Skip to content
2000
image of Carbon-based Nanocomposite Materials for Electrochemical Monitoring of Cadmium Ions

Abstract

In the present era of science and technology, cadmium poisoning in humans is reported from several parts of the world and now it is a global health problem.

Accumulation of cadmium in human organs and tissues, such as the liver, kidney, ., leads to carcinogenic effects and toxicity to the organ system. Therefore, several efforts are being made to develop a monitoring system for cadmium metal ions in the environment.

This review aimed to summarise the different carbon-composite materials-based electrochemical sensors reported to date for cadmium ions detection.

The first section of this review provides a brief discussion on the source and harmful effects of cadmium ions, and the rest part includes different carbon (graphite, graphene, graphene oxide, carbon nanotubes, )-based composite nanomaterials reported to date for the electrochemical detection of cadmium ions in different analytes.

Carbon-based nanocomposite materials have been found to be very suitable for the detection of Cd(II) ions due to their boosted electron transportation and high surface, leading towards high sensitivity and high selectivity.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110336212241003114035
2024-10-09
2024-11-23
Loading full text...

Full text loading...

References

  1. Munisamy R. Ismail S.N.S. Praveena S.M. Cadmium exposure via food crops: A case study of intensive farming area. Am. J. Appl. Sci. 2013 10 10 1252 1262 10.3844/ajassp.2013.1252.1262
    [Google Scholar]
  2. Barton J. García M.B.G. Santos D.H. Fanjul-Bolado P. Ribotti A. McCaul M. Diamond D. Magni P. Screen-printed electrodes for environmental monitoring of heavy metal ions: A review. Mikrochim. Acta 2016 183 2 503 517 [DOI: 10.1007/s00604-015-1651-0]. 10.1007/s00604‑015‑1651‑0
    [Google Scholar]
  3. Rafati Rahimzadeh M. Rafati Rahimzadeh M. Kazemi S. Moghadamnia A.A. Moghadamnia A.A. Cadmium toxicity and treatment: An update. Caspian J. Intern. Med. 2017 8 3 135 145 [DOI: 10.22088/cjim.8.3.135]. 28932363
    [Google Scholar]
  4. Silva A.L. Corrêa M.M. de Oliveira G.C. Michel R.C. Semaan F.S. Ponzio E.A. Development and application of a routine robust graphite/poly(lactic acid) composite electrode for the fast simultaneous determination of Pb 2+ and Cd 2+ in jewelry by square wave anodic stripping voltammetry. New J. Chem. 2018 42 24 19537 19547 10.1039/C8NJ03501F
    [Google Scholar]
  5. de Oliveira G.C. Vicentino P.O. Cassella R.J. Xing Y.T. Ponzio E.A. Simultaneous voltammetric determination of Cd 2+ and Pb 2+ in gasoline samples employing a chemically modified acrylonitrile‐butadiene‐styrene (ABS) composite electrode. Electroanalysis 2021 33 3 682 694 [DOI: 10.1002/elan.202060139]. 10.1002/elan.202060139
    [Google Scholar]
  6. Robin A. B. Cadmium toxicity and treatment. Sci. World J. 2013 2013 394652 10.1155/2013/394652
    [Google Scholar]
  7. Goyal T. Mitra P. Singh P. Sharma S. Assessment of blood lead and cadmium levels in occupationally exposed workers of Jodhpur, Rajasthan. J. Clin Biochem 2020 10.1007/s12291‑020‑00878‑6
    [Google Scholar]
  8. Idrees N. Tabassum B. Abd Allah E.F. Hashem A. Sarah R. Hashim M. Groundwater contamination with cadmium concentrations in some West U.P. Regions, India. Saudi J. Biol. Sci. 2018 25 7 1365 1368 10.1016/j.sjbs.2018.07.005 30505182
    [Google Scholar]
  9. Satarug S. Garrett S.H. Sens M.A. Sens D.A. Cadmium, environmental exposure, and health outcomes. Environ. Health Perspect. 2010 118 2 182 190 10.1289/ehp.0901234 20123617
    [Google Scholar]
  10. Tekaya N. Saiapina O. Ben Ouada H. Lagarde F. Ben Ouada H. Jaffrezic-Renault N. Ultra-sensitive conductometric detection of heavy metals based on inhibition of alkaline phosphatase activity from Arthrospira platensis. Bioelectrochemistry 2013 90 24 29 10.1016/j.bioelechem.2012.10.001 23174485
    [Google Scholar]
  11. Borraccino A. Campanella L. Sammartino M.P. Tomassetti M. Battilotti M. Suitable ion-selective sensors for lead and cadmium analysis. Sens. Actuators B Chem. 1992 7 1-3 535 539 [DOI: 10.1016/0925-4005(92)80359-6]. 10.1016/0925‑4005(92)80359‑6
    [Google Scholar]
  12. World Health Organization Health risks of heavy metals from long-range trans-boundary air pollution. Copenhagen World Health Organization Regional Office for Europe 2007 40 45
    [Google Scholar]
  13. Singh A. Sharma R.K. Agrawal M. Marshall F.M. Health risk assessment of heavy metals via dietary intake of foodstuffs from the wastewater irrigated site of a dry tropical area of India. Food Chem. Toxicol. 2010 48 2 611 619 10.1016/j.fct.2009.11.041 19941927
    [Google Scholar]
  14. Kaji M. Role of experts and public participation in pollution control: The case of Itai-itai disease in Japan<sup>1. Ethics Sci. Environ. Polit. 2012 12 2 99 111 [DOI: 10.3354/esep00126]. 10.3354/esep00126
    [Google Scholar]
  15. Javanbakht M. Shabani-Kia A. Darvich M.R. Ganjali M.R. Shamsipur M. Cadmium(II)-selective membrane electrode based on a synthesized tetrol compound. Anal. Chim. Acta 2000 408 1-2 75 81 10.1016/S0003‑2670(99)00771‑0
    [Google Scholar]
  16. Dasilva J. Borges D. Daveiga M. Curtius A. Welz B. Determination of cadmium in biological samples solubilized with tetramethylammonium hydroxide by electrothermal atomic absorption spectrometry, using ruthenium as permanent modifier. Talanta 2003 60 5 977 982 10.1016/S0039‑9140(03)00182‑6 18969123
    [Google Scholar]
  17. Rose M. Knaggs M. Owen L. Baxter M. A review of analytical methods for lead, cadmium, mercury, arsenic and tin determination used in proficiency testing. J. Anal. At. Spectrom. 2001 16 9 1101 1106 [DOI: 10.1039/B102839C]. 10.1039/b102839c
    [Google Scholar]
  18. WHO Guidelines for Drinking-Water Quality. 4th ed Geneva, Switzerland World Health Organization 2011 1 18
    [Google Scholar]
  19. WHO Exposure to cadmium: A major public health concern. World Health Organization 2010
    [Google Scholar]
  20. Agency for toxic substances and disease registry (atsdr). toxicological profile for cadmium. u.s. department of health and human services, centers for disease control and prevention, agency for toxic substances and disease registry. atlanta (ga). 2015 Available from: https://www.atsdr.cdc.gov/toxpro files/tp.asp?id=48&tid=15
  21. ATSDR - Toxicological Profile: Cadmium. 2020 Available from: https://www.atsdr.cdc.gov/toxprofiles/tp.asp?id=48&tid=15
  22. CDC Fourth national report on human exposure to environmental chemicals. 2009 Available from: https://www.cdc.gov/exposurereport
  23. Beck N.G. Franks R.P. Bruland K.W. Analysis for Cd, Cu, Ni, Zn, and Mn in estuarine water by inductively coupled plasma mass spectrometry coupled with an automated flow injection system. Anal. Chim. Acta 2002 455 1 11 22 10.1016/S0003‑2670(01)01561‑6
    [Google Scholar]
  24. Yuan C.G. Jiang G.B. Cai Y.Q. He B. Liu J.F. Determination of cadmium at the nanogram per liter level in seawater by graphite furnace AAS using cloud point extraction. At. Spectr. 2004 25 170
    [Google Scholar]
  25. Hutton E.A. van Elteren J.T. Ogorevc B. Smyth M.R. Validation of bismuth film electrode for determination of cobalt and cadmium in soil extracts using ICP–MS. Talanta 2004 63 4 849 855 10.1016/j.talanta.2003.12.038 18969509
    [Google Scholar]
  26. Abu-Salah K. Alrokyan S.A. Khan M.N. Ansari A.A. Nanomaterials as analytical tools for genosensors. Sensors 2010 10 1 963 993 10.3390/s100100963 22315580
    [Google Scholar]
  27. Yavuz S. Erkal A. Kariper İ.A. Solak A.O. Jeon S. Mülazımoğlu İ.E. Üstündağ Z. Carbonaceous Materials-12: A novel highly sensitive graphene oxide-based carbon electrode: Preparation, characterization, and heavy metal analysis in food samples. Food Anal. Methods 2016 9 2 322 331 10.1007/s12161‑015‑0198‑3
    [Google Scholar]
  28. Ribeiro R.S.A. Ramirez N.I.B. Semaan F.S. Alhadeff E.M. Bionanopolymeric film for the electroanalytical detection of zinc, cadmium and lead ions. Mater. Res. Innov. 2020 1 1 9
    [Google Scholar]
  29. Mainier F.B. Semaan F.S. Sarmento T.P. Amorim P.H.O. Santos R.G.S. Lead and cadmium distribution in tubes of galvanized steel by hot-dip used for drinking water supply. J Civil Engg and Architect 2020 14 1
    [Google Scholar]
  30. Naser H.M. Shil N.C. Mahmud N.U. Rashid M.H. Hossain K.M. Lead, cadmium and nickel contents of vegetables grown in industrially polluted and non-polluted areas of Bangladesh. Bangladesh J. Agric. Res. 1970 34 4 545 554 10.3329/bjar.v34i4.5831
    [Google Scholar]
  31. Meregalli V. Parrinello M. Review of theoretical calculations of hydrogen storage in carbon-based materials. Appl. Phys., A Mater. Sci. Process. 2001 72 2 143 146 10.1007/s003390100789
    [Google Scholar]
  32. Angione M.D. Pilolli R. Cotrone S. Magliulo M. Mallardi A. Palazzo G. Sabbatini L. Fine D. Dodabalapur A. Cioffi N. Torsi L. Carbon based materials for electronic bio-sensing. Mater. Today 2011 14 9 424 433 10.1016/S1369‑7021(11)70187‑0
    [Google Scholar]
  33. Geim A.K. Novoselov K.S. The rise of graphene. Nat. Mater. 2007 6 3 183 191 10.1038/nmat1849 17330084
    [Google Scholar]
  34. Kiliç A. Aslan M. Levent A. Investigation of the electrochemical properties of edoxaban using glassy carbon and boron-doped diamond electrodes and development of an eco-friendly and cost effective voltammetric method for its determination. Anal. Biochem. 2024 685 115386 10.1016/j.ab.2023.115386 37977214
    [Google Scholar]
  35. Hangarter C.M. Bangar M. Mulchandani A. Myung N.V. Conducting polymer nanowires for chemiresistive and FET-based bio/chemical sensors. J. Mater. Chem. 2010 20 16 3131 3140 10.1039/b915717d
    [Google Scholar]
  36. Bui M.P.N. Li C.A. Han K.N. Pham X.H. Seong G.H. Electrochemical determination of cadmium and lead on pristine single-walled carbon nanotube electrodes. Anal. Sci. 2012 28 7 699 704 10.2116/analsci.28.699 22790373
    [Google Scholar]
  37. Iijima S. Carbon nanotubes: Past, present, and future. Physica B 2002 323 1-4 1 5 10.1016/S0921‑4526(02)00869‑4
    [Google Scholar]
  38. Rani G.M. Wu C.M. Motora K.G. Umapathi R. Jose C.R.M. Acoustic-electric conversion and triboelectric properties of nature-driven CF-CNT based triboelectric nanogenerator for mechanical and sound energy harvesting. Nano Energy 2023 108 108211 10.1016/j.nanoen.2023.108211
    [Google Scholar]
  39. Afkhami A. Khoshsafar H. Bagheri H. Madrakian T. Construction of a carbon ionic liquid paste electrode based on multi-walled carbon nanotubes-synthesized Schiff base composite for trace electrochemical detection of cadmium. Mater. Sci. Eng. C 2014 35 8 14 10.1016/j.msec.2013.10.025 24411345
    [Google Scholar]
  40. Huang H. Chen T. Liu X. Ma H. Ultrasensitive and simultaneous detection of heavy metal ions based on three-dimensional graphene-carbon nanotubes hybrid electrode materials. Anal. Chim. Acta 2014 852 45 54 10.1016/j.aca.2014.09.010 25441878
    [Google Scholar]
  41. Zhao D. Guo X. Wang T. Alvarez N. Shanov V.N. Heineman W.R. Simultaneous detection of heavy metals by anodic stripping voltammetry using carbon nanotube thread. Electroanalysis 2014 26 3 488 496 10.1002/elan.201300511
    [Google Scholar]
  42. Jiang R. Liu N. Gao S. Mamat X. Su Y. Wagberg T. Li Y. Hu X. Hu G. A facile electrochemical sensor based on PyTS–CNTs for simultaneous determination of cadmium and lead ions. Sensors 2018 18 5 1567 1579 10.3390/s18051567 29762494
    [Google Scholar]
  43. Aravind A. Mathew B. Tailoring of nanostructured material as an electrochemical sensor and sorbent for toxic Cd (II) ions from various real samples. Anal. Sci. Technol 2018 9 18 10.1186/s40543‑018‑0153‑1
    [Google Scholar]
  44. Palisoc S. Vitto R.I.M. Natividad M. Natividad M. Determination of heavy metals in herbal food supplements using Bismuth/multi-walled carbon nanotubes/nafion modified graphite electrodes sourced from waste batteries. Sci. Rep. 2019 9 1 18491 18503 10.1038/s41598‑019‑54589‑x 31811219
    [Google Scholar]
  45. Mohammed R.H.R. Hassan R.Y.A. Mahmoud R. Farghali A.A. Hassouna M.E.M. Electrochemical determination of cadmium ions in biological and environmental samples using a newly developed sensing platform made of nickel tungstate-doped multi-walled carbon nanotubes. J. Appl. Electrochem. 2024 54 3 657 668 10.1007/s10800‑023‑01976‑y
    [Google Scholar]
  46. Wei Y. Gao C. Meng F.L. Li H.H. Wang L. Liu J.H. Huang X.J. SnO2/reduced graphene oxide nanocomposite for the simultaneous electrochemical detection of cadmium (II), lead (II), copper (II), and mercury (II): An interesting favorable mutual interference. J. Phys. Chem. C 2012 116 1 1034 1041 10.1021/jp209805c
    [Google Scholar]
  47. Xie Y.L. Zhao S.Q. Ye H.L. Yuan J. Song P. Hu S.Q. Graphene/CeO 2 hybrid materials for the simultaneous electrochemical detection of cadmium(II), lead(II), copper(II), and mercury(II). J. Electroanal. Chem. 2015 757 235 242 10.1016/j.jelechem.2015.09.043
    [Google Scholar]
  48. Xing H. Xu J. Zhu X. Duan X. Lu L. Wang W. Zhang Y. Yang T. Highly sensitive simultaneous determination of cadmium (II), lead (II), copper (II), and mercury (II) ions on N-doped graphene modified electrode. J. Electroanal. Chem. 2016 760 52 58 10.1016/j.jelechem.2015.11.043
    [Google Scholar]
  49. Si Y. Liu J. Chen Y. Miao X. Ye F. Liu Z. Li J. rGO/AuNPs/tetraphenylporphyrin nanoconjugate-based electrochemical sensor for highly sensitive detection of cadmium ions. Anal. Methods 2018 10 29 3631 3636 10.1039/C8AY01020J
    [Google Scholar]
  50. Üstündağ İ. Erkal A. Üstündağ Z. Solak A.O. Electrochemical detection of cadmium and lead in rice on manganese dioxide reinforced carboxylated graphene oxide nanofilm. MANAS J. Eng. 2018 6 96 109
    [Google Scholar]
  51. Pandey S.K. Sachan S. Singh S.K. Ultra-trace sensing of cadmium and lead by square wave anodic stripping voltammetry using ionic liquid modified graphene oxide. Mater. Sci. Energy Technol. 2019 2 3 667 675 10.1016/j.mset.2019.09.004
    [Google Scholar]
  52. Yi W. He Z. Fei J. He X. Sensitive electrochemical sensor based on poly( l -glutamic acid)/graphene oxide composite material for simultaneous detection of heavy metal ions. RSC Advances 2019 9 30 17325 17334 10.1039/C9RA01891C 35519871
    [Google Scholar]
  53. Bhardiya S. R. Asati A. Sheshma H. Rai A. Rai V. K. Singh M. A novel bioconjugated reduced graphene oxide-based nanocomposite for sensitive electrochemical detection of cadmium in water. Sens. Actuat. B Chem. B 2021 328 129019 129028 10.1016/j.snb.2020.129019
    [Google Scholar]
  54. Li Y. Liu X. Zeng X. Liu Y. Liu X. Wei W. Luo S. Simultaneous determination of ultra-trace lead and cadmium at a hydroxyapatite-modified carbon ionic liquid electrode by square-wave stripping voltammetry, Sens. Actuat. Biol. Chem. 2009 139 604 610 10.1016/j.snb.2009.03.045
    [Google Scholar]
  55. Kumar S. Saraswathi R. Electrochemical sensing of cadmium and lead ions at zeolite-modified electrodes: Optimization and field measurements, Sens. Actuat. Biol. Chem. 2009 141 65 75 10.1016/j.snb.2009.05.029
    [Google Scholar]
  56. Palisoc S. Gonzales A.J. Pardilla A. Racines L. Natividad M. Electrochemical detection of lead and cadmium in UHT-processed milk using bismuth nanoparticles/Nafion®-modified pencil graphite electrode. Sens. Biosensing Res. 2019 23 100268 10.1016/j.sbsr.2019.100268
    [Google Scholar]
  57. Zhang P. Dong S. Gu G. Huang T. Simultaneous determination of Cd2+. Bull. Korean Chem. Soc. 2010 31 10 2949 2954 10.5012/bkcs.2010.31.10.2949
    [Google Scholar]
  58. Wang Z. Liu G. Zhang L. Wang H. Electrochemical detection of trace cadmium in soil using a Nafion/stannum film-modified molecular wire carbon paste electrodes. Ionics 2013 19 11 1687 1693 [DOI 10.1007/s11581-013-0891-4]. 10.1007/s11581‑013‑0891‑4
    [Google Scholar]
  59. Madhu R. Sankar K.V. Chen S.M. Selvan R.K. Eco-friendly synthesis of activated carbon from dead mango leaves for the ultrahigh sensitive detection of toxic heavy metal ions and energy storage applications. RSC Adv. 2014 4 3 1225 1233 10.1039/C3RA45089A
    [Google Scholar]
  60. Veerakumar P. Veeramani V. Chen S.M. Madhu R. Liu S.B. Palladium nanoparticle incorporated porous activated carbon: Electrochemical detection of toxic metal ions. ACS Appl. Mater. Interfaces 2016 8 2 1319 1326 10.1021/acsami.5b10050 26700093
    [Google Scholar]
  61. Maghear A. Tertiş M. Fritea L. Marian I.O. Indrea E. Walcarius A. Săndulescu R. Tetrabutylammonium-modified clay film electrodes: Characterization and application to the detection of metal ions. Talanta 2014 125 36 44 10.1016/j.talanta.2014.02.042 24840412
    [Google Scholar]
  62. Chen L. Sensitive square wave anodic stripping voltammetric determination of Cd2+ and Pb2+ ions at Bi/Nafion/overoxidized 2-mercaptoethanesulfonate-tethered polypyrrole/glassy carbon electrode. Sens. Actuat. Biol. Chem. 2014 191 94 101
    [Google Scholar]
  63. Xie R. Zhou L. Lan C. Fan F. Xie R. Tan H. Xie T. Zhao L. Nanostructured carbon black for simultaneous electrochemical determination of trace lead and cadmium by differential pulse stripping voltammetry. R. Soc. Open Sci. 2018 5 7 180282 180291 10.1098/rsos.180282 30109084
    [Google Scholar]
  64. Zheng X. Chen S. Chen J. Guo Y. Peng J. Zhou X. Lv R. Lin J. Lin R. Highly sensitive determination of lead( ii ) and cadmium( ii ) by a large surface area mesoporous alumina modified carbon paste electrode. RSC Advances 2018 8 14 7883 7891 10.1039/C8RA00041G 35539135
    [Google Scholar]
  65. Yao Y. Wu H. Ping J. Simultaneous determination of Cd(II) and Pb(II) ions in honey and milk samples using a single-walled carbon nanohorns modified screen-printed electrochemical sensor. Food Chem. 2019 274 8 15 10.1016/j.foodchem.2018.08.110 30373012
    [Google Scholar]
  66. Pudza M.Y. Abidin Z.Z. Abdul-Rashid S. Yasin F.M. Noor A.S.M. Abdullah J. Selective and simultaneous detection of cadmium, lead and copper by tapioca-derived carbon dot–modified electrode. Environ. Sci. Pollut. Res. Int. 2020 27 12 13315 13324 10.1007/s11356‑020‑07695‑7 32020456
    [Google Scholar]
  67. Levanen G. Dali A. Leroux Y. Lupoi T. Betelu S. Michel K. Ababou-Girard S. Hapiot P. Dahech I. Cristea C. Feier B. Razan F. Geneste F. Specific electrochemical sensor for cadmium detection: Comparison between monolayer and multilayer functionalization. Electrochim. Acta 2023 464 142962 10.1016/j.electacta.2023.142962
    [Google Scholar]
  68. Gao W. Wang X. Li P. Wu Q. Qi F. Wu S. Yu Y. Ding K. Highly sensitive and selective detection of cadmium with graphitic carbon nitride nanosheets/nafion electrode. RSC Adv 2016 6 113570 113575 10.1039/C6RA24638A
    [Google Scholar]
  69. Liu Z. Wang R. Xue Q. Chang C. Liu Y. He L. Highly efficient detection of Cd(Ⅱ) ions in water by graphitic carbon nitride and tin dioxide nanoparticles modified glassy carbon electrode. Inorg. Chem. Commun. 2023 148 110321 10.1016/j.inoche.2022.110321
    [Google Scholar]
  70. Wang X. Wang R. Xue Q. Liu Z. Liu Y. Wang J. Zhu C. Detection of cadmium (II) ion in water by novel electrochemical sensor based on the modification of graphitic nitride and polyaniline composite. Diam. Relat. Mater. 2023 140 110427 10.1016/j.diamond.2023.110427
    [Google Scholar]
/content/journals/cac/10.2174/0115734110336212241003114035
Loading
/content/journals/cac/10.2174/0115734110336212241003114035
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Electrochemical ; sensor ; carbon composite ; nanomaterials ; cadmium
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test