Skip to content
2000
image of Recent Advancements in Inductively Coupled Plasma Mass Spectrometry in Trace Element Analysis

Abstract

Coupled Plasma Mass Spectrometry (ICP-MS) has emerged as a powerful analytical technique for trace element analysis, finding widespread applications across diverse fields such as pharmaceuticals, food safety, and biological sciences. This technique is known for its exceptional sensitivity and capability to measure multiple elements simultaneously. Moreover, it provides critical insights into heavy metal and trace element content in diverse matrices, making it an indispensable tool in scientific research and regulatory compliance. Also, it plays a pivotal role in ensuring compliance with regulatory standards and safeguarding human health and the environment. Its sensitivity, versatility, and ability to provide accurate elemental analysis make it an invaluable tool for researchers, regulators, and industries alike. As technological advancements continue, addressing challenges and refining methodologies will further elevate the capabilities of ICP-MS in trace element analysis. The review discussed the various research performed using ICP-MS to detect heavy metals in raw materials, APIs, excipients, packaged food, seafood, blood samples, human hair, . Further, it mentioned the impact of higher concentrations of toxic metals on human health. This article provides a concise overview of ICP-MS, encompassing its principles, applications, and challenges, and highlighting its pivotal role in various fields.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110333019241114050058
2025-01-01
2025-01-31
Loading full text...

Full text loading...

References

  1. Yildiz U. Ozkul C. Heavy metals contamination and ecological risks in agricultural soils of Uşak, western Türkiye: a geostatistical and multivariate analysis. Environ. Geochem. Health 2024 46 2 58 10.1007/s10653‑024‑01856‑0 38277072
    [Google Scholar]
  2. Mishra S. Bharagava R.N. More N. Yadav A. Zainith S. Mani S. Chowdhary P. Heavy metal contamination: an alarming threat to environment and human health. Environ. Biotechnol. Sustain. Fut. 2019 2019 103 125
    [Google Scholar]
  3. Hembrom S. Singh B Gupta SK. Nema A. K. A comprehensive evaluation of heavy metal contamination in foodstuff and associated human health risk: a global perspective. Contemp. Environ. Issues Clim. Change. 2020 2020 33 63
    [Google Scholar]
  4. Hussain S. Rengel Z. Qaswar M. Amir M. Zafar-ul-Hye M. Arsenic and heavy metal (cadmium, lead, mercury and nickel) contamination in plant-based foods. Plant Hum. Heal. 2019 2 447 490
    [Google Scholar]
  5. Mortvedt J.J. Heavy metal contaminants in inorganic and organic fertilizers. Fert. Res. 1996 43 1-3 55 61 10.1007/BF00747683
    [Google Scholar]
  6. Li D. Yu R. Chen J. Leng X. Zhao D. Jia H. An S. Ecological risk of heavy metals in lake sediments of China: A national-scale integrated analysis. J. Clean. Prod. 2022 334 130206 10.1016/j.jclepro.2021.130206
    [Google Scholar]
  7. Mazarakioti E.C. Zotos A. Thomatou A.A. Kontogeorgos A. Patakas A. Ladavos A. Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), a Useful Tool in Authenticity of Agricultural Products’ and Foods’ Origin. Foods 2022 11 22 3705 10.3390/foods11223705 36429296
    [Google Scholar]
  8. Balaram V. Copia L. Kumar U.S. Miller J. Chidambaram S. Pollution of water resources and application of ICP-MS techniques for monitoring and management—A comprehensive review. Geosystems and Geoenvironment 2023 2 4 100210 10.1016/j.geogeo.2023.100210
    [Google Scholar]
  9. Levent A. Alp Ş. Ekin S. Karagöz S. Trace heavy metal contents and mineral of rosa canina l. Fruits from van region of Eastern Anatolia, Turkey. Rev. Anal. Chem. 2010 29 1 13 24 10.1515/REVAC.2010.29.1.13
    [Google Scholar]
  10. Aydin F. Çakmak R. Levent A. Soylak M. Silica Gel‐Immobilized 5‐aminoisophthalohydrazide: A novel sorbent for solid phase extraction of Cu, Zn and Pb from natural water samples. Appl. Organomet. Chem. 2020 34 4 e5481 10.1002/aoc.5481
    [Google Scholar]
  11. Wu J. Lu J. Li L. Min X. Luo Y. Pollution, ecological-health risks, and sources of heavy metals in soil of the northeastern Qinghai-Tibet Plateau. Chemosphere 2018 201 234 242 10.1016/j.chemosphere.2018.02.122 29524824
    [Google Scholar]
  12. Jiang Y. Chao S. Liu J. Yang Y. Chen Y. Zhang A. Cao H. Source apportionment and health risk assessment of heavy metals in soil for a township in Jiangsu Province, China. Chemosphere 2017 168 1658 1668 10.1016/j.chemosphere.2016.11.088 27932041
    [Google Scholar]
  13. Mercury and health. 2017 Available from:https://www.who.int/news-room/fact-sheets/detail/mercury-and-health(accessed on 8-10-2024)
  14. Ekin S. Oto G. Yardim Y. levent A. Ozgokce F. Kusman T. Protective effect of Hypericum perforatum L. on serum and hair trace elements in rats 7,12-dimethylbenz[a]anthracene-induced oxidative stress. Environ. Toxicol. Pharmacol. 2012 33 3 440 445 10.1016/j.etap.2012.01.010 22387603
    [Google Scholar]
  15. Ali S. Chaudhary A. Rizwan M. Anwar H.T. Adrees M. Farid M. Irshad M.K. Hayat T. Anjum S.A. Alleviation of chromium toxicity by glycinebetaine is related to elevated antioxidant enzymes and suppressed chromium uptake and oxidative stress in wheat (Triticum aestivum L.). Environ. Sci. Pollut. Res. Int. 2015 22 14 10669 10678 10.1007/s11356‑015‑4193‑4 25752628
    [Google Scholar]
  16. Ferati F. Kerolli-Mustafa M. Kraja-Ylli A. Assessment of heavy metal contamination in water and sediments of Trepça and Sitnica rivers, Kosovo, using pollution indicators and multivariate cluster analysis. Environ. Monit. Assess. 2015 187 6 338 10.1007/s10661‑015‑4524‑4 25958086
    [Google Scholar]
  17. Mercury in Drinking-water. Available from:https://www.who.int/docs/default-source/wash-documents/wash-chemicals/mercury-background-document.pdf?sfvrsn=9b117325_4(accessed on 8-10-2024)
  18. Balali-Mood M. Naseri K. Tahergorabi Z. Khazdair M.R. Sadeghi M. Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic. Front. Pharmacol. 2021 12 643972 10.3389/fphar.2021.643972 33927623
    [Google Scholar]
  19. Zhu F. Wang X. Fan W. Qu L. Qiao M. Yao S. Assessment of potential health risk for arsenic and heavy metals in some herbal flowers and their infusions consumed in China. Environ. Monit. Assess. 2013 185 5 3909 3916 10.1007/s10661‑012‑2839‑y 22983610
    [Google Scholar]
  20. Friberg L. Vahter M. Assessment of exposure to lead and cadmium through biological monitoring: Results of a UNEP/WHO global study. Environ. Res. 1983 30 1 95 128 10.1016/0013‑9351(83)90171‑8 6832115
    [Google Scholar]
  21. Eckelman M.J. Facility-level energy and greenhouse gas life-cycle assessment of the global nickel industry. Resour. Conserv. Recycling 2010 54 4 256 266 10.1016/j.resconrec.2009.08.008
    [Google Scholar]
  22. Kanagaraj G. Elango L. Chromium and fluoride contamination in groundwater around leather tanning industries in southern India: Implications from stable isotopic ratio δ53Cr/δ52Cr, geochemical and geostatistical modelling. Chemosphere 2019 220 943 953 10.1016/j.chemosphere.2018.12.105 33395816
    [Google Scholar]
  23. Jin M. Yuan H. Liu B. Peng J. Xu L. Yang D. Review of the distribution and detection methods of heavy metals in the environment. Anal. Methods 2020 12 48 5747 5766 10.1039/D0AY01577F 33231592
    [Google Scholar]
  24. Yıldız M.B. Levent A. Highly sensitive and selective electrochemical monitoring of nickel in crude oil samples using cathodically pretreated-boron doped diamond electrode. Diamond Related Materials 2024 145 145 111058 10.1016/j.diamond.2024.111058
    [Google Scholar]
  25. Houk R.S. Mass spectrometry of inductively coupled plasmas. Anal. Chem. 1986 58 1 97A 105A 10.1021/ac00292a003
    [Google Scholar]
  26. Łobiński R. Schaumlöffel D. Szpunar J. Mass spectrometry in bioinorganic analytical chemistry. Mass Spectrom. Rev. 2006 25 2 255 289 10.1002/mas.20069 16273552
    [Google Scholar]
  27. Mozhayeva D. Engelhard C. A critical review of single particle inductively coupled plasma mass spectrometry – A step towards an ideal method for nanomaterial characterization. J. Anal. At. Spectrom. 2020 35 9 1740 1783 10.1039/C9JA00206E
    [Google Scholar]
  28. Bolea E. Jimenez M.S. Perez-Arantegui J. Vidal J.C. Bakir M. Ben-Jeddou K. Gimenez-Ingalaturre A.C. Ojeda D. Trujillo C. Laborda F. Analytical applications of single particle inductively coupled plasma mass spectrometry: a comprehensive and critical review. Anal. Methods 2021 13 25 2742 2795 10.1039/D1AY00761K 34159952
    [Google Scholar]
  29. Sullivan K.V. Kidder J.A. Junqueira T.P. Vanhaecke F. Leybourne M.I. Emerging applications of high-precision Cu isotopic analysis by MC-ICP-MS. Sci. Total Environ. 2022 838 Pt 2 156084 10.1016/j.scitotenv.2022.156084 35605848
    [Google Scholar]
  30. Leme A.B.P. Bianchi S.R. Carneiro R.L. Nogueira A.R.A. Optimization of sample preparation in the determination of minerals and trace elements in honey by ICP-MS. Food Anal. Methods 2014 7 5 1009 1015 10.1007/s12161‑013‑9706‑5
    [Google Scholar]
  31. Kilic S. Soylak M. Determination of trace element contaminants in herbal teas using ICP-MS by different sample preparation method. J. Food Sci. Technol. 2020 57 3 927 933 10.1007/s13197‑019‑04125‑6 32123413
    [Google Scholar]
  32. Elemental impurities in drug products guidance for industry. Available from:https://www.fda.gov/media/98847/download(accessed on 8-10-2024)
  33. Impurities in new drug substances Q3A(R2). Available from:https://database.ich.org/sites/default/files/Q3A_R2__Guideline.pdf(accessed on 8-10-2024)
  34. Impurities in new drug products Q3B(R2). Available from:https://database.ich.org/sites/default/files/Q3B_R2__Guideline.pdf(accessed on 8-10-2024)
  35. Available from:https://database.ich.org/sites/default/files/Q3CR6_Guideline_ErrorCorrection_2019_0410_0.pdf(accessed on 8-10-2024)
  36. Available from:https://database.ich.org/sites/default/files/Q3DR1EWG_Document_Step4_Guideline_2019_0322.pdf(accessed on 8-10-2024)
  37. Patil P.P. Kasture V.S. Prakash K.V. Impurity profiling emerging trends in quality control of pharmaceuticals. Int J Pharm Chem 2015 5 1 1 10
    [Google Scholar]
  38. Aleluia A.C.M. Nascimento M.S. dos Santos A.M.P. dos Santos W.N.L. de Freitas Santos Júnior A. Ferreira S.L.C. Analytical approach of elemental impurities in pharmaceutical products: A worldwide review. Spectrochim. Acta B At. Spectrosc. 2023 205 106689 10.1016/j.sab.2023.106689
    [Google Scholar]
  39. Barin J.S. Mello P.A. Mesko M.F. Duarte F.A. Flores E.M.M. Determination of elemental impurities in pharmaceutical products and related matrices by ICP-based methods: a review. Anal. Bioanal. Chem. 2016 408 17 4547 4566 10.1007/s00216‑016‑9471‑6 27020927
    [Google Scholar]
  40. Butler D.A. Biagi M. Tan X. Qasmieh S. Bulman Z.P. Wenzler E. Multidrug resistant Acinetobacter baumannii: resistance by any other name would still be hard to treat. Curr. Infect. Dis. Rep. 2019 21 12 46 10.1007/s11908‑019‑0706‑5 31734740
    [Google Scholar]
  41. Jeong S. Hong J.S. Kim J.O. Kim K.H. Lee W. Bae I.K. Lee K. Jeong S.H. Identification of Acinetobacter Species Using Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry. Ann. Lab. Med. 2016 36 4 325 334 10.3343/alm.2016.36.4.325 27139605
    [Google Scholar]
  42. Katakam L.N.R. Aboul-Enein H.Y. Elemental impurities determination by ICP-AES/ICP-MS: A review of theory, interpretation of concentration limits, analytical method development challenges and validation criterion for pharmaceutical dosage forms. Curr. Pharm. Anal. 2020 16 4 392 403 10.2174/1573412915666190225160512
    [Google Scholar]
  43. USP 42–NF 37 Commentary. 2019 Available from: https://www.uspnf.com/official-text/proposal-statuscommentary/usp42-nf37(accessed on 8-10-2024)
  44. Chaurasia G.A. review on pharmaceutical preformulation studies in formulation and development of new drug molecules. Int. J. Pharm. Sci. Res. 2016 7 6 2313 2320
    [Google Scholar]
  45. Hassan N.M. Rasmussen P.E. Dabek-Zlotorzynska E. Celo V. Chen H. Analysis of environmental samples using microwave-assisted acid digestion and inductively coupled plasma mass spectrometry: maximizing total element recoveries. Water Air Soil Pollut. 2007 178 1-4 323 334 10.1007/s11270‑006‑9201‑3
    [Google Scholar]
  46. Chahrour O. Malone J. Collins M. Salmon V. Greenan C. Bombardier A. Ma Z. Dunwoody N. Development and validation of an ICP-MS method for the determination of elemental impurities in TP-6076 active pharmaceutical ingredient (API) according to USP 〈232〉/〈233〉. J. Pharm. Biomed. Anal. 2017 145 84 90 10.1016/j.jpba.2017.06.045 28654780
    [Google Scholar]
  47. Zhou J. Guo W. Jin L. Hu S. Elemental analysis of solid food materials using a reliable laser ablation inductively coupled plasma mass spectrometry method. J. Agric. Food Chem. 2022 70 15 4765 4773 10.1021/acs.jafc.1c06262 35385276
    [Google Scholar]
  48. Rudovica V. Viksna A. Actins A. Application of LA-ICP-MS as a rapid tool for analysis of elemental impurities in active pharmaceutical ingredients. J. Pharm. Biomed. Anal. 2014 91 119 122 10.1016/j.jpba.2013.12.025 24440826
    [Google Scholar]
  49. Pluháček T. Ručka M. Maier V. A direct LA-ICP-MS screening of elemental impurities in pharmaceutical products in compliance with USP and ICH-Q3D. Anal. Chim. Acta 2019 1078 1 7 10.1016/j.aca.2019.06.004 31358206
    [Google Scholar]
  50. Araujo-Barbosa U. Peña-Vazquez E. Barciela-Alonso M.C. Costa Ferreira S.L. Pinto dos Santos A.M. Bermejo-Barrera P. Simultaneous determination and speciation analysis of arsenic and chromium in iron supplements used for iron-deficiency anemia treatment by HPLC-ICP-MS. Talanta 2017 170 523 529 10.1016/j.talanta.2017.04.034 28501206
    [Google Scholar]
  51. Kang L. Tian Y. Xu S. Chen H. Oxaliplatin-induced peripheral neuropathy: clinical features, mechanisms, prevention and treatment. J. Neurol. 2021 268 9 3269 3282 10.1007/s00415‑020‑09942‑w 32474658
    [Google Scholar]
  52. Švecová P. Baron D. Schug K.A. Pluháček T. Petr J. Ultra-trace determination of oxaliplatin impurities by sweeping-MEKC-ICP-MS. Microchem. J. 2022 172 106967 10.1016/j.microc.2021.106967
    [Google Scholar]
  53. Milde D. Pluháček T. Kuba M. Součková J. Bettencourt da Silva R.J.N. Measurement uncertainty evaluation from correlated validation data: Determination of elemental impurities in pharmaceutical products by ICP-MS. Talanta 2020 220 121386 10.1016/j.talanta.2020.121386 32928409
    [Google Scholar]
  54. Ganta S. Rao T.S. Srinivas K.R. Suman P. Determination of elemental impurities in valproic acid an epilepsy drug by using ICP-MS. J. Trace Elem. Med. Biol. 2022 2 100036
    [Google Scholar]
  55. Gu X. Zhu S. Yan L. Cheng L. Zhu P. Zheng J. Development of a sample preparation method for accurate analysis of 24 elemental impurities in oral drug products by ICP-MS according to USP/ICH guidelines. J. Anal. At. Spectrom. 2021 36 3 512 517 10.1039/D0JA00519C
    [Google Scholar]
  56. Pinheiro F.C. Babos D.V. Barros A.I. Pereira-Filho E.R. Nóbrega J.A. Microwave-assisted digestion using dilute nitric acid solution and investigation of calibration strategies for determination of As, Cd, Hg and Pb in dietary supplements using ICP-MS. J. Pharm. Biomed. Anal. 2019 174 471 478 10.1016/j.jpba.2019.06.018 31228850
    [Google Scholar]
  57. Shchukin V.M. Zhigilei E.S. Erina A.A. Shvetsova Y.N. Kuz’mina N.E. Luttseva A.I. Validation of an ICP-MS method for the determination of mercury, lead, cadmium, and arsenic in medicinal plants and related drug preparations. Pharm. Chem. J. 2020 54 9 968 976 10.1007/s11094‑020‑02306‑8
    [Google Scholar]
  58. Infante V.H.P. Calixto L.S. Campos P.M.B.G.M. Cosmetics consumption behaviour among men and women and the importance in products indication and treatment adherence. Surgical & Cosmetic Dermatology 2016 8 2 231 241 10.5935/scd1984‑8773.201682817
    [Google Scholar]
  59. Kilic S. Kilic M. Soylak M. The determination of toxic metals in some traditional cosmetic products and health risk assessment. Biol. Trace Elem. Res. 2021 199 6 2272 2277 10.1007/s12011‑020‑02357‑8 32888120
    [Google Scholar]
  60. Bobaker A.M. Alakili I. Sarmani S.B. Al-Ansari N. Yaseen Z.M. Determination and assessment of the toxic heavy metal elements abstracted from the traditional plant cosmetics and medical remedies: case study of Libya. Int. J. Environ. Res. Public Health 2019 16 11 1957 10.3390/ijerph16111957 31159472
    [Google Scholar]
  61. Cubadda F. Inductively coupled plasma-mass spectrometry for the determination of elements and elemental species in food: a review. J. AOAC Int. 2004 87 1 173 204 10.1093/jaoac/87.1.173 15084102
    [Google Scholar]
  62. Wilschefski S. Baxter M. Inductively Coupled Plasma Mass Spectrometry: Introduction to Analytical Aspects. Clin. Biochem. Rev. 2019 40 3 115 133 10.33176/AACB‑19‑00024 31530963
    [Google Scholar]
  63. Khan A. Khan S. Khan M.A. Qamar Z. Waqas M. The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: a review. Environ. Sci. Pollut. Res. Int. 2015 22 18 13772 13799 10.1007/s11356‑015‑4881‑0 26194234
    [Google Scholar]
  64. Sonone S.S. Jadhav S. Sankhla M.S. Kumar R. Water contamination by heavy metals and their toxic effect on aquaculture and human health through food Chain. Lett. Appl. NanoBioScience 2020 10 2 2148 2166
    [Google Scholar]
  65. van Rompay T.J.L. Deterink F. Fenko A. Healthy package, healthy product? Effects of packaging design as a function of purchase setting. Food Qual. Prefer. 2016 53 84 89 10.1016/j.foodqual.2016.06.001
    [Google Scholar]
  66. Embuscado M.E. Spices and herbs: Natural sources of antioxidants – a mini review. J. Funct. Foods 2015 18 811 819 10.1016/j.jff.2015.03.005
    [Google Scholar]
  67. Shim J. Cho T. Leem D. Cho Y. Lee C. Heavy metals in spices commonly consumed in Republic of Korea. Food Addit. Contam. Part B Surveill. 2019 12 1 52 58 10.1080/19393210.2018.1546772 30466367
    [Google Scholar]
  68. Tokalıoğlu Ş. Çiçek B. İnanç N. Zararsız G. Öztürk A. Multivariate statistical analysis of data and ICP-MS determination of heavy metals in different brands of spices consumed in Kayseri, Turkey. Food Anal. Methods 2018 11 9 2407 2418 10.1007/s12161‑018‑1209‑y
    [Google Scholar]
  69. Hassan S. Mazhar W. Farooq S. Ali A. Musharraf S.G. Assessment of heavy metals in calcium carbide treated mangoes by inductively coupled plasma-mass spectrometry (ICP-MS). Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2019 36 12 1769 1776 10.1080/19440049.2019.1671990 31603735
    [Google Scholar]
  70. Tsenang M. Pheko-ofitlhile T. Mokgadi J. Masamba W. Phokedi G.N. A validated ICP-MS method for the screening and quantitative analysis of heavy metal contaminants in home-brewed alcoholic beverages of Botswana. Food Hum. 2023 1 1125 1133
    [Google Scholar]
  71. Husáková L. Urbanová I. Šrámková J. Černohorský T. Krejčová A. Bednaříková M. Frýdová E. Nedělková I. Pilařová L. Analytical capabilities of inductively coupled plasma orthogonal acceleration time-of-flight mass spectrometry (ICP-oa-TOF-MS) for multi-element analysis of food and beverages. Food Chem. 2011 129 3 1287 1296 10.1016/j.foodchem.2011.05.047 25212369
    [Google Scholar]
  72. Sekar R. Selvasekaran P. Kar A. Varalwar T. Godli C. Chidambaram R. Lactose-free food products for lactose intolerant children. Food Sci. Technol. Nutr. Babies Children 2020 2020 143 168 10.1007/978‑3‑030‑35997‑3_7
    [Google Scholar]
  73. Goonathilaka P.D. Abeysundara P.D. Jayasinghe M.A. Development of a value-added rice milk by utilizing selected traditional and improved rice varieties in Sri Lanka. Food chem. Advances 2023 2 100319
    [Google Scholar]
  74. da Rosa F.C. Nunes M.A.G. Duarte F.A. Flores É.M.M. Hanzel F.B. Vaz A.S. Pozebon D. Dressler V.L. Arsenic speciation analysis in rice milk using LC-ICP-MS. Food Chem. X 2019 2 100028 10.1016/j.fochx.2019.100028 31432014
    [Google Scholar]
  75. Druzian G.T. Nascimento M.S. Cerqueira U.M.F.M. Novaes C.G. Bezerra M.A. Duarte F.A. Flores E.M.M. Determination of Cl, Br and I in granola: Development of an accurate analytical method using ICP-MS. Food Chem. 2021 344 128677 10.1016/j.foodchem.2020.128677 33261993
    [Google Scholar]
  76. Lee J. Park Y.S. Lee D.Y. Fast and green microwave-assisted digestion with diluted nitric acid and hydrogen peroxide and subsequent determination of elemental composition in brown and white rice by ICP-MS and ICP-OES. Lebensm. Wiss. Technol. 2023 173 114351 10.1016/j.lwt.2022.114351
    [Google Scholar]
  77. Mohamed R. Zainudin B.H. Yaakob A.S. Method validation and determination of heavy metals in cocoa beans and cocoa products by microwave assisted digestion technique with inductively coupled plasma mass spectrometry. Food Chem. 2020 303 125392 10.1016/j.foodchem.2019.125392 31446362
    [Google Scholar]
  78. Albals D. Al-Momani I.F. Issa R. Yehya A. Multi-element determination of essential and toxic metals in green and roasted coffee beans: A comparative study among different origins using ICP-MS. Sci. Prog. 2021 104 2 00368504211026162 10.1177/00368504211026162 34152891
    [Google Scholar]
  79. Telloli C. Tagliavini S. Passarini F. Salvi S. Rizzo A. ICP-MS triple quadrupole as analytical technique to define trace and ultra-trace fingerprint of extra virgin olive oil. Food Chem. 2023 402 134247 10.1016/j.foodchem.2022.134247 36152560
    [Google Scholar]
  80. Jiang L. Zhou J. Guo W. Jin L. Hu S. Multi-element analysis of solid food materials via mixed standards pellet laser ablation inductively coupled plasma mass spectrometry. J. Food Compos. Anal. 2023 123 105539 10.1016/j.jfca.2023.105539
    [Google Scholar]
  81. Lange K.W. Nakamura Y. Edible insects as future food: chances and challenges. Journal of Future Foods 2021 1 1 38 46 10.1016/j.jfutfo.2021.10.001
    [Google Scholar]
  82. An J.M. Hur S.H. Kim H. Lee J.H. Kim Y.K. Sim K.S. Lee S.E. Kim H.J. Determination of the geographical origin of chicken (breast and drumstick) using ICP-OES and ICP-MS: Chemometric analysis. Food Chem. 2024 437 Pt 1 137836 10.1016/j.foodchem.2023.137836 37924759
    [Google Scholar]
  83. Habte G. Choi J.Y. Nho E.Y. Oh S.Y. Khan N. Choi H. Park K.S. Kim K.S. Determination of toxic heavy metal levels in commonly consumed species of shrimp and shellfish using ICP-MS/OES. Food Sci. Biotechnol. 2015 24 1 373 378 10.1007/s10068‑015‑0049‑4
    [Google Scholar]
  84. Hwang I.M. Lee H.M. Lee H.W. Jung J.H. Moon E.W. Khan N. Kim S.H. Determination of toxic elements and arsenic species in salted foods and sea salt by ICP–MS and HPLC–ICP–MS. ACS Omega 2021 6 30 19427 19434 10.1021/acsomega.1c01273 34368530
    [Google Scholar]
  85. Jamila N. Khan N. Hwang I.M. Park Y.M. Hyun Lee G. Choi J.Y. Cho M.J. Park K.S. Kim K.S. Elemental analysis of crustaceans by inductively coupled plasma–mass spectrometry (ICP-MS) and direct mercury analysis. Anal. Lett. 2022 55 1 159 173 10.1080/00032719.2021.1895188
    [Google Scholar]
  86. Zhao H. Xia B. Fan C. Zhao P. Shen S. Human health risk from soil heavy metal contamination under different land uses near Dabaoshan Mine, Southern China. Sci. Total Environ. 2012 417-418 45 54 10.1016/j.scitotenv.2011.12.047 22257507
    [Google Scholar]
  87. Kılıç Altun S. Dinç H. Temamoğulları F.K. Paksoy N. Analyses of essential elements and heavy metals by using ICP-MS in maternal breast milk from Şanlıurfa, Turkey. Int. J. Anal. Chem. 2018 2018 1 1784073 29849639
    [Google Scholar]
  88. Rahman Z. Singh V.P. The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: an overview. Environ. Monit. Assess. 2019 191 7 419 10.1007/s10661‑019‑7528‑7 31177337
    [Google Scholar]
  89. Magni L.F. Castro L.N. Rendina A.E. Evaluation of heavy metal contamination levels in river sediments and their risk to human health in urban areas: A case study in the Matanza-Riachuelo Basin, Argentina. Environ. Res. 2021 197 110979 10.1016/j.envres.2021.110979 33711323
    [Google Scholar]
  90. Kowa E. Telk A. Wieczorek M. Flow techniques in the analysis of biological samples by inductively coupled plasma mass spectrometry – a review. J. Anal. At. Spectrom. 2024 39 4 1004 1023 10.1039/D3JA00412K
    [Google Scholar]
  91. Arica E. Yuksel B. Yener I. Dolak I. Gok E. Yilmaz E. ICP-MS determination of lead levels in autopsy liver samples: An application in forensic medicine. Spectroscopy (Springf.) 2018 39 2 62 66
    [Google Scholar]
  92. Riisom M. Gammelgaard B. Lambert I.H. Stürup S. Development and validation of an ICP-MS method for quantification of total carbon and platinum in cell samples and comparison of open-vessel and microwave-assisted acid digestion methods. J. Pharm. Biomed. Anal. 2018 158 144 150 10.1016/j.jpba.2018.05.038 29870891
    [Google Scholar]
  93. McGeehan S. Baszler T. Gaskill C. Johnson J. Smith L. Raisbeck M. Schrier N. Harris H. Talcott P. Interlaboratory comparison of heavy metal testing in animal diagnostic specimens and feed using inductively coupled plasma–mass spectrometry. J. Vet. Diagn. Invest. 2020 32 2 291 300 10.1177/1040638720903115 32052705
    [Google Scholar]
  94. Feisal N.A. Hashim Z. Jalaludin J. How V. Hashim J.H. The Determination of Heavy Metals Concentration in Hair by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). J. Environ. Anal. Toxicol. 2019 9 1 1 4
    [Google Scholar]
  95. Bertram J. Esser A. Thoröe-Boveleth S. Fohn N. Schettgen T. Kraus T. Quantification of 26 metals in human urine samples using ICP-MSMS in a random sample collective of an occupational and environmental health care center in Aachen, Germany. J. Trace Elem. Med. Biol. 2023 78 127161 10.1016/j.jtemb.2023.127161 37001205
    [Google Scholar]
  96. Montoro-Leal P. García-Mesa J.C. Morales-Benítez I. García de Torres A. Vereda Alonso E. Semiautomatic method for the ultra-trace arsenic speciation in environmental and biological samples via magnetic solid phase extraction prior to HPLC-ICP-MS determination. Talanta 2021 235 122769 10.1016/j.talanta.2021.122769 34517627
    [Google Scholar]
  97. Grassin-Delyle S. Martin M. Hamzaoui O. Lamy E. Jayle C. Sage E. Etting I. Devillier P. Alvarez J.C. A high-resolution ICP-MS method for the determination of 38 inorganic elements in human whole blood, urine, hair and tissues after microwave digestion. Talanta 2019 199 228 237 10.1016/j.talanta.2019.02.068 30952251
    [Google Scholar]
  98. Abduljabbar T.N. Sharp B.L. Reid H.J. Barzegar-Befroeid N. Peto T. Lengyel I. Determination of Zn, Cu and Fe in human patients’ serum using micro-sampling ICP-MS and sample dilution. Talanta 2019 204 663 669 10.1016/j.talanta.2019.05.098 31357350
    [Google Scholar]
  99. Pechancová R. Gallo J. Milde D. Pluháček T. Ion-exchange HPLC-ICP-MS: A new window to chromium speciation in biological tissues. Talanta 2020 218 121150 10.1016/j.talanta.2020.121150 32797905
    [Google Scholar]
  100. Procópio V.A. Pereira R.M. Lange C.N. Freire B.M. Batista B.L. Chromium Speciation by HPLC-DAD/ICP-MS: Simultaneous Hyphenation of Analytical Techniques for Studies of Biomolecules. Int. J. Environ. Res. Public Health 2023 20 6 4912 10.3390/ijerph20064912 36981823
    [Google Scholar]
/content/journals/cac/10.2174/0115734110333019241114050058
Loading
/content/journals/cac/10.2174/0115734110333019241114050058
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: pharmaceutical ; food analysis ; ICP-MS ; Heavy metals ; biological samples
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test