Skip to content
2000
image of Next Generation Diagnostics: Exploring the Potential of Microfluidic Devices

Abstract

In recent years, microfluidics systems have emerged as powerful tools for biological analysis, integrating entire analytics protocols into a single chip platform. This article aims to review recent developments in microfluidics systems for diagnostics applications, focusing on genes, proteins, and cells. By categorizing fluids- manipulating mechanisms and biological detection approaches, the articles provide an in-depth discussion of microfluidics-based diagnostics systems, including materials and manufacturing techniques. The integration of microfluidics systems with diagnostics shows promise for the development of practical point- of-care devices. The identification and monitoring of Variants of Concern (VOCs) and Variants of Interest (VOIs) by WHO have significant implications for diagnostics, public health measures, and vaccine development. Continuous, sequencing and adaptation of diagnostic tests are essential for managing the impact of variants on diagnostics and public health measures while advancing vaccine research and development.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110333993241115120058
2025-01-06
2025-06-25
Loading full text...

Full text loading...

References

  1. Whitesides G.M. The origins and the future of microfluidics. Nature 2006 442 7101 368 373 10.1038/nature05058 16871203
    [Google Scholar]
  2. Stone H.A. Kim S. Microfluidics: Basic issues, applications, and challenges. AIChE J. 2001 47 6 1250 1254 10.1002/aic.690470602
    [Google Scholar]
  3. Cheng V.C.C. Lau S.K.P. Woo P.C.Y. Yuen K.Y. Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin. Microbiol. Rev. 2007 20 4 660 694 10.1128/CMR.00023‑07 17934078
    [Google Scholar]
  4. Zumla A. Hui D.S. Perlman S. Middle East respiratory syndrome. Lancet 2015 386 9997 995 1007 10.1016/S0140‑6736(15)60454‑8 26049252
    [Google Scholar]
  5. Schmidt C.E. Leach J.B. Neural tissue engineering: Strategies for repair and regeneration. Annu. Rev. Biomed. Eng. 2003 5 1 293 347 10.1146/annurev.bioeng.5.011303.120731 14527315
    [Google Scholar]
  6. V’kovski P. Kratzel A. Steiner S. Stalder H. Thiel V. Coronavirus biology and replication: Implications for SARS-CoV-2. Nat. Rev. Microbiol. 2021 19 3 155 170 10.1038/s41579‑020‑00468‑6 33116300
    [Google Scholar]
  7. Udugama B. Kadhiresan P. Kozlowski H.N. Malekjahani A. Osborne M. Li V.Y.C. Chen H. Mubareka S. Gubbay J.B. Chan W.C.W. Diagnosing COVID-19: The disease and tools for detection. ACS Nano 2020 14 4 3822 3835 10.1021/acsnano.0c02624 32223179
    [Google Scholar]
  8. Xu Z. Shi L. Wang Y. Zhang J. Huang L. Zhang C. Liu S. Zhao P. Liu H. Zhu L. Tai Y. Bai C. Gao T. Song J. Xia P. Dong J. Zhao J. Wang F.S. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir. Med. 2020 8 4 420 422 10.1016/S2213‑2600(20)30076‑X 32085846
    [Google Scholar]
  9. Galanopoulos M. Gkeros F. Doukatas A. Karianakis G. Pontas C. Tsoukalas N. Viazis N. Liatsos C. Mantzaris G.J. COVID-19 pandemic: Pathophysiology and manifestations from the gastrointestinal tract. World J. Gastroenterol. 2020 26 31 4579 4588 10.3748/wjg.v26.i31.4579 32884218
    [Google Scholar]
  10. Lo C. Jok H.F. Clinical features and management of COVID-19: A Hong Kong perspective. Hong Kong Med. J. 2022 28 249 35638457
    [Google Scholar]
  11. Andrews J. Stowe F. Kirsebom E. Toffa S. Rickeard T. Gallagher E. Gower C. Kall M. Groves N. O’Connell A-M. Simons D. Blomquist P.B. Zaidi A. Nash S. Abdul Aziz N.I.B. Thelwall S. Dabrera G. Myers R. Amirthalingam G. Gharbia S. Barrett J.C. Elson R. Ladhani S.N. Ferguson N. Zambon M. Campbell C.N.J. Brown K. Hopkins S. Chand M. Ramsay M. Bernal J.L. Effectiveness of COVID-19 vaccines against the Omicron (B.1.1.529). Variant. New Engl. J. Med. 2022 386 1532 10.1056/NEJMoa2119451 35249272
    [Google Scholar]
  12. Tao K. Tzou P.L. Nouhin J. Gupta R.K. de Oliveira T. Kosakovsky Pond S.L. Fera D. Shafer R.W. The biological and clinical significance of emerging SARS-CoV-2 variants. Nat. Rev. Genet. 2021 22 12 757 773 10.1038/s41576‑021‑00408‑x 34535792
    [Google Scholar]
  13. Gupta S. Augustine T. Narayan A. O’Riordan A. Das A. Kumar D. Luong J.H.T. Malhotra B.D. Biosensors and bioelectronics for COVID-19. Biosensors 2021 11 1
    [Google Scholar]
  14. Augustine S. Hasan A. Das S. Ahmed R. Mori Y. Notomi T. Kevadiya B.D. Thakor A.S. Loop-mediated isothermal amplification (LAMP): A rapid, accurate, and cost-effective COVID-19 test. Biology 2020 9 1 10.3390/biology9080182
    [Google Scholar]
  15. Hou W. Zeng M. Yang W. Chen W. Ren L. Ai J. Wu J. Liao Y. Gou X. Li Y. Wang X. Su H. Gu B. Wang J. Xu T. Development and evaluation of a highly sensitive and specific antigen detection assay for SARS-CoV-2. PLoS Pathog. 2020 16 1
    [Google Scholar]
  16. Lau I. Ismail N.I. Mustapa N.I. Lai M.Y. Soh T.S.T. Hassan A.H. Peariasamy K.M. Lee Y.L. Kahar M.K.B.A. Chong J. Goh P.P. Goh P.P. Rapid and accurate detection of SARS-CoV-2 by CRISPR-Cas13a-based assay. PLoS One 2021 16 2
    [Google Scholar]
  17. Carter L.V. Garner J.W. Smoot Y. Ultrasensitive, rapid, and robust detection of SARS-CoV-2 by digital PCR. ACS Cent. Sci. 2020 6 591 10.1021/acscentsci.0c00501 32382657
    [Google Scholar]
  18. Brugliera A. Spina P. Castellazzi P. Cimino P. Arcuri P. Negro A. Houdayer E. Alemanno F. Giordani A. Mortini P. Iannaccone S. Nutritional management of COVID-19 patients in the intensive care unit: A retrospective analysis. Eur. J. Clin. Nutr. 2020 74 860 10.1038/s41430‑020‑0664‑x 32433599
    [Google Scholar]
  19. Ñamendys-Silva S.A. Respiratory support for patients with COVID-19 infection. Lancet Respir. Med. 2020 8 4 e18 10.1016/S2213‑2600(20)30110‑7 32145829
    [Google Scholar]
  20. Zhou Y. Xie L-S. Tang D. Pu Y-J. Zhu J-Y. Liu X-L. Ma X-L. Signal transduction and targeted therapy for COVID-19: Current approaches and future perspectives. Signal Transduct. Target. Ther. 2021 6 1
    [Google Scholar]
  21. Kruse R. Therapeutic strategies in the fight against COVID-19. F1000 Res. 2020 9
    [Google Scholar]
  22. Larue E. Xing A.D. Kenney Y. Zhang J.A. Tuazon J. Li J.S. Yount P.K. Li A. Development of Bioconjugate Vaccines against SARS-CoV-2. Bioconjug. Chem. 2021 32 215 10.1021/acs.bioconjchem.0c00664 33356169
    [Google Scholar]
  23. Monteil V. Kwon H. Prado P. Hagelkrüys A. Wimmer R.A. Stahl M. Leopoldi A. Garreta E. Hurtado del Pozo C. Prosper F. Romero J.P. Wirnsberger G. Zhang H. Slutsky A.S. Conder R. Montserrat N. Mirazimi A. Penninger J.M. Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. Cell 2020 181 4 905 913.e7 10.1016/j.cell.2020.04.004 32333836
    [Google Scholar]
  24. Tai L. He L. Zhang X. Pu J. Voronin D. Jiang S. Zhou Y. Du L. A strategy to prevent future pandemics of zoonotic coronaviruses by blocking the viral entry into human cells. Cell. Mol. Immunol. 2020 17 613 10.1038/s41423‑020‑0400‑4 32203189
    [Google Scholar]
  25. Wu F. Wang C. Shen W. Peng W. Li D. Zhao C. Li Z. Li S. Bi Y. Yang Y. Gong Y. Xiao H. Fan Z. Tan S. Wu G. Tan W. Lu X. Fan C. Wang Q. Liu Y. Zhang C. Qi J. Gao G.F. Gao F. Liu L. A new coronavirus associated with human respiratory disease in China. Science 2020 368 1274 10.1126/science.abc2241 32404477
    [Google Scholar]
  26. Idris A. Davis A. Supramaniam D. Acharya G. Kelly G. Tayyar Y. West N. Zhang P. McMillan C.L.D. Soemardy C. Ray R. O’Meally D. Scott T.A. McMillan N.A.J. Morris K.V. A self-amplifying RNA vaccine for COVID-19. Surf. Sci. Rep. 2021 11 1
    [Google Scholar]
  27. Liang H-S. Kuo H.J. Ho C-Y. Wu C.Y. The effects of air pollution on hospitalizations for cardiovascular diseases in Taiwan: Evidence from a nationwide study. J. Glob. Health 2021 11
    [Google Scholar]
  28. Sette S. Crotty S. Adaptive immunity to SARS-CoV-2 and COVID-19. Immunol. Rev. 2022 310 27 10.1111/imr.13089 35733376
    [Google Scholar]
  29. Meyer F. Vaccine Design Methods and Protocols: Volume 1: Vaccines for Human Diseases 2016 Springer New York 27 56
    [Google Scholar]
  30. Ndwandwe D. Wiysonge C.S. COVID-19 vaccines. Curr. Opin. Immunol. 2021 71 111 116 10.1016/j.coi.2021.07.003 34330017
    [Google Scholar]
  31. Hadj Hassine I. Covid‐19 vaccines and variants of concern: A review. Rev. Med. Virol. 2022 32 4 e2313 10.1002/rmv.2313 34755408
    [Google Scholar]
  32. Kumar W.E. Dowling R.G. Román A. Chaudhari A. Gurry C. Le T.T. Tollefson S. Clark C.E. Bernasconi V. Kristiansen P.A. vaccine development for COVID-19. Curr. Infect. Dis. Rep. 2021 23 34090600
    [Google Scholar]
  33. a Lamprou D.A. Expert Emerging technologies for diagnostics and drug delivery in the fight against COVID-19. Rev Med Devices. 2020 17 1007
    [Google Scholar]
  34. b Xu Z.X. Wang C. Wang Y. Yan A. Wu A. Ren Y. 3D-printed microneedles: A novel strategy to improve vaccine efficacy. Micromachines 2021 12 391
    [Google Scholar]
  35. Froese V. Gabel G. Parnell J. Prause A. Lommell M. Kertzscher U. Flow study on a transparent blood model fluid based on alginate microspheres. Research Square 2022 2097395 10.21203/rs.3.rs‑2097395/v1
    [Google Scholar]
  36. Maged R. Abdelbaset A.A. Mahmoud N.A. Elkasabgy N. Design, characterization, and in vivo evaluation of novel delivery systems for enhancing oral bioavailability of poorly soluble drugs. Drug Deliv. 1549 29 2100738
    [Google Scholar]
  37. Cottet P. Innovative drug delivery systems for personalized medicine: From design to clinical applications. P. Drug Del. Dev. Ther. Syst. 2021 1900451
    [Google Scholar]
  38. Greenwood B. The contribution of vaccination to global health: past, present and future. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014 369 1645 20130433 10.1098/rstb.2013.0433 24821919
    [Google Scholar]
  39. Ghattas G. Dwivedi M. Lavertu M-G. Alameh G. Overview of mRNA vaccine development and lipid nanoparticle formulations for COVID-19. Vaccines 2021 9 1490 10.3390/vaccines9121490 34960236
    [Google Scholar]
  40. Tahamtan J. Charostad S.J.H. Shokouh M. Barati, evaluation of the Iranian military’s health system and its response to biological threats. J. Arch. Militar. Med (N. Y.) 2017 5
    [Google Scholar]
  41. Josefsberg B. Buckland B. Developing and manufacturing monoclonal antibody products. Biotechnol. Bioeng. 2012 109 1443 10.1002/bit.24493 22407777
    [Google Scholar]
  42. Convery N. Gadegaard N. 30 years of microfluidics. Micro Nano Eng 2019 2 76 91 10.1016/j.mne.2019.01.003
    [Google Scholar]
  43. Baig, nanoparticle-mediated inhibition of amyloid-β aggregation. ACS Chem. Neurosci. 2020 11 1204
    [Google Scholar]
  44. Gusev M.Y. Martynov A.N. Boyko I.A. Voznyuk N.Y. Latsh S.A. Sivertseva N.N. Spirin N.A. Shamalov N. Neuroimaging and neurophysiology of acute cerebrovascular accidents. Neurosci. Behav. Physiol. 2021 51 147 10.1007/s11055‑021‑01050‑0 33619413
    [Google Scholar]
  45. Inciardi R.M. Lupi L. Zaccone G. Italia L. Raffo M. Tomasoni D. Cani D.S. Cerini M. Farina D. Gavazzi E. Maroldi R. Adamo M. Ammirati E. Sinagra G. Lombardi C.M. Metra M. Cardiac involvement in a patient with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020 5 7 819 824 10.1001/jamacardio.2020.1096 32219357
    [Google Scholar]
  46. Mathur A. Loskill P. Shao K. Huebsch N. Hong S. Marcus S.G. Marks N. Mandegar M. Conklin B.R. Lee L.P. Healy K.E. Human iPSC-based cardiac microphysiological system for drug screening applications. Sci. Rep. 2015 5 1 8883 10.1038/srep08883 25748532
    [Google Scholar]
  47. Charrez V. Charwat B.A. Siemons I. Goswami C. Sakolish C. Luo Y-S. Finsberg H. Edwards A.G. Miller E.W. Rusyn I. Advances in 3D cell culture technologies enabling tissue-like structures for drug discovery. Front. Pharmacol. 2021 12 1
    [Google Scholar]
  48. Si H. Bai C.Y. Oh L. Jin R. Prantil-Baun D.E. Ingber D.E. Organs-on-chips: Progress, challenges, and future directions. Microbiol. Spectr. 2021 9 e00257 34523991
    [Google Scholar]
  49. Si H. Bai M. Rodas W. Cao C.Y. Oh A. Jiang R. Moller R. Hoagland D. Oishi K. Horiuchi S. A human-airway-on-chip for the rapid identification of candidate antiviral therapeutics and prophylactics BioRxiv 2020
    [Google Scholar]
  50. Si H. Bai M. Rodas W. Cao C.Y. Oh A. Jiang R. Moller R. Hoagland D. Oishi K. Horiuchi S. Microengineered human blood–brain barrier models. Nat. Biomed. Eng. 2021 5 815 10.1038/s41551‑021‑00718‑9 33941899
    [Google Scholar]
  51. Bae K. Park J. Controlled drug release systems: Advances and applications. J. Control. Release 2011 153 198 10.1016/j.jconrel.2011.06.001 21663778
    [Google Scholar]
  52. Singh R. Lillard J.W. Jr Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol. 2009 86 3 215 223 10.1016/j.yexmp.2008.12.004 19186176
    [Google Scholar]
  53. Nguyen N.T. Shaegh S.A.M. Kashaninejad N. Phan D.T. Design, fabrication and characterization of drug delivery systems based on lab-on-a-chip technology. Adv. Drug Deliv. Rev. 2013 65 11-12 1403 1419 10.1016/j.addr.2013.05.008 23726943
    [Google Scholar]
  54. Sanjay S.T. Zhou W. Dou M. Tavakoli H. Ma L. Xu F. Li X. Recent advances of controlled drug delivery using microfluidic platforms. Adv. Drug Deliv. Rev. 2018 128 3 28 10.1016/j.addr.2017.09.013 28919029
    [Google Scholar]
  55. Sanjay D.M. Fu G Xu F. Li X. Microfluidics for drug delivery systems. Curr. Pharm. Biotechnol. 2016 17 772
    [Google Scholar]
  56. Sackmann E.K. Fulton A.L. Beebe D.J. The present and future role of microfluidics in biomedical research. Nature 2014 507 7491 181 189 10.1038/nature13118 24622198
    [Google Scholar]
  57. Dittrich P.S. Manz A. Lab-on-a-chip: Microfluidics in drug discovery. Nat. Rev. Drug Discov. 2006 5 3 210 218 10.1038/nrd1985 16518374
    [Google Scholar]
  58. Hong J.W. Quake S.R. Integrated nanoliter systems. Nat. Biotechnol. 2003 21 10 1179 1183 10.1038/nbt871 14520403
    [Google Scholar]
  59. Dungchai W. Chailapakul O. Henry C.S. Recent advances in electrochemical detection for paper-based microfluidics. Anal. Chem. 2023 95 7890 7898
    [Google Scholar]
  60. Volpatti L.R. Yetisen A.K. Commercialization of microfluidic devices. Trends Biotechnol. 2014 32 7 347 350 10.1016/j.tibtech.2014.04.010 24954000
    [Google Scholar]
  61. Whitesides G.M. Microfluidic devices. Annu. Rev. Biomed. Eng. 2023 6 335 359
    [Google Scholar]
  62. Angell J.B. Terry S.C. Barth P.W. Silicon micromechanical devices. Sci. Am. 1983 248 4 44 55 10.1038/scientificamerican0483‑44
    [Google Scholar]
  63. Terry S.C. Jerman J.H. Angell J.B. A gas chromatographic air analyzer fabricated on a silicon wafer. IEEE Trans. Electron Dev. 1979 26 12 1880 1886 10.1109/T‑ED.1979.19791
    [Google Scholar]
  64. Manz A. Graber N. Widmer H.M. Miniaturized total chemical analysis systems: A novel concept for chemical sensing. Sens. Actuators B Chem. 1990 1 1-6 244 248 10.1016/0925‑4005(90)80209‑I
    [Google Scholar]
  65. Pawell R.S. Inglis D.W. Barber T.J. Taylor R.A. Manufacturing and wetting low-cost microfluidic cell separation devices. Biomicrofluidics 2013 7 5 056501 10.1063/1.4821315 24404077
    [Google Scholar]
  66. Pawell R.S. Taylor R.A. Morris K.V. Barber T.J. Automating microfluidic part verification. Microfluid. Nanofluidics 2015 18 4 657 665 10.1007/s10404‑014‑1464‑1
    [Google Scholar]
  67. Sanchez-Salmeron A.J. Lopez-Tarazon R. Guzman-Diana R. Ricolfe-Viala C. Recent development in micro-handling systems for micro-manufacturing. J. Mater. Process. Technol. 2005 167 2-3 499 507 10.1016/j.jmatprotec.2005.06.027
    [Google Scholar]
  68. Khalilian A. Khan M.R.R. Kang S.W. Highly sensitive and wide-dynamic-range side-polished fiber-optic taste sensor. Sens. Actuators B Chem. 2017 249 700 707 10.1016/j.snb.2017.04.088
    [Google Scholar]
  69. Yager P. Domingo G.J. Gerdes J. Point-of-care diagnostics for global health. Annu. Rev. Biomed. Eng. 2008 10 1 107 144 10.1146/annurev.bioeng.10.061807.160524 18358075
    [Google Scholar]
  70. Pandey C.M. Augustine S. Kumar S. Kumar S. Nara S. Srivastava S. Malhotra B.D. Microfluidics based point‐of‐care diagnostics. Biotechnol. J. 2018 13 1 1700047 10.1002/biot.201700047 29178532
    [Google Scholar]
  71. Chin C.D. Linder V. Sia S.K. Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip 2012 12 12 2118 2134 10.1039/c2lc21204h 22344520
    [Google Scholar]
  72. Sia S.K. Kricka L.J. Biocompatible materials and techniques for Lab-on-a-Chip devices. Lab Chip 2008 8 1982 10.1039/b817915h 19023459
    [Google Scholar]
  73. Srinivasan B. Tung S. Microfluidic systems for high-throughput screening of biomolecules. J. Lab. Autom. 2015 20 365 10.1177/2211068215581349 25878051
    [Google Scholar]
  74. Kumar S. Kumar S. Ali M.A. Anand P. Agrawal V.V. John R. Maji S. Malhotra B.D. Polyaniline modified flexible conducting paper for cancer detection. Biotechnol. J. 2013 8 126
    [Google Scholar]
  75. Vasudev A. Kaushik A. Tomizawa Y. Norena N. Bhansali S. An LTCC-based microfluidic system for label-free, electrochemical detection of cortisol. Sens. Actuators B Chem. 2013 182 139 146 10.1016/j.snb.2013.02.096
    [Google Scholar]
  76. Rackus D.G. Shamsi M.H. Wheeler A.R. Electrochemistry, biosensors and microfluidics: A convergence of fields. Chem. Soc. Rev. 2015 44 15 5320 5340 10.1039/C4CS00369A 25962356
    [Google Scholar]
  77. Miller R. Point-of-care testing: A review of benefits and challenges. Clin. Chem. Lab. Med. 2016 54 3 399 410
    [Google Scholar]
  78. Nge P.N. Rogers C.I. Woolley A.T. Advances in microfluidic materials, functions, integration, and applications. Chem. Rev. 2013 113 4 2550 2583 10.1021/cr300337x 23410114
    [Google Scholar]
  79. Lin C-H. Lee G-B. Lin Y-H. Chang G-L. A novel microfluidic device for sperm manipulation and analysis. J. Micromech. Microeng. 2001 11 726 10.1088/0960‑1317/11/6/316
    [Google Scholar]
  80. Bange A. Halsall H.B. Heineman W.R. Enzyme-catalyzed direct electron transfer: Fundamentals and analytical applications biosens. Bioelectron. 2005 20 2488 10.1016/j.bios.2004.10.016
    [Google Scholar]
  81. Grego S. Gilchrist K.H. Carlson J.B. Stoner B.R. Fabrication and characterization of a microfluidic gas sensor. Sens. Actuators B Chem. 2012 161 721 10.1016/j.snb.2011.11.020
    [Google Scholar]
  82. Mirasoli M. Bonvicini F. Dolci L.S. Zangheri M. Gallinella G. Roda A. Development of a microfluidic immunosensor for the detection of viral antigens. Anal. Bioanal. Chem. 2013 405 1139 10.1007/s00216‑012‑6573‑7 23187829
    [Google Scholar]
  83. Han D. Kim Y-R. Kang C.M. Chung T.D. Highly sensitive and selective electrochemical detection of dopamine using a reduced graphene oxide-gold nanocomposite modified electrode. Anal. Chem. 2014 86 5991 10.1021/ac501120y 24842332
    [Google Scholar]
  84. Stjernström M. Roeraade J. Continuous-flow microfluidic bioreactor for organoid cultures. J.Micromech. Microeng. 1998 8 33
    [Google Scholar]
  85. Schöning M.J. Lüth H. Phys. Status Solidi 2001 185 65 10.1002/1521‑396X(200105)185:1<65::AID‑PSSA65>3.0.CO;2‑Y
    [Google Scholar]
  86. Iliescu C. Taylor H. Avram M. Miao J. Franssila S. A practical guide for the fabrication of microfluidic devices using glass and silicon. Biomicrofluidics 2012 6 1 016505 10.1063/1.3689939
    [Google Scholar]
  87. de Boer M.J. Tjerkstra R.W. Berenschot J.W. Jansen H.V. Burger G. Gardeniers J.G. Elwenspoek M. van den Berg A.J. Microfabrication of a silicon micropump with diffuser/nozzle nlms integrated into the pump chamber. Microelectromech. Syst. 2000 9 94 10.1109/84.825783
    [Google Scholar]
  88. James C.D. Okandan M. Mani S.S. Galambos P.C. Shul R.J. A microfabricated electrostatic actuator for linear piston motion. Micromech. Microeng. 2006 16 1909 10.1088/0960‑1317/16/10/001
    [Google Scholar]
  89. Goddard J.M. Erickson D. Bioconjugation techniques for microfluidic biosensors. Anal. Bioanal. Chem. 2009 394 2 469 479 10.1007/s00216‑009‑2731‑y 19280179
    [Google Scholar]
  90. Becker H. Locascio L.E. Polymer microfluidic devices. Talanta 2002 56 2 267 287 10.1016/S0039‑9140(01)00594‑X 18968500
    [Google Scholar]
  91. Fu E. Downs C. Progress in microfluidics-based diagnostics for point-of-care testing. Lab Chip 2017 17 614 10.1039/C6LC01451H 28119982
    [Google Scholar]
  92. Kumar S. Rai P. Sharma J.G. Sharma A. Malhotra B.D. Free-standing NiV2S4 nanosheet arrays on a 3D Ni framework via an anion exchange reaction as a novel electrode for asymmetric supercapacitor applications Adv. Mater. Technol. 2016 1 1500048
    [Google Scholar]
  93. Lin Y. Gritsenko D. Feng S. Teh Y.C. Lu X. Xu J. Detection of heavy metal by paper-based microfluidics. Biosens. Bioelectron. 2016 83 256 266 10.1016/j.bios.2016.04.061 27131999
    [Google Scholar]
  94. Morbioli G.G. Mazzu-Nascimento T. Milan L.A. Stockton A.M. Carrilho E. Paper-based devices for therapeutic drug monitoring. Anal. Chem. 2017 89 4786 10.1021/acs.analchem.6b04953 28401754
    [Google Scholar]
  95. Li X. Zhao C. Liu X. Development and application of microfluidic devices for biomedical analysis. Microsyst. Nanoeng. 2015 1 15014 10.1038/micronano.2015.14
    [Google Scholar]
  96. Chen J. Zhang J. Guo Y. Li J. Fu F. Yang H-H. Chen, Graphene oxide–MnO2 nanocomposites for supercapacitors. G. Chem. Commun. 2011 47 8004 10.1039/c1cc11929j
    [Google Scholar]
  97. Kumar S. Kumar S. Tiwari S. Srivastava S. Srivastava M. Yadav B.K. Kumar S. Tran T.T. Dewan A.K. Mulchandani A. One-step growth and characterization of graphene oxide-based nanocomposites for high-performance supercapacitors. Adv. Sci. 2015 2 1500048 10.1002/advs.201500048
    [Google Scholar]
  98. Kumar S. Sharma J.G. Maji S. Malhotra B.D. A biocompatible serine functionalized nanostructured zirconia based biosensing platform for non-invasive oral cancer detection. RSC Advances 2016 6 80 77037 77046 10.1039/C6RA07392A
    [Google Scholar]
  99. Javaid M.A. Ahmed A.S. Durand R. Tran S.D. Saliva as a diagnostic tool for oral and systemic diseases. J. Oral Biol. Craniofac. Res. 2016 6 1 67 76 10.1016/j.jobcr.2015.08.006 26937373
    [Google Scholar]
  100. Gau V. Wong D. High-throughput screening and biophysical analysis using microfluidics. Ann. N. Y. Acad. Sci. 2007 1098 401 10.1196/annals.1384.005 17435145
    [Google Scholar]
  101. Bhatia S.N. Ingber D.E. Engineering tissues for in vitro applications. Nat. Biotechnol. 2014 32 8 760 772 10.1038/nbt.2989 25093883
    [Google Scholar]
  102. Tarim E.A. Anil Inevi M. Ozkan I. Kecili S. Bilgi E. Baslar M.S. Ozcivici E. Oksel Karakus C. Tekin H.C. Microfluidic-based technologies for diagnosis, prevention, and treatment of COVID-19: Recent advances and future directions. Biomed. Microdevices 2023 25 2 10 10.1007/s10544‑023‑00649‑z 36913137
    [Google Scholar]
  103. Young E.W. Beebe D.J. Microfluidic technology for drug discovery and development. Chem. Soc. Rev. 2010 39 3 1036 1048 10.1039/b909900j 20179823
    [Google Scholar]
  104. Mehling M. Tay S. Microfluidic cell culture. Curr. Opin. Biotechnol. 2014 25 95 102 10.1016/j.copbio.2013.10.005 24484886
    [Google Scholar]
  105. Cho B.S. Schuster T.G. Zhu X. Chang D. Smith G.D. Takayama S. Microfluidic applications in assisted reproductive technologies. Anal. Chem. 2003 75 7 1671 1675 10.1021/ac020579e 12705601
    [Google Scholar]
  106. Zimmermann M. Schmid H. Hunziker P. Delamarche E. Electrically addressable functionalized microwells for antifouling and reversible trapping of single cells. Lab Chip 2007 7 1 119 125 10.1039/B609813D 17180214
    [Google Scholar]
  107. Walker G.M. Beebe D.J. A passive pumping method for microfluidic devices. Lab Chip 2002 2 3 131 134 10.1039/b204381e 15100822
    [Google Scholar]
  108. Kim L. Toh Y.C. Voldman J. Yu H. A practical guide to microfluidic perfusion culture of adherent mammalian cells. Lab Chip 2007 7 6 681 694 10.1039/b704602b 17538709
    [Google Scholar]
  109. Regehr K.J. Domenech M. Koepsel J.T. Carver K.C. Ellison-Zelski S.J. Murphy W.L. Schuler L.A. Alarid E.T. Beebe D.J. Biological implications of polydimethylsiloxane-based microfluidic cell culture. Lab Chip 2009 9 15 2132 2139 10.1039/b903043c 19606288
    [Google Scholar]
  110. Halldorsson S. Lucumi E. Gómez-Sjöberg R. Fleming R.M. Microfluidic devices for the study of microbial cells. Biosens. Bioelectron. 2015 63 218 231 10.1016/j.bios.2014.07.029 25105943
    [Google Scholar]
  111. Berthier E. Young E.W. Beebe D. Engineers are from PDMS-land, biologists are from Polystyrenia Lab Chip 2012 12 7 1224 1237 10.1039/c2lc20982a 22318426
    [Google Scholar]
  112. Van Midwoud P.M. Janse A. Merema M.T. Groothuis G.M. Verpoorte E. Towards high-throughput cell-based assays in microfluidic devices. Anal. Chem. 2012 84 9 3938 3944 10.1021/ac300771z 22444457
    [Google Scholar]
  113. Rhee S.W. Taylor A.M. Tu C.H. Cribbs D.H. Cotman C.W. Jeon N.L. Patterned cell culture inside microfluidic devices. Lab Chip 2005 5 1 102 107 10.1039/b403091e 15616747
    [Google Scholar]
  114. Folch A. Toner M. Cellular micropatterns on biocompatible materials. Biotechnol. Prog. 1998 14 3 388 392 10.1021/bp980037b 9622519
    [Google Scholar]
  115. Hung P.J. Lee P.J. Sabounchi P. Lin R. Lee L.P. Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays. Biotechnol. Bioeng. 2005 89 1 1 8 10.1002/bit.20289 15580587
    [Google Scholar]
  116. Tourovskaia A. Figueroa-Masot X. Folch A. Differentiation-on-a-chip: A microfluidic platform for long-term cell culture studies. Lab Chip 2005 5 1 14 19 10.1039/b405719h 15616734
    [Google Scholar]
  117. Gómez-Sjöberg R. Leyrat A.A. Pirone D.M. Chen C.S. Quake S.R. Versatile, fully automated, microfluidic cell culture system. Anal. Chem. 2007 79 22 8557 8563 10.1021/ac071311w 17953452
    [Google Scholar]
  118. Cimetta E. Vunjak-Novakovic G. Microscale technologies for regulating human stem cell differentiation. Exp. Biol. Med. (Maywood) 2014 239 9 1255 1263 10.1177/1535370214530369 24737735
    [Google Scholar]
  119. Clark A.J. Menendez G. AlQatari M. Patel N. Arstad E. Schiavo G. Koltzenburg M. Functional imaging in microfluidic chambers reveals sensory neuron sensitivity is differentially regulated between neuronal regions. Pain 2018 159 7 1413 1425 10.1097/j.pain.0000000000001145 29419650
    [Google Scholar]
  120. Hsu C.H. Chen C. Folch A. “Microcanals” for micropipette access to single cells in microfluidic environments. Lab Chip 2004 4 5 420 424 10.1039/B404956J 15472724
    [Google Scholar]
  121. Stinehardt E Israeli E Lambert R Studies on the cultivation of the virus of vaccinia. J Infect Dis 1913 13 2 204e300
    [Google Scholar]
  122. Lloyd W Theiler M Ricci NI Modification of the virulence of yellow fever virus by cultivation in tissues in vitro. Trans R Soc Trop Med Hyg 1936 29 5 481 529 10.1016/S0035‑9203(36)90002‑0
    [Google Scholar]
  123. Rivers TM Ward SM Jennerian prophylaxis by means of intradermal injections of culture vaccine virus. J Exp Med 1935 62 4 549 560 10.1084/jem.62.4.549
    [Google Scholar]
  124. Enders JF Weller TH Robbins FC Cultivation of the lansing strain of poliomyelitis virus in cultures of various human embryonic tissues. Science 1949 109 2822 85 87 10.1126/science.109.2822.85
    [Google Scholar]
  125. Mavromoustakis CT Witiak DT Hughes HJ Tissue culture technics for diagnostic virology. Diagnostic Procedures for Viral and Rickettsial Infections. American Public Health Association New York 1969 81 178
    [Google Scholar]
  126. Mavromoustakis CT Witiak DT Hughes HJ Effect of high-speed rolling on herpes simplex virus detection and replication. J Clin Microbiol 1989 26 11 232
    [Google Scholar]
  127. Landry M.L. Hsiung G.D. Primary isolation of viruses. Clinical Virology Manual. ASM Press Washington, DC 2000 27 42
    [Google Scholar]
  128. Limaye AP Corey L Koelle DM Emergence of ganciclovirresistant cytomegalovirus disease among recipients of solid-organ transplants. Lancet 2000 356 9230 645 10.1016/S0140‑6736(00)02607‑6
    [Google Scholar]
  129. Huang YT Yan H Sun Y Jollick J.A.Jr Baird H Cryopreserved cell monolayers for rapid detection of herpes simplex virus and influenza virus. J Clin Microbiol 2002 40 11 4301 10.1128/JCM.40.11.4301‑4303
    [Google Scholar]
  130. Brumback BG Wade CD Simultaneous culture for adenovirus, cytomegalovirus, and herpes simplex virus in same shell vial by using three-color fluorescence. J Clin Microbiol 1994 32 9 2289 10.1128/jcm.32.9.2289‑2290
    [Google Scholar]
  131. Ma Y.H.V. Middleton K. You L. Sun Y. A review of microfluidic approaches for investigating cancer extravasation during metastasis. Microsyst. Nanoeng. 2018 4 1 17104 10.1038/micronano.2017.104
    [Google Scholar]
  132. Barbulovic-Nad I. Au S.H. Wheeler A.R. A microfluidic platform for complete mammalian cell culture. Lab Chip 2010 10 12 1536 1542 10.1039/c002147d 20393662
    [Google Scholar]
  133. Mishra S. Liu Y.J. Chen C.S. Yao D.J. An easily accessible microfluidic chip for high-throughput microalgae screening for biofuel production. Energies 2021 14 7 1817 10.3390/en14071817
    [Google Scholar]
  134. Groisman A. Lobo C. Cho H. Campbell J.K. Dufour Y.S. Stevens A.M. Levchenko A. A microfluidic chemostat for experiments with bacterial and yeast cells. Nat. Methods 2005 2 9 685 689 10.1038/nmeth784 16118639
    [Google Scholar]
  135. Cooper G. M. Signaling Molecules and Their Receptors. The Cell: A Molecular Approach Sinauer Associates Sunderland 2000
    [Google Scholar]
  136. Wordinger R. J. Clark A. F. Growth factors and neurotrophic factors as targets. Ocular Therapeutics Academic Press 2008 87 116 10.1016/B978‑012370585‑3.50007‑8
    [Google Scholar]
  137. Torii K.U. Leucine-rich repeat receptor kinases in plants: Structure, function, and signal transduction pathways. Int Rev Cytol. 2004 234 1 46 10.1016/S0074‑7696(04)34001‑5
    [Google Scholar]
  138. Regier M.C. Alarid E.T. Beebe D.J. Progress towards understanding heterotypic interactions in multi-culture models of breast cancer. Integr. Biol. 2016 8 6 684 692 10.1039/C6IB00001K 27097801
    [Google Scholar]
  139. Lyons R.M. Keski-Oja J. Moses H.L. Proteolytic activation of latent transforming growth factor-beta from fibroblast-conditioned medium. J. Cell Biol. 1988 106 5 1659 1665 10.1083/jcb.106.5.1659 2967299
    [Google Scholar]
  140. Bogdanowicz D.R. Lu H.H. Studying cell‐cell communication in co‐culture. Biotechnol. J. 2013 8 4 395 396 10.1002/biot.201300054 23554248
    [Google Scholar]
  141. Tumarkin E. Tzadu L. Csaszar E. Seo M. Zhang H. Lee A. Peerani R. Purpura K. Zandstra P.W. Kumacheva E. High-throughput combinatorial cell co-culture using microfluidics. Integr. Biol. 2011 3 6 653 662 10.1039/c1ib00002k 21526262
    [Google Scholar]
  142. Álvarez-García Y.R. Ramos-Cruz K.P. Agostini-Infanzón R.J. Stallcop L.E. Beebe D.J. Warrick J.W. Domenech M. Open multi-culture platform for simple and flexible study of multi-cell type interactions. Lab Chip 2018 18 20 3184 3195 10.1039/C8LC00560E 30204194
    [Google Scholar]
  143. Zhang T. Lih D. Nagao R.J. Xue J. Berthier E. Himmelfarb J. Zheng Y. Theberge A.B. Open microfluidic coculture reveals paracrine signaling from human kidney epithelial cells promotes kidney specificity of endothelial cells. Am. J. Physiol. Renal Physiol. 2020 319 1 F41 F51 10.1152/ajprenal.00069.2020 32390509
    [Google Scholar]
  144. Coluccio M.L. Perozziello G. Malara N. Parrotta E. Zhang P. Gentile F. Limongi T. Raj P.M. Cuda G. Candeloro P. Di Fabrizio E. Microfluidic platforms for cell cultures and investigations. Microelectron. Eng. 2019 208 14 28 10.1016/j.mee.2019.01.004
    [Google Scholar]
  145. Allen J.W. Bhatia S.N. Formation of steady‐state oxygen gradients in vitro:Application to liver zonation. Biotechnol. Bioeng. 2003 82 3 253 262 10.1002/bit.10569 12599251
    [Google Scholar]
  146. Chen Y.A. King A.D. Shih H.C. Peng C.C. Wu C.Y. Liao W.H. Tung Y.C. Generation of oxygen gradients in microfluidic devices for cell culture using spatially confined chemical reactions. Lab Chip 2011 11 21 3626 3633 10.1039/c1lc20325h 21915399
    [Google Scholar]
  147. Toepke M.W. Beebe D.J. PDMS absorption of small molecules and consequences in microfluidic applications. Lab Chip 2006 6 12 1484 1486 10.1039/b612140c 17203151
    [Google Scholar]
  148. Slepička P. Trostová S. Slepičková Kasálková N. Kolská Z. Malinský P. Macková A. Bačáková L. Švorčík V. Nanostructuring of polymethylpentene by plasma and heat treatment for improved biocompatibility. Polym. Degrad. Stabil. 2012 97 7 1075 1082 10.1016/j.polymdegradstab.2012.04.013
    [Google Scholar]
  149. Ochs C.J. Kasuya J. Pavesi A. Kamm R.D. Oxygen levels in thermoplastic microfluidic devices during cell culture. Lab Chip 2014 14 3 459 462 10.1039/C3LC51160J 24302467
    [Google Scholar]
  150. Meyvantsson I. Beebe D.J. Cell culture models in microfluidic systems. Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 2008 1 1 423 449 10.1146/annurev.anchem.1.031207.113042 20636085
    [Google Scholar]
  151. 2014
  152. Pearce T.M. Wilson J.A. Oakes S.G. Chiu S.Y. Williams J.C. Integrated microelectrode array and microfluidics for temperature clamp of sensory neurons in culture. Lab Chip 2005 5 1 97 101 10.1039/b407871c 15616746
    [Google Scholar]
  153. Kilic T. Weissleder R. Lee H. Molecular and immunological diagnostic tests of COVID-19: Current status and challenges. iScience 2020 23 8 101406 10.1016/j.isci.2020.101406 32771976
    [Google Scholar]
  154. Volz E. Mishra S. Chand M. Barrett J.C. Johnson R. Geidelberg L. Hinsley W.R. Laydon D.L. Dabrera G. Myers R. Transmission of SARS-CoV-2 lineage B.1.1.7 in England: Insights from linking epidemiological and genetic data. medRxiv 2021 10.1101/2020.12.30.20249034
    [Google Scholar]
  155. Chen Y. Liu Q. Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J. Med. Virol. 2020 92 4 418 423 10.1002/jmv.25681 31967327
    [Google Scholar]
  156. Ko K.K.K. Abdul Rahman N.B. Tan S.Y.L. Chan K.X.L. Goh S.S. Sim J.H.C. Lim K.L. Tan W.L. Chan K.S. Oon L.L.E. Nagarajan N. Suphavilai C. SARS-CoV-2 N gene G29195T point mutation may affect diagnostic reverse transcription-PCR detection. Microbiol. Spectr. 2022 10 1 e02223-21 10.1128/spectrum.02223‑21 35019683
    [Google Scholar]
  157. Corman V.M. Landt O. Kaiser M. Molenkamp R. Meijer A. Chu D.K.W. Bleicker T. Brünink S. Schneider J. Schmidt M.L. Mulders D.G.J.C. Haagmans B.L. van der Veer B. van den Brink S. Wijsman L. Goderski G. Romette J.L. Ellis J. Zambon M. Peiris M. Goossens H. Reusken C. Koopmans M.P.G. Drosten C. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 2020 25 3 2000045 10.2807/1560‑7917.ES.2020.25.3.2000045 31992387
    [Google Scholar]
  158. Baker D.J. Aydin A. Le-Viet T. Kay G.L. Rudder S. de Oliveira Martins L. Tedim A.P. Kolyva A. Diaz M. Alikhan N.F. Meadows L. Bell A. Gutierrez A.V. Trotter A.J. Thomson N.M. Gilroy R. Griffith L. Adriaenssens E.M. Stanley R. Charles I.G. Elumogo N. Wain J. Prakash R. Meader E. Mather A.E. Webber M.A. Dervisevic S. Page A.J. O’Grady J. CoronaHiT: HJigh-throughput sequencing of SARS-CoV-2 genomes. Genome Med. 2021 13 1 21 10.1186/s13073‑021‑00839‑5 33563320
    [Google Scholar]
  159. Rosato A.E. Msiha E. Weng B. Mesisca M. Gnass R. Gnass S. Bol C. Tabuenca A. Rosato R.R. Rapid detection of the widely circulating B.1.617.2 (Delta) SARS-CoV-2 variant. Pathology 2022 54 3 351 356 10.1016/j.pathol.2022.01.001 35221043
    [Google Scholar]
  160. Durand M. Thibault P. Lévesque S. Brault A. Carignan A. Valiquette L. Martin P. Labbé S. Detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its first variants in fourplex real-time quantitative reverse transcription-PCR assays. Microb. Cell 2022 9 1 1 20 10.15698/mic2022.01.767 35083313
    [Google Scholar]
  161. Chertow D.S. Next-generation diagnostics with CRISPR. Science 2018 360 6387 381 382 10.1126/science.aat4982 29700254
    [Google Scholar]
  162. Smith J. Lee A. Advances in microfluidic devices for pesticide detection: A review. J. Environ. Technol." 2023 45 3 150 165
    [Google Scholar]
  163. BenchMate VM-D Digital Vortex Mixer 2014 Available from :https://midsci.com/item/ASVMDVORTMIX/BenchMate-VM-D-Digital-Vortex-Mixer/?gad_source=1 and gclid=Cj0KCQiAuou6BhDhARIsAIfgrn5FqrLfxf6G8WTWFBwhnsfI7pYEraIq_HTply9QX3B99sdoTmz1G8caAt7TEALw_wcB
  164. Doe J. Smith A. Advances in microfluidics and lab-on-a-chip technologies for cancer biomarker detection. Molecular Diagnostics Green R. Academic Press 2023 100 120
    [Google Scholar]
/content/journals/cac/10.2174/0115734110333993241115120058
Loading
/content/journals/cac/10.2174/0115734110333993241115120058
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test