Skip to content
2000
image of Enzymeless Gabapentin Sensor Based on Prussian Blue-modified Indium Tin Oxide Electrodes for Sensing Gabapentin in Capsules

Abstract

Background

In this study, we reported on developing a susceptible, accurate, simple, and economical electrochemical sensor for gabapentin determination in capsules.

Methods

The ITO electrode was modified with a layer of Prussian blue nanoparticles and then used as the working electrode. Gabapentin was extracted from commercial capsules, and a series of concentrations of gabapentin were prepared for studying the efficacy of the proposed sensor. The electrochemical measurements were performed using cyclic voltammetry and square wave voltammetry techniques.

Results

The sensitivity and selectivity of the developed electrode toward gabapentin in different interferences, including citric acid, glucose, and urea, were investigated. The modified electrode showed detection and quantification limits of 31.58 and 94.74 nM, respectively, over a dynamic range of concentrations from 100 nM to 3 µM.

Conclusion

The proposed sensor displayed a high sensitivity and selectivity for monitoring gabapentin in pharmaceutical drugs without a noticeable interference. Hence, the modified electrodes are great candidates for gabapentin routine analysis.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110334449240925064834
2024-10-07
2024-11-23
Loading full text...

Full text loading...

References

  1. Perry M. Li Q. Kennedy R.T. Review of recent advances in analytical techniques for the determination of neurotransmit-ters. Anal. Chim. Acta 2009 653 1 1 22 10.1016/j.aca.2009.08.038 19800472
    [Google Scholar]
  2. Baselt R.C. Analytical procedures for therapeutic drug moni-toring and emergency toxicology 2nd ed PSG Pub Co.: Littleton MA, USA 1987
    [Google Scholar]
  3. Uslu B. Ozkan S. Electroanalytical application of carbon based electrodes to the pharmaceuticals. Anal. Lett. 2007 40 5 817 853 10.1080/00032710701242121
    [Google Scholar]
  4. Uslu B. Ozkan S.A. Electroanalytical methods for the de-termination of pharmaceuticals: A review of recent trends and developments. Anal. Lett. 2011 44 16 2644 2702 10.1080/00032719.2011.553010
    [Google Scholar]
  5. Gupta V.K. Jain R. Radhapyari K. Jadon N. Agarwal S. Voltammetric techniques for the assay of pharmaceuticals — A review. Anal. Biochem. 2011 408 2 179 196 10.1016/j.ab.2010.09.027 20869940
    [Google Scholar]
  6. Jackowska K. Krysinski P. New trends in the electrochemi-cal sensing of dopamine. Anal. Bioanal. Chem. 2013 405 11 3753 3771 10.1007/s00216‑012‑6578‑2 23241816
    [Google Scholar]
  7. Atta N.F. Galal A. Azab S.M. Determination of morphine at gold nanoparticles/Nafion® carbon paste modified sensor electrode. Analyst (Lond.) 2011 136 22 4682 4691 10.1039/c1an15423k 21879032
    [Google Scholar]
  8. Levent A. Önal G. Application of a pencil graphite electrode for voltammetric simultaneous determination of ascorbic acid, norepinephrine, and uric acid in real samples. Turk. J. Chem. 2018 42 2 21 10.3906/kim‑1708‑14
    [Google Scholar]
  9. Levent A. Günay Ö. Simultaneous electrochemical evalua-tion of ascorbic acid, epinephrine and uric acid at disposable pencil graphite electrode: Highly sensitive determination in pharmaceuticals and biological liquids by differential pulse voltammetry. J. Comb. Chem. High. T. Scr. 2018 21 7 516 525 10.2174/1386207321666180914120839
    [Google Scholar]
  10. Ozkan S.A. Dogan B. Uslu B. Voltammetric analysis of the novel atypical antipsychotic drug quetiapine in human serum and urine. Mikrochim. Acta 2006 153 1-2 27 35 10.1007/s00604‑005‑0457‑x
    [Google Scholar]
  11. Özkan S.A. Uslu B. Sentürk Z. Electroanalytical character-istics of amisulpride and voltammetric determination of the drug in pharmaceuticals and biological media. Electroanalysis 2004 16 3 231 237 10.1002/elan.200402828
    [Google Scholar]
  12. Özkan S.A. Uslu B. Aboul-Enein H.Y. Analysis of phar-maceuticals and biological fluids using modern electroanalyti-cal techniques. Crit. Rev. Anal. Chem. 2003 33 3 155 181 10.1080/713609162
    [Google Scholar]
  13. Levent A. Voltammetric behavior of acebutolol on pencil graphite electrode: Highly sensitive determination in real sam-ples by square-wave anodic stripping voltammetry. J. Indian Chem. Soc. 2017 14 12 2495 2502 10.1007/s13738‑017‑1184‑z
    [Google Scholar]
  14. Altunkaynak Y. Yavuz Ö. Levent A. Firstly electrochemi-cal examination of vildagliptin at disposable graphite sensor: Sensitive determination in drugs and human urine by square-wave voltammetry. Microchem. J. 2021 170 106653 10.1016/j.microc.2021.106653
    [Google Scholar]
  15. Attal N. Cruccu G. Baron R. Haanpää M. Hansson P. Jensen T.S. Nurmikko T. EFNS guidelines on the pharma-cological treatment of neuropathic pain: 2010 revision. Eur. J. Neurol. 2010 17 9 1113 e88 10.1111/j.1468‑1331.2010.02999.x 20402746
    [Google Scholar]
  16. Wijemanne S. Jankovic J. Restless legs syndrome: Clinical presentation diagnosis and treatment. Sleep Med. 2015 16 6 678 690 10.1016/j.sleep.2015.03.002 25979181
    [Google Scholar]
  17. Goa K.L. Sorkin E.M. Gabapentin. Drugs 1993 46 3 409 427 10.2165/00003495‑199346030‑00007 7693432
    [Google Scholar]
  18. Honarmand A. Safavi M. Zare M. Gabapentin: An update of its pharmacological properties and therapeutic use in epi-lepsy. J. Res. Med. Sci. 2011 16 8 1062 1069 22279483
    [Google Scholar]
  19. Bodalia P.N. Grosso A.M. Sofat R. MacAllister R.J. Smeeth L. Dhillon S. Casas J.P. Wonderling D. Hingo-rani A.D. Comparative efficacy and tolerability of anti‐epileptic drugs for refractory focal epilepsy: Systematic re-view and network meta‐analysis reveals the need for long term comparator trials. Br. J. Clin. Pharmacol. 2013 76 5 649 667 10.1111/bcp.12083 23351090
    [Google Scholar]
  20. Taipale H. Gomm W. Broich K. Maier W. Tolppanen A.M. Tanskanen A. Tiihonen J. Hartikainen S. Haenisch B. Use of antiepileptic drugs and dementia risk - An analysis of Finnish health register and German health insurance data. J. Am. Geriatr. Soc. 2018 66 6 1123 1129 10.1111/jgs.15358 29566430
    [Google Scholar]
  21. Oh G.Y. Moga D.C. Fardo D.W. Abner E.L. The associa-tion of gabapentin initiation and neurocognitive changes in older adults with normal cognition. Front. Pharmacol. 2022 13 910719 10.3389/fphar.2022.910719 36506564
    [Google Scholar]
  22. Huang Y.H. Pan M.H. Yang H.I. The association between Gabapentin or Pregabalin use and the risk of dementia: an analysis of the National Health Insurance Research Database in Taiwan. Front. Pharmacol. 2023 14 1128601 10.3389/fphar.2023.1128601 37324474
    [Google Scholar]
  23. Medicine spending and affordability in the U.S. 2020 2020 Available from: https://www.iqvia.com/insights/the-iqvia-institute/reports-and-publications/reports/medicine-spending-and-affordability-in-the-us
  24. MMWR Morb. Mortal. Wkly. Rep. 2022 71 19 664 666
    [Google Scholar]
  25. Smith R.V. Havens J.R. Walsh S.L. Gabapentin misuse, abuse and diversion: A systematic review. Addiction 2016 111 7 1160 1174 10.1111/add.13324 27265421
    [Google Scholar]
  26. Quintero G.C. Review about gabapentin misuse, interactions, contraindications and side effects. J. Exp. Pharmacol. 2017 9 13 21 10.2147/JEP.S124391 28223849
    [Google Scholar]
  27. Alkhalaf A.A. Bukhari R.A. Alshehri E.A. Alshehri S.O. Badr A.F. Abuse liability of gabapentin in the Saudi popula-tion after the pregabalin restriction: A cross-sectional study. J. Taibah Univ. Med. Sci. 2021 16 5 700 705 10.1016/j.jtumed.2021.04.009 34690650
    [Google Scholar]
  28. Smith B.H. Higgins C. Baldacchino A. Kidd B. Bannister J. Substance misuse of gabapentin. Br. J. Gen. Pract. 2012 62 601 406 407 10.3399/bjgp12X653516 22867659
    [Google Scholar]
  29. Middleton O. Suicide by gabapentin overdose. J. Forensic Sci. 2011 56 5 1373 1375 10.1111/j.1556‑4029.2011.01798.x 21554310
    [Google Scholar]
  30. Jalalizadeh H. Souri E. Tehrani M.B. Jahangiri A. Validat-ed HPLC method for the determination of gabapentin in hu-man plasma using pre-column derivatization with 1-fluoro-2,4-dinitrobenzene and its application to a pharmacokinetic study. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2007 854 1-2 43 47 10.1016/j.jchromb.2007.03.039 17517538
    [Google Scholar]
  31. Ebrahimzadeh H. Yamini Y. Firozjaei H.A. Kamarei F. Tavassoli N. Rouini M.R. Hollow fiber-based liquid phase microextraction combined with high-performance liquid chromatography for the analysis of gabapentin in biological samples. Anal. Chim. Acta 2010 665 2 221 226 10.1016/j.aca.2010.03.028 20417334
    [Google Scholar]
  32. Mercolini L. Mandrioli R. Amore M. Raggi M.A. Simul-taneous HPLC-F analysis of three recent antiepileptic drugs in human plasma. J. Pharm. Biomed. Anal. 2010 53 1 62 67 10.1016/j.jpba.2010.02.036 20363577
    [Google Scholar]
  33. Martinc B. Roškar R. Grabnar I. Vovk T. Simultaneous determination of gabapentin, pregabalin, vigabatrin, and topir-amate in plasma by HPLC with fluorescence detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2014 962 82 88 10.1016/j.jchromb.2014.05.030 24907547
    [Google Scholar]
  34. Yagi T. Naito T. Mino Y. Takashina Y. Umemura K. Kawakami J. Rapid and validated fluorometric HPLC method for determination of gabapentin in human plasma and urine for clinical application. J. Clin. Pharm. Ther. 2012 37 1 89 94 10.1111/j.1365‑2710.2010.01243.x 21276028
    [Google Scholar]
  35. Sagirli O. Çetin S.M. Önal A. Determination of gabapentin in human plasma and urine by high-performance liquid chromatography with UV–vis detection. J. Pharm. Biomed. Anal. 2006 42 5 618 624 10.1016/j.jpba.2006.05.012 16822634
    [Google Scholar]
  36. Oertel R. Arenz N. Pietsch J. Kirch W. Simultaneous determination of three anticon‐vulsants using hydrophilic in-teraction LC‐MS. J. Sep. Sci. 2009 32 2 238 243 10.1002/jssc.200800461 19072899
    [Google Scholar]
  37. Hou X.L. Wu Y.L. Chen R.X. Zhu Y. Lv Y. Xu X.Q. Evaluation of two modified quick, easy, cheap, effective, rug-ged and safe (QuEChERS) sample preparation methods for the analysis of baclofen and gabapentin in feeds by liquid chromatography tandem mass spectrometry. J. Pharm. Biomed. Anal. 2014 88 53 59 10.1016/j.jpba.2013.08.026 24036362
    [Google Scholar]
  38. Kolocouri F. Dotsikas Y. Loukas Y.L. Dried plasma spots as an alternative sample collection technique for the quantita-tive LC-MS/MS determination of gabapentin. Anal. Bioanal. Chem. 2010 398 3 1339 1347 10.1007/s00216‑010‑4048‑2 20694811
    [Google Scholar]
  39. Jia S. Park J.H. Lee J. Kwon S.W. Comparison of two aerosol-based detectors for the analysis of gabapentin in pharmaceutical formulations by hydrophilic interaction chro-matography. Talanta 2011 85 5 2301 2306 10.1016/j.talanta.2011.04.012 21962646
    [Google Scholar]
  40. Wattananat T. Akarawut W. Validated LC-MS-MS method for the determination of gabapentin in human plasma: Appli-cation to a bioequivalence study. J. Chromatogr. Sci. 2009 47 10 868 871 10.1093/chromsci/47.10.868 19930796
    [Google Scholar]
  41. Jia S. Lee H.S. Choi M.J. Sung S.H. Han S.B. Park J.H. Hong S.S. Kwon S.W. Lee J. Non-derivatization method for the determination of gabapentin in pharmaceutical formu-lations, rat serum and rat urine using high performance liquid chromatography coupled with charged aerosol detection. Curr. Anal. Chem. 2012 8 159 167 10.2174/157341112798472161
    [Google Scholar]
  42. Ragham P.K. Chandrasekhar K.B. Development and valida-tion of a stability-indicating RP-HPL C-CAD method for gabapentin and its related impurities in presence of degrada-tion products. J. Pharm. Biomed. Anal. 2016 125 122 129 10.1016/j.jpba.2016.03.035 27018505
    [Google Scholar]
  43. Themelis D.G. Tzanavaras P.D. Boulimari E.A. Genetic automated fluorimetric assay for the quality control of gamma aminobutyric acid-analogue anti-epileptic drugs using sequen-tial injection. Anal. Lett. 2010 43 6 905 918 10.1080/00032710903491146
    [Google Scholar]
  44. Lin X. Cai Y. Yan J. Zhang L. Wu D. Li H. Determina-tion of gabapentin in human plasma and urine by capillary electrophoresis with laser-induced fluorescence detection. J. Chromatogr. Sci. 2015 53 6 986 992 10.1093/chromsci/bmu134 25352536
    [Google Scholar]
  45. Almalki A.H. Abdelazim A.H. Alosaimi M.E. Abduljab-bar M.H. Alnemari R.M. Bamaga A.K. Serag A. Efficient and eco-friendly detection of gabapentin using nitrogen-doped carbon quantum dots: An analytical and green chemistry ap-proach. RSC Advances 2024 14 6 4089 4096 10.1039/D3RA07365C 38288149
    [Google Scholar]
  46. Kazemipour M. Fakhari I. Ansari M. Gabapentin determi-nation in human plasma and capsule by coupling of solid phase extraction, derivatization reaction, and UV-Vis spectro-photometry. Iran. J. Pharm. Res. 2013 12 3 247 253 24250630
    [Google Scholar]
  47. Siddiqui F.A. Arayne M.S. Sultana N. Qureshi F. Mirza A.Z. Zuberi M.H. Bahadur S.S. Afridi N.S. Shamshad H. Rehman N. Spectrophotometric determination of gabapentin in pharmaceutical formulations using ninhydrin and π-acceptors. Eur. J. Med. Chem. 2010 45 7 2761 2767 10.1016/j.ejmech.2010.02.058 20381213
    [Google Scholar]
  48. Mu L. Xie F. Li S. Yu P. Determination of strong acidic drugs in biological matrices: A review of separation methods. Chromatogr. Res. Int. 2014 2014 1 10 10.1155/2014/469562
    [Google Scholar]
  49. Yari A. Papi F. Farhadi S. Voltammetric determination of trace antiepileptic gabapentin with a silver-nanoparticle modi-fied multiwalled carbon nanotube paste electrode. Electroanalysis 2011 23 12 2949 2954 10.1002/elan.201100454
    [Google Scholar]
  50. Yurdem A. Aslan M. Aral H. Levent A. First electro-chemical investigation and determination of non-steroidal an-ti-inflammatory drug etofenamate using disposable pencil graphite electrode with voltammetric techniques. Anal. Chim. Acta 2024 1299 342377 10.1016/j.aca.2024.342377 38499410
    [Google Scholar]
  51. Hegde R.N. Kumara Swamy B.E. Shetti N.P. Nandibe-woor S.T. Electro-oxidation and determination of gabapentin at gold electrode. J. Electroanal. Chem. (Lausanne) 2009 635 1 51 57 10.1016/j.jelechem.2009.08.004
    [Google Scholar]
  52. Valadbeigi Y. Ilbeigi V. Mamozai W. Soleimani M. Rapid and simple determination of gabapentin in urine by ion mobil-ity spectrometry. J. Pharm. Biomed. Anal. 2021 197 113980 10.1016/j.jpba.2021.113980 33636645
    [Google Scholar]
  53. El-Tohamy M. Razeq S. Shalaby A. Electrochemical sen-sors for determination of anticonvulsant drug gabapentin in bulk powder and pharmaceutical dosage forms. Int. J. Electrochem. Sci. 2012 7 6 5374 5387 10.1016/S1452‑3981(23)19628‑3
    [Google Scholar]
  54. Zabihollahpoor A. Rahimnejad M. Najafpour G. Moghadamnia A.A. Gold nanoparticle prepared by electro-chemical deposition for electrochemical determination of gabapentin as an antiepileptic drug. J. Electroanal. Chem. (Lausanne) 2019 835 281 286 10.1016/j.jelechem.2019.01.039
    [Google Scholar]
  55. Hajian R. Tayebi Z. Shams N. Fabrication of an electro-chemical sensor for determination of doxorubicin in human plasma and its interaction with DNA. J. Pharm. Anal. 2017 7 1 27 33 10.1016/j.jpha.2016.07.005 29404015
    [Google Scholar]
  56. Zabihollahpoor A. Rahimnejad M. Najafpour-Darzi G. Moghadamnia A.A. Biomedical application of a novel nanostructured-based electrochemical platform for therapeutic monitoring of an antiepileptic drug; Gabapentin. Anal. Bio-anal. Electrochem. 2020 12 4 536 552
    [Google Scholar]
  57. Aghazadeh H. Ebnetorab S.M.A. Shahriari N. Ghaffari H. Gheshlaghi E.F. Taheri P. Design and production of DNA-based electrochemical and biological biosensors for the detection and measurement of gabapentin medication in clini-cal specimens. J. Electrochem. Soc. 2022 169 7 077517 10.1149/1945‑7111/ac8247
    [Google Scholar]
  58. Jalali F. Hassanvand Z. Dorraji P.S. Voltammetric determi-nation of gabapentin by a carbon ceramic electrode modified with multiwalled carbon nanotubes and nickel-catechol com-plex. J. Braz. Chem. Soc. 2014 25 9 1537 1544 10.5935/0103‑5053.20140137
    [Google Scholar]
  59. El-Cheick F.M. Rashwan F.A. Mahmoud H.A. El-Rouby M. Gold nanoparticle-modified glassy carbon electrode for electrochemical investigation of aliphatic di-carboxylic acids in aqueous media. J. Solid State Electrochem. 2010 14 8 1425 1443 10.1007/s10008‑009‑0957‑4
    [Google Scholar]
  60. El-Said W.A. Kim T.H. Chung Y.H. Choi J.W. Fabrication of new single cell chip to monitor intracellular and extracellu-lar redox state based on spectroelectrochemical method. Biomaterials 2015 40 80 87 10.1016/j.biomaterials.2014.11.023 25433609
    [Google Scholar]
  61. El-Said W.A. Al-Bogami A.S. Alshitari W. El-Hady D.A. Saleh T.S. El-Mokhtar M.A. Choi J.W. Electrochemical microbiosensor for detecting COVID-19 in a patient sample based on gold microcuboids pattern. Biochip J. 2021 15 3 287 295 10.1007/s13206‑021‑00030‑3 34394845
    [Google Scholar]
  62. Kim T.H. El-Said W.A. Choi J.W. Highly sensitive electro-chemical detection of potential cytotoxicity of CdSe/ZnS quantum dots using neural cell chip. Biosens. Bioelectron. 2012 32 1 266 272 10.1016/j.bios.2011.12.035 22226411
    [Google Scholar]
  63. El-Said W.A. Yea C-H. Kwon I-K. Choi J-W. Fabrication of electrical cell chip for the detection of anticancer drugs and environmental toxicants effect. Biochip J. 2009 3 2 105 112
    [Google Scholar]
  64. El-Said W.A. Abd El-Hameed K. Abo El-Maali N. Sayyed H.G. Label‐free electrochemical sensor for ex‐vivo monitoring of Alzheimer’s disease biomarker. Electroanalysis 2017 29 3 748 755 10.1002/elan.201600467
    [Google Scholar]
  65. El-Said W.A. Kim T.H. Kim H. Choi J.W. Three-dimensional mesoporous gold film to enhance the sensitivity of electrochemical detection. Nanotechnology 2010 21 45 455501 10.1088/0957‑4484/21/45/455501 20947947
    [Google Scholar]
  66. Zhang J. Guan P. Li Y. Li W. Guo Q. Polyaniline/cerium oxide hybrid modified carbon paste electrode for non‐enzymatic glucose detection. Bull. Korean Chem. Soc. 2016 37 7 985 986 10.1002/bkcs.10813
    [Google Scholar]
  67. Al-Sulami A.I. Fatima A. Al-Sulami F.M.H. Sami A. Aldahiri R.H. Khan M. Al-Ghamdi A.A. Akhtar N. El Said W.A. C-entrapped Cu nanoparticles-infused polyaniline-modified cellulose nanofibers for the precise monitoring of xanthine in urine samples. New J. Chem. 2024 48 6 2817 2824 10.1039/D3NJ05380F
    [Google Scholar]
  68. Zayed M.A. Hussein M.A. El-Shishtawy R.M. Albukhari S.M. El-Said W.A. Elshehy E.A. Molybdenum oxide graft-ed-polyaniline nanocomposite modified ITO electrode for electrochemical sensing of arsenic oxyanion. J. Mater. Res. Technol. 2023 24 503 513 10.1016/j.jmrt.2023.02.195
    [Google Scholar]
  69. El-Said W.A. Nasr O. Soliman A.I.A. Elshehy E.A. Khan Z.A. Abdel-Wadood F.K. Fabrication of polypyr-role/Au nanoflowers modified gold electrode for highly sensi-tive sensing of paracetamol in pharmaceutical formulation. Appl. Surf. Sci. 2021 4 100065 10.1016/j.apsadv.2021.100065
    [Google Scholar]
  70. Kyomuhimbo H.D. Feleni U. Electroconductive green met-al‐polyaniline nanocomposites: Synthesis and application in sensors. Electroanalysis 2023 35 2 e202100636 10.1002/elan.202100636
    [Google Scholar]
  71. Heli H. Faramarzi F. Sattarahmady N. Oxidation and de-termination of Gabapentin on nanotubes of nickel oxide-modified carbon paste electrode. J. Solid State Electrochem. 2012 16 1 45 52 10.1007/s10008‑010‑1272‑9
    [Google Scholar]
  72. Karim-Nezhad G. Pashazadeh S. Kinetic study of the elec-trocatalytic oxidation of acetaldehyde at Ni/Al layered double hydroxide modified sol-gel derived carbon ceramic electrode. Iran. Chem. Commun. 2015 3 2 103 113
    [Google Scholar]
  73. Haghighi B. Hamidi H. Gorton L. Electrochemical behavior and application of Prussian blue nanoparticle modified graph-ite electrode. Sens. Actuators B Chem. 2010 147 1 270 276 10.1016/j.snb.2010.03.020
    [Google Scholar]
  74. Adekunle A.S. Farah A.M. Pillay J. Ozoemena K.I. Mamba B.B. Agboola B.O. Electrocatalytic properties of prussian blue nanoparticles supported on poly(m-aminobenzenesulphonic acid)-functionalised single-walled carbon nanotubes towards the detection of dopamine. Colloids Surf. B Biointerfaces 2012 95 186 194 10.1016/j.colsurfb.2012.02.043 22475526
    [Google Scholar]
  75. Samain L. Grandjean F. Long G.J. Martinetto P. Bordet P. Strivay D. Relationship between the synthesis of prussian blue pigments, their color, physical properties, and their be-havior in paint layers. J. Phys. Chem. C 2013 117 19 9693 9712 10.1021/jp3111327
    [Google Scholar]
  76. Farah A.M. Shooto N.D. Thema F.T. Modise J.S. Dikio E.D. Fabrication of prussian blue/multi-walled carbon nano-tubes modified glassy carbon electrode for electrochemical detection of hydrogen peroxide. Int. J. Electrochem. Sci. 2012 7 5 4302 4313 10.1016/S1452‑3981(23)19539‑3
    [Google Scholar]
  77. Cui L. Zhu J. Meng X. Yin H. Pan X. Ai S. Controlled chitosan coated Prussian blue nanoparticles with the mixture of graphene nanosheets and carbon nanoshperes as a redox mediator for the electrochemical oxidation of nitrite. Sens. Actuators B Chem. 2012 161 1 641 647 10.1016/j.snb.2011.10.083
    [Google Scholar]
  78. Xia M. Zhang X. Liu T. Yu H. Chen S. Peng N. Zheng R. Zhang J. Shu J. Commercially available Prussian blue get energetic in aqueous K-ion batteries. Chem. Eng. J. 2020 394 124923 10.1016/j.cej.2020.124923
    [Google Scholar]
  79. El-Said W.A. Choi J.W. Electrochemical biosensor consist-ed of conducting polymer layer on gold nanodots patterned Indium Tin Oxide electrode for rapid and simultaneous de-termination of purine bases. Electrochim. Acta 2014 123 51 57 10.1016/j.electacta.2013.12.144
    [Google Scholar]
  80. El-Said W.A. Alshitari W. Choi J. Controlled fabrication of gold nanobipyramids/polypyrrole for shell-isolated nanopar-ticle-enhanced Raman spectroscopy to detect γ-aminobutyric acid. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020 229 117890 10.1016/j.saa.2019.117890 31839573
    [Google Scholar]
  81. Alahmadi N. El-Said W.A. Electrochemical sensing of do-pamine using polypyrrole/molybdenum oxide bilayer-modified ITO electrode. Biosensors (Basel) 2023 13 6 578 10.3390/bios13060578 37366943
    [Google Scholar]
  82. Abdel-Rahman M.A. El-Said W.A. Sayed E.M. Abdel-Wahab A.M.A. Synthesis, characterization of some conduc-tive aromatic polyamides/Fe3O4 NPs/ITO, and their utilization for methotrexate sensing. Surfaces 2023 6 1 83 96 10.3390/surfaces6010007
    [Google Scholar]
  83. El-Said W.A. Lee J.H. Oh B.K. Choi J.W. Electrochemical sensor to detect neurotransmitter using gold nano-island coat-ed ITO electrode. J. Nanosci. Nanotechnol. 2011 11 7 6539 6543 10.1166/jnn.2011.4377 22121752
    [Google Scholar]
  84. El-Said W.A. Yea C.H. Choi J.W. Kwon I.K. Ultrathin polyaniline film coated on an indium–tin oxide cell-based chip for study of anticancer effect. Thin Solid Films 2009 518 2 661 667 10.1016/j.tsf.2009.07.062
    [Google Scholar]
  85. Choi J.H. El-Said W.A. Choi J.W. Highly sensitive surface-enhanced Raman spectroscopy (SERS) platform using core/double shell (Ag/polymer/Ag) nanohorn for proteolytic biosensor. Appl. Surf. Sci. 2020 506 144669 10.1016/j.apsusc.2019.144669
    [Google Scholar]
  86. Markeb A.A. Abdelhameed K. El-Said W.A. El-Maali N.A. Water remediation using mesoporous silica monolith nanocomposites functionalized with Prussian blue. Int. J. Environ. Sci. Technol. 2024 21 11 7615 7630 10.1007/s13762‑024‑05506‑x
    [Google Scholar]
  87. Chang L. Chang S. Chen W. Han W. Li Z. Zhang Z. Dai Y. Chen D. Facile one-pot synthesis of magnetic Prus-sian blue core/shell nanoparticles for radioactive cesium re-moval. RSC Advances 2016 6 98 96223 96228 10.1039/C6RA17525B
    [Google Scholar]
  88. Kumar A. Xagoraraki I. Pharmaceuticals, personal care products and endocrine-disrupting chemicals in U.S. surface and finished drinking waters: A proposed ranking system. Sci. Total Environ. 2010 408 23 5972 5989 10.1016/j.scitotenv.2010.08.048 20869754
    [Google Scholar]
  89. Jalali F. Arkan E. Bahrami G. Preparation of a gabapentin potentiometric sensor and its application to pharmaceutical analysis. Sens. Actuators B Chem. 2007 127 1 304 309 10.1016/j.snb.2007.07.019
    [Google Scholar]
  90. Zhang K. Zhang Y. Electrochemical behavior of adriamycin at an electrode modified with silver nanoparticles and multi-walled carbon nanotubes, and its application. Mikrochim. Acta 2010 169 1-2 161 165 10.1007/s00604‑010‑0331‑3
    [Google Scholar]
  91. Soleymani J. Hasanzadeh M. Shadjou N. Khoubnasab Jafari M. Gharamaleki J.V. Yadollahi M. Jouyban A. A new kinetic–mechanistic approach to elucidate electrooxida-tion of doxorubicin hydrochloride in unprocessed human flu-ids using magnetic graphene based nanocomposite modified glassy carbon electrode. Mater. Sci. Eng. C 2016 61 638 650 10.1016/j.msec.2016.01.003 26838892
    [Google Scholar]
  92. Chaney E.N. Jr Baldwin R.P. Electrochemical determination of adriamycin compounds in urine by preconcentration at carbon paste electrodes. Anal. Chem. 1982 54 14 2556 2560 10.1021/ac00251a034 7158780
    [Google Scholar]
  93. Evtugyn G. Porfireva A. Stepanova V. Budnikov H. Elec-trochemical biosensors based on native DNA and nanosized mediator for the detection of anthracycline preparations. Electroanalysis 2015 27 3 629 637 10.1002/elan.201400564
    [Google Scholar]
  94. Hahn Y. Lee H.Y. Electrochemical behavior and square wave voltammetric determination of doxorubicin hydrochlo-ride. Arch. Pharm. Res. 2004 27 1 31 34 10.1007/BF02980041 14969334
    [Google Scholar]
  95. Hashemzadeh N. Hasanzadeh M. Shadjou N. Eivazi-Ziaei J. Khoubnasabjafari M. Jouyban A. Graphene quantum dot modified glassy carbon electrode for the determination of doxorubicin hydrochloride in human plasma. J. Pharm. Anal. 2016 6 4 235 241 10.1016/j.jpha.2016.03.003 29403988
    [Google Scholar]
/content/journals/cac/10.2174/0115734110334449240925064834
Loading
/content/journals/cac/10.2174/0115734110334449240925064834
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test