Skip to content
2000
image of Chitosan–sodium Tripolyphosphate–CuO Biopolymer–nanocomposite as an Efficient Electrocatalyst for Water Splitting

Abstract

Background

Fossil fuels have been used extensively as primary energy sources, which has resulted in nearly depleted reserves, a contaminated environment, and a variety of negative health effects globally. Hydrogen has been proposed by researchers as an effective “carbon neutral” fuel. Large-scale hydrogen production through electrochemical water splitting necessitates the use of inexpensive, extremely effective, and earth-abundant electrocatalysts.

Method

In this study, chitosan–sodium tripolyphosphate (TPP) nanoparticles are combined with CuO nanostructures to produce chitosan–TPP–CuO (CT/CuO) nanocomposite. Chitosan–TPP nanoparticles were first synthesized using the ionic gelation method. These nanoparticles were then extracted, and CuO was synthesized in polymer nanoparticles using a simple chemical precipitation method. Chitosan and CuO are abundantly available and are environmentally beneficial materials. The porous structure and open channels within the chitosan polymer matrix host the CuO nanostructures, which promote electrolyte penetration, mass transport, and charge transfer, while the metal-oxide nanostructures act as catalytic centers. The structural and morphological properties of the CT/CuO nanocomposite were investigated using XRD, HRSEM, and HRTEM. The band gap and functional groups in the material were measured by UV–Vis DRS and FTIR methods, respectively. Elemental analysis was conducted utilizing EDS, HRSEM, and XPS. Thermal characteristics of the CT/CuO nanocomposite were investigated using TG-DTA and DSC methods. Electrochemical techniques were used to investigate the activities of HER and OER.

Results

The XRD examination of the CT/CuO nanocomposite revealed semi-crystalline chitosan peaks and a monoclinic CuO structure. HRSEM and HRTEM pictures indicated that chitosan–TPP nanoparticles and CuO nanostructures were evenly spread and clustered to create a nanoparticulate matrix. UV–Vis DRS indicated that the CT/CuO nanocomposite had a direct band gap of 1.702 eV. The FTIR and XPS studies revealed the various bonds and oxidation states of the nanocomposite. Thermal analyses demonstrated that the inclusion of CuO increased the thermal stability of the CT/CuO nanocomposite. CT/CuO nanocomposite exhibited excellent OER and HER activity, requiring a low overpotential of 444 mV and 379 mV at 10 mA cm−2 and -10 mA cm−2, respectively.

Conclusion

Biopolymer metal-oxide nanocomposites could potentially be used as electrocatalysts in water splitting, energy conversion, storage devices, sensors, and several other fields.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110334031240927051501
2024-10-08
2024-11-26
Loading full text...

Full text loading...

References

  1. McHugh P.J. Stergiou A.D. Symes M.D. Decoupled electrochemical water splitting: From fundamentals to applications. Adv. Energy Mater. 2020 10 44 2002453 10.1002/aenm.202002453
    [Google Scholar]
  2. Zhang B. Zheng Y. Ma T. Yang C. Peng Y. Zhou Z. Zhou M. Li S. Wang Y. Cheng C. Designing MOF nanoarchitectures for electrochemical water splitting. Adv. Mater. 2021 33 17 2006042 10.1002/adma.202006042 33749910
    [Google Scholar]
  3. Xu X. Zhou W. Sun H. Song Y. Shao Z. Sun H. Song Y. Zhou W. Shao Z. Xu X. Designing high‐valence metal sites for electrochemical water splitting. Wiley Online Library 2021 10.1002/adfm.202009779
    [Google Scholar]
  4. Li X. Hao X. Abudula A. Nanostructured catalysts for electrochemical water splitting: Current state and prospects. J. Mater. Chem. A 2016 4 11973 12000
    [Google Scholar]
  5. Yang M. Zhang C.H. Li N.W. Luan D. Yu L. Lou X.W.D. Design and synthesis of hollow nanostructures for electrochemical water splitting. Adv. Sci. 2022 9 9 2105135 10.1002/advs.202105135 35043604
    [Google Scholar]
  6. Li S. Li E. An X. Hao X. Jiang Z. Guan G. Transition metal-based catalysts for electrochemical water splitting at high current density: current status and perspectives. Nanoscale 2021 13 30 12788 12817 10.1039/D1NR02592A 34477767
    [Google Scholar]
  7. Li W. Wang C. Lu X. Integrated transition metal and compounds with carbon nanomaterials for electrochemical water splitting. J. Mater. Chem. A Mater. Energy Sustain. 2021 9 7 3786 3827 10.1039/D0TA09495A
    [Google Scholar]
  8. Al-Naggar A.H. Shinde N.M. Kim J.S. Mane R.S. Water splitting performance of metal and non-metal-doped transition metal oxide electrocatalysts. Coord. Chem. Rev. 2023 474 214864 10.1016/j.ccr.2022.214864
    [Google Scholar]
  9. Sun H. Xu X. Kim H. Jung W. Zhou W. Shao Z. Electrochemical water splitting: Bridging the gaps between fundamental research and industrial applications. Wiley Online Library 2022 10.1002/eem2.12441
    [Google Scholar]
  10. Wei C. Xu Z.J. Wei C. Xu Z.J. The comprehensive understanding of as an evaluation parameter for electrochemical water splitting. Wiley Online Library 2018 10.1002/smtd.201800168
    [Google Scholar]
  11. Zhu C. Shi Q. Feng S. Du D. Lin Y. Single-atom catalysts for electrochemical water splitting. ACS Energy Lett. 2018 3 7 1713 1721 10.1021/acsenergylett.8b00640
    [Google Scholar]
  12. Anantharaj S. Kundu S. Do the evaluation parameters reflect intrinsic activity of electrocatalysts in electrochemical water splitting? ACS Energy Lett. 2019 4 6 1260 1264 10.1021/acsenergylett.9b00686
    [Google Scholar]
  13. Tan Y. Wang H. Liu P. Shen Y. Cheng C. Hirata A. Fujita T. Tang Z. Chen M. Versatile nanoporous bimetallic phosphides towards electrochemical water splitting. Energy Environ. Sci. 2016 9 7 2257 2261 10.1039/C6EE01109H
    [Google Scholar]
  14. Chen Z. Duan X. Wei W. Wang S. Ni B.J. Iridium-based nanomaterials for electrochemical water splitting. Nano Energy 2020 78 105270 10.1016/j.nanoen.2020.105270
    [Google Scholar]
  15. Yu J. He Q. Yang G. Zhou W. Shao Z. Ni M. Recent advances and prospective in ruthenium-based materials for electrochemical water splitting. ACS Catal. 2019 9 11 9973 10011 10.1021/acscatal.9b02457
    [Google Scholar]
  16. Zheng X. Qin M. Ma S. Chen Y. Ning H. Yang R. Mao S. Wang Y. Strong oxide‐support interaction over IrO 2 /V 2 O 5 for efficient ph‐universal water splitting. Adv. Sci. (Weinh.) 2022 9 11 2104636 10.1002/advs.202104636 35152570
    [Google Scholar]
  17. Ibn Shamsah S.M. Earth-abundant electrocatalysts for water splitting: Current and future directions. Catalysts 2021 11 4 429 10.3390/catal11040429
    [Google Scholar]
  18. Zhang B. Wang W. Liang L. Xu Z. Li X. Qiao S. Prevailing conjugated porous polymers for electrochemical energy storage and conversion: Lithium-ion batteries, supercapacitors and water-splitting. Coord. Chem. Rev. 2021 436 213782 10.1016/j.ccr.2021.213782
    [Google Scholar]
  19. Zhou Y. Fan H.J. Progress and challenge of amorphous catalysts for electrochemical water splitting. ACS Materials Letters 2021 3 1 136 147 10.1021/acsmaterialslett.0c00502
    [Google Scholar]
  20. Anantharaj S. Noda S. Amorphous catalysts and electrochemical water splitting: An untold story of harmony. Small 2020 16 2 1905779 10.1002/smll.201905779 31823508
    [Google Scholar]
  21. Kim I.Y. Seo S.J. Moon H.S. Yoo M.K. Park I.Y. Kim B.C. Cho C.S. Chitosan and its derivatives for tissue engineering applications. Biotechnol. Adv. 2008 26 1 1 21 10.1016/j.biotechadv.2007.07.009 17884325
    [Google Scholar]
  22. Ardean C Davidescu CM Nemeş NS Negrea A Ciopec M Duteanu N Negrea P Duda‐seiman D Musta V Factors influencing the antibacterial activity of chitosan and chitosan modified by functionalization. Int. J. Mol. Sci. 2021 22 7449 10.3390/ijms22147449
    [Google Scholar]
  23. Pokhrel S. Yadav P.N. Functionalization of chitosan polymer and their applications. J. Macromol. Sci. Part A 2019 56 450 475
    [Google Scholar]
  24. Nicolle L Journot CMA Gerber-Lemaire S Chitosan functionalization: Covalent and non-covalent interactions and their characterization. Polymers 2021 13 4118
    [Google Scholar]
  25. Kyzas GZ Bikiaris DN Recent modifications of chitosan for adsorption applications: A critical and systematic review. Mar. Drugs 2015 13 312 337 10.3390/md13010312
    [Google Scholar]
  26. Podrepšek G.H. Knez Ž. Leitgeb M. Development of chitosan functionalized magnetic nanoparticles with bioactive compounds. Nanomaterials 2020 10 1913
    [Google Scholar]
  27. Alves N.M. Mano J.F. Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications. Int. J. Biol. Macromol. 2008 43 5 401 414 10.1016/j.ijbiomac.2008.09.007 18838086
    [Google Scholar]
  28. Ding J. Zhong L. Huang Q. Guo Y. Miao T. Hu Y. Qian J. Huang S. Chitosan hydrogel derived carbon foam with typical transition-metal catalysts for efficient water splitting. Carbon 2021 177 160 170 10.1016/j.carbon.2021.01.160
    [Google Scholar]
  29. Wang J. Sun J. Huang J. Fakhri A. Gupta V.K. Synthesis and its characterization of silver sulfide/nickel titanate/chitosan nanocomposites for photocatalysis and water splitting under visible light, and antibacterial studies. Mater. Chem. Phys. 2021 272 124990 10.1016/j.matchemphys.2021.124990
    [Google Scholar]
  30. Dhanasekaran T. Bovas A. Radhakrishnan T.P. Hydrogel polymer–pba nanocomposite thin film-based bifunctional catalytic electrode for water splitting: The unique role of the polymer matrix in enhancing the electrocatalytic efficiency. ACS Appl. Mater. Interfaces 2023 15 5 6687 6696 10.1021/acsami.2c18006 36695812
    [Google Scholar]
  31. Chang B. Hao S. Ye Z. Yang Y. A self-supported amorphous Ni–P alloy on a CuO nanowire array: An efficient 3D electrode catalyst for water splitting in alkaline media. Chem. Commun. (Camb.) 2018 54 19 2393 2396 10.1039/C7CC09007B 29457161
    [Google Scholar]
  32. Sajid M. Qayyum W. Farhan A. Qamar M.A. Nawaz H. Progress in the development of copper oxide-based materials for electrochemical water splitting. Int. J. Hydrogen Energy 2024 62 209 227 10.1016/j.ijhydene.2024.02.377
    [Google Scholar]
  33. Zuo Y. Liu Y. Li J. Du R. Han X. Zhang T. Arbiol J. Divins N.J. Llorca J. Guijarro N. Sivula K. Cabot A. In situ electrochemical oxidation of Cu 2 S into CuO nanowires as a durable and efficient electrocatalyst for oxygen evolution reaction. Chem. Mater. 2019 31 18 7732 7743 10.1021/acs.chemmater.9b02790
    [Google Scholar]
  34. Xiong X. You C. Liu Z. Asiri A.M. Sun X. Co-doped CuO nanoarray: An efficient oxygen evolution reaction electrocatalyst with enhanced activity. ACS Sustain. Chem.& Eng. 2018 6 3 2883 2887 10.1021/acssuschemeng.7b03752
    [Google Scholar]
  35. Khan N.A. Ahmad I. Rashid N. Hussain S. Zairov R. Alsaiari M. Alkorbi A.S. Ullah Z. Hafiz urRehman Nazar M.F. Effective CuO/CuS heterostructures catalyst for OER performances. Int. J. Hydrogen Energy 2023 48 80 31142 31151 10.1016/j.ijhydene.2023.04.308
    [Google Scholar]
  36. Czioska S. Wang J. Zuo S. Teng X. Chen Z. Hierarchically structured NiFeO x /CuO nanosheets/nanowires as an efficient electrocatalyst for the oxygen evolution reaction. ChemCatChem 2018 10 5 1005 1011 10.1002/cctc.201701441
    [Google Scholar]
  37. Ghosh D. Pradhan D. Effect of cooperative redox property and oxygen vacancies on bifunctional OER and HER activities of solvothermally synthesized CeO 2 /CuO composites. Langmuir 2023 39 9 3358 3370 10.1021/acs.langmuir.2c03242 36847346
    [Google Scholar]
  38. Kumar N. Upadhyay S. Karthikeyan M. Sen A. Chetana S. Joshi N.C. Priyadarshi N. Hossain I. Ansari M.N.M. Facile one-step solid-state synthesis of CuO nanoparticles finely decorated over carbon sheets for improved OER activity. J. Alloys Compd. 2024 983 173842 10.1016/j.jallcom.2024.173842
    [Google Scholar]
  39. Yin H.J. Yuan K. Zheng Y.L. Sun X.C. Zhang Y.W. In situ synthesis of NiO/CuO nanosheet heterostructures rich in defects for efficient electrocatalytic oxygen evolution reaction. J. Phys. Chem. C 2021 125 30 16516 16523 10.1021/acs.jpcc.1c03824
    [Google Scholar]
  40. Ma X-X. Chen L. Zhang Z. Tang J-L. Electrochemical performance evaluation of CuO@Cu2O nanowires array on cu foam as bifunctional electrocatalyst for efficient water splitting. Chin. J. Anal. Chem. 2020 48 1 e20001 e20012 10.1016/S1872‑2040(19)61211‑9
    [Google Scholar]
  41. Cai Z. Li A. Zhang W. Zhang Y. Cui L. Liu J. Hierarchical Cu@Co-decorated CuO@Co3O4 nanostructure on Cu foam as efficient self-supported catalyst for hydrogen evolution reaction. J. Alloys Compd. 2021 882 160749 10.1016/j.jallcom.2021.160749
    [Google Scholar]
  42. Panda C. Menezes P.W. Zheng M. Orthmann S. Driess M. In situ formation of nanostructured core–shell Cu 3 N–CuO to promote alkaline water electrolysis. ACS Energy Lett. 2019 4 3 747 754 10.1021/acsenergylett.9b00091
    [Google Scholar]
  43. Cui S. Qian M. Liu X. Sun Z. Du P. A copper porphyrin‐based conjugated mesoporous polymer‐derived bifunctional electrocatalyst for hydrogen and oxygen evolution. ChemSusChem 2016 9 17 2365 2373 10.1002/cssc.201600452 27530422
    [Google Scholar]
  44. Rajagopal V. Manivannan M. Kathiresan M. Suryanarayanan V. Jones L.A. Metal/metal oxide-decorated covalent organic frameworks as electrocatalysts for electrocarboxylation and water splitting. Mater. Chem. Phys. 2022 285 126104 10.1016/j.matchemphys.2022.126104
    [Google Scholar]
  45. Debnath A. Diyali S. Das M. Panda S.J. Mondal D. Dhak D. Purohit C.S. Ray P.P. Biswas B. Harnessing the hydrogen evolution reaction (HER) through the electrical mobility of an embossed Ag( i )-molecular cage and a Cu( ii )-coordination polymer. Dalton Trans. 2023 52 26 8850 8856 10.1039/D3DT01073B 37338097
    [Google Scholar]
  46. Huang X. Yao H. Cui Y. Hao W. Zhu J. Xu W. Zhu D. Conductive copper benzenehexathiol coordination polymer as a hydrogen evolution catalyst. ACS Appl. Mater. Interfaces 2017 9 46 40752 40759 10.1021/acsami.7b14523 29086557
    [Google Scholar]
  47. Varghese A. Devi K R S. Pinheiro D. Rational design of PANI incorporated PEG capped CuO/TiO2 for electrocatalytic hydrogen evolution and supercapattery applications. Int. J. Hydrogen Energy 2023 48 76 29552 29564 10.1016/j.ijhydene.2023.04.114
    [Google Scholar]
  48. Li Q. Bi J. Yao Y. Li X. Xu D. A novel 3D CoNiCu-LDH@CuO micro-flowers on copper foam as efficient electrocatalyst for overall water splitting. Appl. Surf. Sci. 2023 622 156874 10.1016/j.apsusc.2023.156874
    [Google Scholar]
  49. Calvo P. Remuñán-López C. Vila-Jato J.L. Alonso M.J. Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J. Appl. Polym. Sci. 1997 63 125 132 10.1002/(SICI)1097‑4628(19970103)63:1<125::AID‑APP13>3.0.CO;2‑4
    [Google Scholar]
  50. Badawy AA Abdelfattah NAH Salem SS Awad MF Fouda A Efficacy assessment of biosynthesized copper oxide nanoparticles (CuO-NPs) on stored grain insects and their impacts on morphological and physiological traits of wheat (Triticum aestivum L.) plant. Biology 2021 10 233
    [Google Scholar]
  51. Bin Mobarak M. Hossain M.S. Chowdhury F. Ahmed S. Synthesis and characterization of CuO nanoparticles utilizing waste fish scale and exploitation of XRD peak profile analysis for approximating the structural parameters. Arab. J. Chem. 2022 15 10 104117 10.1016/j.arabjc.2022.104117
    [Google Scholar]
  52. Siavash Moakhar R. Hosseini-Hosseinabad S.M. Masudy-Panah S. Seza A. Jalali M. Fallah-Arani H. Dabir F. Gholipour S. Abdi Y. Bagheri-Hariri M. Riahi-Noori N. Lim Y.F. Hagfeldt A. Saliba M. Photoelectrochemical water‐splitting using cuo‐based electrodes for hydrogen production: A review. Adv. Mater. 2021 33 33 2007285 10.1002/adma.202007285 34117806
    [Google Scholar]
  53. Anaya-Esparza L.M. Ruvalcaba-Gómez J.M. Romero-Toledo R. Sánchez-Burgos J.A. Montalvo-González E. Pérez-Larios A. Investigating structural changes of Chitosan-TiO2 and Chitosan-TiO2-ZnO-MgO hybrid films during storage by FTIR spectroscopy. Maced. J. Chem. Chem. Eng. 2021 40 2 197 211 10.20450/mjcce.2021.2396
    [Google Scholar]
  54. Soleymanfallah S. Khoshkhoo Z. Hosseini S.E. Azizi M.H. Preparation, physical properties, and evaluation of antioxidant capacity of aqueous grape extract loaded in chitosan‐TPP nanoparticles. Food Sci. Nutr. 2022 10 10 3272 3281 10.1002/fsn3.2891 36249981
    [Google Scholar]
  55. Afanas’eva N.V. Petrova V.A. Vlasova E.N. Gladchenko S.V. Khayrullin A.R. Volchek B.Z. Bochek A.M. Molecular mobility of chitosan and its interaction with montmorillonite in composite films: Dielectric spectroscopy and FTIR studies. Polym. Sci. Ser. A 2013 55 12 738 748 10.1134/S0965545X13120018
    [Google Scholar]
  56. Spoială A. Ilie C.I. Dolete G. Croitoru A.M. Surdu V.A. Trușcă R.D. Motelica L. Oprea O.C. Ficai D. Ficai A. Andronescu E. Dițu L.M. Preparation and characterization of chitosan/TiO2 composite membranes as adsorbent materials for water purification. Membranes 2022 12 8 804 10.3390/membranes12080804 36005719
    [Google Scholar]
  57. Sacco P. Borgogna M. Travan A. Marsich E. Paoletti S. Asaro F. Grassi M. Donati I. Polysaccharide-based networks from homogeneous chitosan-tripolyphosphate hydrogels: Synthesis and characterization. Biomacromolecules 2014 15 9 3396 3405 10.1021/bm500909n 25133954
    [Google Scholar]
  58. Elya Sudrajat S Lotulung PD Anwar E Phosphorylation of gelatine and chitosan as an excipient for asiaticoside nanofibers. Malaysian J. Anal. Sci. 2014 18 1 58 67
    [Google Scholar]
  59. Chandrasekar M. Subash M. Logambal S. Udhayakumar G. Uthrakumar R. Inmozhi C. Al-Onazi W.A. Al-Mohaimeed A.M. Chen T.W. Kanimozhi K. Synthesis and characterization studies of pure and Ni doped CuO nanoparticles by hydrothermal method. J. King Saud Univ. Sci. 2022 34 3 101831 10.1016/j.jksus.2022.101831
    [Google Scholar]
  60. Ramzan M. Obodo R.M. Mukhtar S. Ilyas S.Z. Aziz F. Thovhogi N. Green synthesis of copper oxide nanoparticles using Cedrus deodara aqueous extract for antibacterial activity. Mater. Today Proc. 2021 36 576 581 10.1016/j.matpr.2020.05.472
    [Google Scholar]
  61. Patel M. Mishra S. Verma R. Shikha D. Synthesis of ZnO and CuO nanoparticles via Sol gel method and its characterization by using various technique. Discover Materials 2022 2 1 1 11 10.1007/s43939‑022‑00022‑6
    [Google Scholar]
  62. Santha A. Varghese R. Joy Prabu H. Johnson I. Magimai Antoni Raj D. John Sundaram S. Production of sustainable biofuel from biogenic waste using CuO nanoparticles as heterogeneous catalyst. Mater. Today Proc. 2021 36 447 452 10.1016/j.matpr.2020.05.069
    [Google Scholar]
  63. Khaled B. Nassira Z. Imene H. Eco-friendly synthesis of self-regenerative low-cost biosorbent by the incorporation of CuO: A photocatalyst sensitive to visible light irradiation for azo dye removal. Environ. Sci. Pollut. Res. Int. 2020 27 25 31074 31091 10.1007/s11356‑020‑09364‑1 32524399
    [Google Scholar]
  64. Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard. Available from: https://books.google.co.in/books/about/Handbook_of_X_ray_Photoelectron_Spectros.html?id=oY5TAAAAYAAJ&redir_esc=y
  65. Guy F Runtti H Duclaux L Ondarts M Reinert L Outin J Gonze E Bonnamy S Soneda Y Synthesis and characterization of Cu doped activated carbon beads from chitosan. Microporous Mesoporous Mater. 2021 322 111147 10.1016/j.micromeso.2021.111147
    [Google Scholar]
  66. Li P.C. Liao G.M. Kumar S.R. Shih C.M. Yang C.C. Wang D.M. Lue S.J. Fabrication and characterization of chitosan nanoparticle-incorporated quaternized poly(vinyl alcohol) composite membranes as solid electrolytes for direct methanol alkaline fuel cells. Electrochim. Acta 2016 187 616 628 10.1016/j.electacta.2015.11.117
    [Google Scholar]
  67. Shijie F Jiefeng Z Pengyu Z Yunling G Junxian Y A degradable super-hydrophilic/underwater super-oleophobic membrane prepared by a green modification method for efficient oil-in-water emulsion separation. SSRN Electron. J. 2021
    [Google Scholar]
  68. Aljuhani A. Riyadh S.M. Khalil K.D. Chitosan/CuO nanocomposite films mediated regioselective synthesis of 1,3,4-trisubstituted pyrazoles under microwave irradiation. J. Saudi Chem. Soc. 2021 25 8 101276 10.1016/j.jscs.2021.101276
    [Google Scholar]
  69. Senthil Kumar P. Selvakumar M. Babu S.G. Jaganathan S.K. Karuthapandian S. Chattopadhyay S. Novel CuO/chitosan nanocomposite thin film: Facile hand-picking recoverable, efficient and reusable heterogeneous photocatalyst. RSC Advances 2015 5 71 57493 57501 10.1039/C5RA08783J
    [Google Scholar]
  70. Rani B.J. Mohana P. Swathi S. Yuvakkumar R. Ravi G. Thambidurai M. Nguyen H.D. Velauthapillai D. Exploration of bifunctionality in Mn, Co codoped cuo nanoflakes for overall water splitting. Int. J. Energy Res. 2023 2023 1 15 10.1155/2023/6052251
    [Google Scholar]
  71. Zahra T. Ahmad K.S. Functionalization of Mn 2 O 3 / PdO / ZnO electrocatalyst using organic template with accentuated electrochemical potential toward water splitting. Int. J. Energy Res. 2022 46 1 452 463 10.1002/er.6677
    [Google Scholar]
  72. Yang Y Forster M Ling Y Wang G Zhai T Tong Y Cowan AJ Acid treatment enables suppression of electron-hole recombination in hematite for photoelectrochemical water splitting. Angew. Chem. Int. Ed. Engl. 2016 55 10 3403 3407
    [Google Scholar]
  73. Lopes T. Andrade L. Le Formal F. Gratzel M. Sivula K. Mendes A. Hematite photoelectrodes for water splitting: Evaluation of the role of film thickness by impedance spectroscopy. Phys. Chem. Chem. Phys. 2014 16 31 16515 16523 10.1039/C3CP55473B 24987751
    [Google Scholar]
/content/journals/cac/10.2174/0115734110334031240927051501
Loading
/content/journals/cac/10.2174/0115734110334031240927051501
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test