and its application in heavy metal removal.Bioresour. Technol.20151771710.1016/j.biortech.2014.11.067 25479387
    [Google Scholar]
  22. SunX. ZhangY. ShenH. JiaN. Direct electrochemistry and electrocatalysis of horseradish peroxidase based on halloysite nanotubes/chitosan nanocomposite film.Electrochim. Acta201056270070510.1016/j.electacta.2010.09.095
    [Google Scholar]
  23. AutaM. HameedB.H. Chitosan–clay composite as highly effective and low-cost adsorbent for batch and fixed-bed adsorption of methylene blue.Chem. Eng. J.201423735236110.1016/j.cej.2013.09.066
    [Google Scholar]
  24. ChoD.W. JeonB.H. ChonC.M. KimY. SchwartzF.W. LeeE.S. SongH. A novel chitosan/clay/magnetite composite for adsorption of Cu(II) and As(V).Chem. Eng. J.2012200-20265466210.1016/j.cej.2012.06.126
    [Google Scholar]
  25. GuptaV.K. RastogiA. NayakA. Adsorption studies on the removal of hexavalent chromium from aqueous solution using a low cost fertilizer industry waste material.J. Colloid Interface Sci.2010342113514110.1016/j.jcis.2009.09.065 19896674
    [Google Scholar]
  26. PehlivanE. PehlivanE. Tutar KahramanH. Hexavalent chromium removal by Osage Orange.Food Chem.201213341478148410.1016/j.foodchem.2012.02.037
    [Google Scholar]
  27. EdebaliS. PehlivanE. Evaluation of Amberlite IRA96 and Dowex 1×8 ion-exchange resins for the removal of Cr(VI) from aqueous solution.Chem. Eng. J.20101611-216116610.1016/j.cej.2010.04.059
    [Google Scholar]
  28. LiuT. ZhaoL. SunD. TanX. Entrapment of nanoscale zero-valent iron in chitosan beads for hexavalent chromium removal from wastewater.J. Hazard. Mater.20101841-372473010.1016/j.jhazmat.2010.08.099 20855161
    [Google Scholar]
  29. KahramanH.T. PehlivanE. Evaluation of anion-exchange resins on the removal of Cr(VI) polluted water: Batch ion-exchange modeling.Arab. J. Geosci.2019121653210.1007/s12517‑019‑4677‑5
    [Google Scholar]
  30. HuangG. ZhangH. ShiJ.X. LangrishT.A.G. Adsorption of chromium (VI) from aqueous solutions using cross-linked magnetic chitosan beads.Ind. Eng. Chem. Res.20094852646265110.1021/ie800814h
    [Google Scholar]
  31. DoğanM. ÖzdemirY. AlkanM. Adsorption kinetics and mechanism of cationic methyl violet and methylene blue dyes onto sepiolite.Dyes Pigments200775370171310.1016/j.dyepig.2006.07.023
    [Google Scholar]
  32. TaoJ. XiongJ. JiaoC. ZhangD. LinH. ChenY. Cellulose/polymer/silica composite cotton fiber based on a hyperbranch-mesostructure system as versatile adsorbent for water treatment.Carbohydr. Polym.201716627128010.1016/j.carbpol.2017.02.109 28385233
    [Google Scholar]
  33. EdebaliS. PehlivanE. Evaluation of chelate and cation exchange resins to remove copper ions.Powder Technol.201630152052510.1016/j.powtec.2016.06.011
    [Google Scholar]
  34. BillahR.E.K. KhanM.A. ParkY.K. am, A.; Majdoubi, H.; Haddaji, Y.; Jeon, B.H. A comparative study on hexavalent chromium adsorption onto chitosan and chitosan-based composites.Polymers (Basel)20211319342710.3390/polym13193427 34641242
    [Google Scholar]
  35. BudnyakT.M. PylypchukI.V. TertykhV.A. YanovskaE.S. KolodynskaD. Synthesis and adsorption properties of chitosan-silica nanocomposite prepared by sol-gel method.Nanoscale Res. Lett.20151018710.1186/s11671‑014‑0722‑1 25852383
    [Google Scholar]
  36. LiL. FanL. SunM. QiuH. LiX. DuanH. LuoC. Adsorbent for chromium removal based on graphene oxide functionalized with magnetic cyclodextrin–chitosan.Colloids Surf. B Biointerfaces2013107768310.1016/j.colsurfb.2013.01.074 23466545
    [Google Scholar]
  37. VilelaP.B. DalaliberaA. DuminelliE.C. BecegatoV.A. PaulinoA.T. Adsorption and removal of chromium (VI) contained in aqueous solutions using a chitosan-based hydrogel.Environ. Sci. Pollut. Res. Int.20192628284812848910.1007/s11356‑018‑3208‑3 30229486
    [Google Scholar]
  38. ThinhN.N. HanhP.T.B. HaL.T.T. AnhL.N. HoangT.V. HoangV.D. DangL.H. KhoiN.V. LamT.D. Magnetic chitosan nanoparticles for removal of Cr(VI) from aqueous solution.Mater. Sci. Eng. C20133331214121810.1016/j.msec.2012.12.013 23827563
    [Google Scholar]
  39. AydınY.A. AksoyN.D. Adsorption of chromium on chitosan: Optimization, kinetics and thermodynamics.Chem. Eng. J.20091511-318819410.1016/j.cej.2009.02.010
    [Google Scholar]
  40. TranH.N. YouS.J. Hosseini-BandegharaeiA. ChaoH.P. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review.Water Res.20171208811610.1016/j.watres.2017.04.014 28478298
    [Google Scholar]
  41. Rajiv GandhiM. KousalyaG.N. ViswanathanN. MeenakshiS. Sorption behaviour of copper on chemically modified chitosan beads from aqueous solution.Carbohydr. Polym.20118331082108710.1016/j.carbpol.2010.08.079
    [Google Scholar]
  42. NgahW.S.W. FatinathanS. Adsorption characterization of Pb(II) and Cu(II) ions onto chitosan-tripolyphosphate beads: Kinetic, equilibrium and thermodynamic studies.J. Environ. Manage.201091495896910.1016/j.jenvman.2009.12.003 20044203
    [Google Scholar]
  43. IgberaseE. OsifoP. Equilibrium, kinetic, thermodynamic and desorption studies of cadmium and lead by polyaniline grafted cross-linked chitosan beads from aqueous solution.J. Ind. Eng. Chem.20152634034710.1016/j.jiec.2014.12.007
    [Google Scholar]
  44. KousalyaG.N. Rajiv GandhiM. MeenakshiS. Sorption of chromium(VI) using modified forms of chitosan beads.Int. J. Biol. Macromol.201047230831510.1016/j.ijbiomac.2010.03.010 20361994
    [Google Scholar]
/content/journals/cac/10.2174/0115734110336658240923070104
Loading
/content/journals/cac/10.2174/0115734110336658240923070104
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Chitosan; clay; halloysite nanotubes; hexavalent chromium; hydrogel; wastewater treatment
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test