Skip to content
2000
image of Fabrication of Surface-Enhanced Raman Scattering (SERS) Substrates in Analytical Science by Natural-inspired Materials: A Review

Abstract

Surface-Enhanced Raman Scattering (SERS) spectroscopy, as a novel rapid detection technology, offers molecular fingerprinting capabilities that achieve trace-level detection. The key to optimizing SERS sensitivity and reliability lies in the precise control of the nanostructures of SERS substrates. Nature, through billions of years of evolution, has served as a masterful creator, developing organisms with remarkable abilities based on micro/nanostructures, such as the superhydrophobicity of lotus leaves and the strong adhesive forces of gecko feet. This review categorizes the recent developments in SERS substrates inspired by natural materials into three main types: plant-based, animal-based, and virus-based. Each category is explored in detail, describing how their unique nanoarchitectures inspire the development of highly sensitive SERS substrates, along with their fabrication methods and applications in analytical science. Additionally, the review identifies current challenges, such as the uniformity and scalability of naturally inspired SERS substrates and suggests future directions, including the integration of hybrid biomimetic structures and advanced manufacturing techniques. By fostering a deeper understanding of these nature-inspired materials, we aim to enhance the practical application of SERS in analytical science in the future.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110331157241003103106
2024-10-09
2024-11-23
Loading full text...

Full text loading...

References

  1. Raman C.V. Krishnan K.S. A new type of secondary radiation. Nature 1928 121 3048 501 502 10.1038/121501c0
    [Google Scholar]
  2. Fleischmann M. Hendra P.J. McQuillan A.J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974 26 2 163 166 10.1016/0009‑2614(74)85388‑1
    [Google Scholar]
  3. Jeanmaire D.L. Van Duyne R.P. Surface raman spectroelectrochemistry. J. Electroanal. Chem. Interfacial Electrochem. 1977 84 1 1 20 10.1016/S0022‑0728(77)80224‑6
    [Google Scholar]
  4. Bell S.E.J. Charron G. Cortés E. Kneipp J. de la Chapelle M.L. Langer J. Procházka M. Tran V. Schlücker S. Towards reliable and quantitative surface‐enhanced Raman scattering (SERS): From key parameters to good analytical practice. Angew. Chem. Int. Ed. 2020 59 14 5454 5462 10.1002/anie.201908154 31588641
    [Google Scholar]
  5. Columbus S. Hamdi A. Ramachandran K. Daoudi K. Dogheche E.H. Gaidi M. Rapid and ultralow level SERS detection of ethylparaben using silver nanoprisms functionalized sea urchin-like Zinc oxide nanorod arrays for food safety analysis. Sens. Actuators A Phys. 2022 347 113962 10.1016/j.sna.2022.113962
    [Google Scholar]
  6. Wang W. Lu J. Gu J. Xie L. Chang J. Zou B. Wang F. Liu G. Tian Z. Rapid qualitative and quantitative analysis of trace aconitum phytotoxin by SERS. Food Chem. 2022 391 133234 10.1016/j.foodchem.2022.133234 35605540
    [Google Scholar]
  7. Lin X.M. Cui Y. Xu Y.H. Ren B. Tian Z.Q. Surface-enhanced Raman spectroscopy: Substrate-related issues. Anal. Bioanal. Chem. 2009 394 7 1729 1745 10.1007/s00216‑009‑2761‑5 19381618
    [Google Scholar]
  8. De Angelis F. Gentile F. Mecarini F. Das G. Moretti M. Candeloro P. Coluccio M.L. Cojoc G. Accardo A. Liberale C. Zaccaria R.P. Perozziello G. Tirinato L. Toma A. Cuda G. Cingolani R. Di Fabrizio E. Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures. Nat. Photonics 2011 5 11 682 687 10.1038/nphoton.2011.222
    [Google Scholar]
  9. Katiyar N.K. Goel G. Hawi S. Goel S. Nature-inspired materials: Emerging trends and prospects. NPG Asia Mater. 2021 13 1 56 10.1038/s41427‑021‑00322‑y
    [Google Scholar]
  10. Wang X. Chen C. Wang R. Qiao X. Waterhouse G.I.N. Xu Z. Performance evaluation of novel Ag@GO-biomaterial SERS substrates for the ultrasensitive detection of neomycin in foods. Sens. Actuators B Chem. 2023 380 133250 10.1016/j.snb.2022.133250
    [Google Scholar]
  11. Barshutina M. Doroshina N. Baizhumanov A. Nikelshparg E. Fedotova A. Popov A. Semyanov A. Yakubovsky D. Tselikov G. Luneva O. Kirilyuk I. Maksimov G. Volkov V. Arsenin A. Brazhe N. Novikov S. SERS substrates based on rose petal replicas for the oxidative stress detection. Appl. Surf. Sci. 2023 626 157281 10.1016/j.apsusc.2023.157281
    [Google Scholar]
  12. Cheng Y.W. Hsiao C.W. Lin C.H. Huang L.Y. Chen J.S. Yang M.C. Liu T.Y. Bionic 3D periodic nanostructures by Ag nano-islands deposited on cicada wings for rapid SERS detection. Surf. Coat. Tech. 2022 436 128323 10.1016/j.surfcoat.2022.128323
    [Google Scholar]
  13. Wang M. Shi G. Zhu J. Zhu Y. Sun X. Wang P. Jiao T. Li R. Preparation of a novel SERS platform based on mantis wing with high-density and multi-level “Hot Spots”. Nanomaterials (Basel) 2019 9 5 672 10.3390/nano9050672 31052374
    [Google Scholar]
  14. Fan M. Andrade G.F.S. Brolo A.G. A review on recent advances in the applications of surface-enhanced Raman scattering in analytical chemistry. Anal. Chim. Acta 2020 1097 1 29 10.1016/j.aca.2019.11.049 31910948
    [Google Scholar]
  15. Hu B. Pu H. Sun D.W. Multifunctional cellulose based substrates for SERS smart sensing: Principles, applications and emerging trends for food safety detection. Trends Food Sci. Technol. 2021 110 304 320 10.1016/j.tifs.2021.02.005
    [Google Scholar]
  16. Nilghaz A. Mahdi Mousavi S. Amiri A. Tian J. Cao R. Wang X. Surface-enhanced Raman spectroscopy substrates for food safety and quality analysis. J. Agric. Food Chem. 2022 70 18 5463 5476 10.1021/acs.jafc.2c00089 35471937
    [Google Scholar]
  17. Ott C.E. Arroyo L.E. Transitioning surface‐enhanced Raman spectroscopy (SERS) into the forensic drug chemistry and toxicology laboratory: Current and future perspectives. Wiley Interdiscip. Rev. Forensic Sci. 2023 e1483
    [Google Scholar]
  18. Wu J. Zhang L. Huang F. Ji X. Dai H. Wu W. Surface enhanced Raman scattering substrate for the detection of explosives: Construction strategy and dimensional effect. J. Hazard. Mater. 2020 387 121714 10.1016/j.jhazmat.2019.121714 31818672
    [Google Scholar]
  19. Ensikat H.J. Ditsche-Kuru P. Neinhuis C. Barthlott W. Superhydrophobicity in perfection: The outstanding properties of the lotus leaf. Beilstein J. Nanotechnol. 2011 2 1 152 161 10.3762/bjnano.2.19 21977427
    [Google Scholar]
  20. Lewis R.V. Spider silk: Ancient ideas for new biomaterials. Chem. Rev. 2006 106 9 3762 3774 10.1021/cr010194g 16967919
    [Google Scholar]
  21. Kong T. Luo G. Zhao Y. Liu Z. Bioinspired superwettability micro/nanoarchitectures: Fabrications and applications. Adv. Funct. Mater. 2019 29 11 1808012 10.1002/adfm.201808012
    [Google Scholar]
  22. Huang J.A. Zhang Y.L. Zhao Y. Zhang X.L. Sun M.L. Zhang W. Superhydrophobic SERS chip based on a Ag coated natural taro-leaf. Nanoscale 2016 8 22 11487 11493 10.1039/C6NR03285K 27199255
    [Google Scholar]
  23. Wang L. Qiang Z. Numerical characterization of surface structures of slippery zone in Nepenthes alata pitchers and its mechanism of reducing locust’s attachment. Adv. Nat. Sci. 2010 3 2 152 160 10.3968/j.ans.1715787020100302.017.
    [Google Scholar]
  24. Yao L. Dai P. Ouyang L. Zhu L. A sensitive and reproducible SERS sensor based on natural lotus leaf for paraquat detection. Microchem. J. 2021 160 105728 10.1016/j.microc.2020.105728
    [Google Scholar]
  25. Shi G. Wang M. Zhu Y. Wang Y. Xu H. A novel natural SERS system for crystal violet detection based on graphene oxide wrapped Ag micro-islands substrate fabricated from Lotus leaf as a template. Appl. Surf. Sci. 2018 459 802 811 10.1016/j.apsusc.2018.08.065
    [Google Scholar]
  26. Zhu Z. Shi X. Feng Y. He M. Ye C. Zhou H. Zhang M. Zhang W. Li J. Jiang C. Lotus leaf mastoid inspired Ag micro/nanoarrays on PDMS film as flexible SERS sensor for in-situ analysis of pesticide residues on nonplanar surfaces. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023 288 122211 10.1016/j.saa.2022.122211 36502762
    [Google Scholar]
  27. Zhuang S. Cheng J. Chen S. Li Y. Ding D. Yu Z. Xie Y. Lotus leaf-inspired biomimetic SERS substrate for detection of thiram on apple. Food Biosci. 2024 58 103818 10.1016/j.fbio.2024.103818
    [Google Scholar]
  28. Xu B.B. Zhang Y.L. Zhang W.Y. Liu X.Q. Wang J.N. Zhang X.L. Zhang D.D. Jiang H.B. Zhang R. Sun H.B. Silver‐coated rose petal: Green, facile, low‐cost and sustainable fabrication of a SERS substrate with unique superhydrophobicity and high efficiency. Adv. Opt. Mater. 2013 1 1 56 60 10.1002/adom.201200019
    [Google Scholar]
  29. Chou S.Y. Yu C.C. Yen Y.T. Lin K.T. Chen H.L. Su W.F. Romantic Story or Raman Scattering? Rose petals as ecofriendly, low-cost substrates for ultrasensitive surface-enhanced raman scattering. Anal. Chem. 2015 87 12 6017 6024 10.1021/acs.analchem.5b00551 26043267
    [Google Scholar]
  30. Zhang C. Chen S. Wang J. Shi Z. Du L. Reproducible flexible SERS substrates inspired by bionic micro‐nano hierarchical structures of rose petals. Adv. Mater. Interfaces 2022 9 13 2102468 10.1002/admi.202102468
    [Google Scholar]
  31. Sammi H. Sardana N. Reusable, flexible, facile, and economical SERS substrates based on rose petal replicas for pesticide detection. Sens. Actuators A Phys. 2023 362 114638 10.1016/j.sna.2023.114638
    [Google Scholar]
  32. Kumar P. Khosla R. Soni M. Deva D. Sharma S.K. A highly sensitive, flexible SERS sensor for malachite green detection based on Ag decorated microstructured PDMS substrate fabricated from Taro leaf as template. Sens. Actuators B Chem. 2017 246 477 486 10.1016/j.snb.2017.01.202
    [Google Scholar]
  33. Yang F. Zhang H. Feng H. Dong J. Wang C. Liu Q. Bionic SERS chip with super-hydrophobic and plasmonic micro/nano dual structure. Photon. Res. 2018 6 2 77 83 10.1364/PRJ.6.000077
    [Google Scholar]
  34. Yang S. Dai X. Stogin B.B. Wong T.S. Ultrasensitive surface-enhanced Raman scattering detection in common fluids. Proc. Natl. Acad. Sci. USA 2016 113 2 268 273 10.1073/pnas.1518980113 26719413
    [Google Scholar]
  35. Lin Y.T. Wu C.H. Syu W.L. Ho P.C. Tseng Z.L. Yang M.C. Lin C.C. Chen C.C. Chen C.C. Liu T.Y. Replica of bionic nepenthes peristome-like and anti-fouling structures for self-driving water and raman-enhancing detection. Polymers (Basel) 2022 14 12 2465 10.3390/polym14122465 35746042
    [Google Scholar]
  36. Huang J. Chen F. Zhang Q. Zhan Y. Ma D. Xu K. Zhao Y. 3D silver nanoparticles decorated zinc oxide/silicon heterostructured nanomace arrays as high-performance surface-enhanced Raman scattering substrates. ACS Appl. Mater. Interfaces 2015 7 10 5725 5735 10.1021/am507857x 25731067
    [Google Scholar]
  37. Huang J. Ma D. Chen F. Bai M. Xu K. Zhao Y. Ag nanoparticles decorated cactus-Like Ag Dendrites/Si nanoneedles as highly efficient 3D surface-enhanced Raman scattering substrates toward sensitive sensing. Anal. Chem. 2015 87 20 10527 10534 10.1021/acs.analchem.5b02788 26406111
    [Google Scholar]
  38. Li H. Yang Q. Hou J. Li Y. Li M. Song Y. Bioinspired Micropatterned Superhydrophilic Au‐Areoles for Surface‐Enhanced Raman Scattering (SERS) Trace Detection. Adv. Funct. Mater. 2018 28 21 1800448 10.1002/adfm.201800448
    [Google Scholar]
  39. Chen W. Li C. Yu Z. Song Y. Zhang X. Ni D. Zhang D. Liang P. Optimum synthesis of cactus-inspired SERS substrate with high roughness for paraquat detection. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022 268 120703 10.1016/j.saa.2021.120703 34896679
    [Google Scholar]
  40. Lu Y. Bi Z. Shang G. Facile Method to Fabricate Cactus-like Ag NPs/CuO/Cu 2 O Nanocomposites for Recyclable SERS Detection of Trace Carbendazim Residues. ACS Appl. Nano Mater. 2022 5 12 17806 17818 10.1021/acsanm.2c03769
    [Google Scholar]
  41. Sharma V. Krishnan V. Fabrication of highly sensitive biomimetic SERS substrates for detection of herbicides in trace concentration. Sens. Actuators B Chem. 2018 262 710 719 10.1016/j.snb.2018.01.230
    [Google Scholar]
  42. Sharma V. Kumar S. Jaiswal A. Krishnan V. Gold Deposited Plant Leaves for SERS: Role of Surface Morphology, Wettability and Deposition Technique in Determining the Enhancement Factor and Sensitivity of Detection. ChemistrySelect 2017 2 1 165 174 10.1002/slct.201601451
    [Google Scholar]
  43. Li J. Yan H. Tan X. Lu Z. Han H. Cauliflower-Inspired 3D SERS Substrate for Multiple Mycotoxins Detection. Anal. Chem. 2019 91 6 3885 3892 10.1021/acs.analchem.8b04622 30793591
    [Google Scholar]
  44. Guo L. Cao H. Cao L. Yang Y. Wang M. SERS study of wheat leaves substrates with two different structures. Opt. Commun. 2022 510 127921 10.1016/j.optcom.2022.127921
    [Google Scholar]
  45. Jin B. He J. Li J. Zhang Y. Lotus Seedpod Inspired SERS Substrates: A Novel Platform Consisting of 3D Sub‐10 nm Annular Hot Spots for Ultrasensitive SERS Detection. Adv. Opt. Mater. 2018 6 13 1800056 10.1002/adom.201800056
    [Google Scholar]
  46. Wang Y. Zhang M. Feng L. Dong B. Xu T. Li D. Jiang L. Chi L. Tape‐Imprinted Hierarchical Lotus Seedpod‐Like Arrays for Extraordinary Surface‐Enhanced Raman Spectroscopy. Small 2019 15 19 1804527 10.1002/smll.201804527 30957406
    [Google Scholar]
  47. Oomen P.E. Mulder J.P.S.H. Verpoorte E. Oleschuk R.D. Controlled, synchronized actuation of microdroplets by gravity in a superhydrophobic, 3D-printed device. Anal. Chim. Acta 2017 988 50 57 10.1016/j.aca.2017.08.010 28916103
    [Google Scholar]
  48. Zhang Q.X. Chen Y.X. Guo Z. Liu H.L. Wang D.P. Huang X.J. Bioinspired multifunctional hetero-hierarchical micro/nanostructure tetragonal array with self-cleaning, anticorrosion, and concentrators for the SERS detection. ACS Appl. Mater. Interfaces 2013 5 21 10633 10642 10.1021/am403534z 24080041
    [Google Scholar]
  49. Law J.B.K. Ng A.M.H. He A.Y. Low H.Y. Bioinspired ultrahigh water pinning nanostructures. Langmuir 2014 30 1 325 331 10.1021/la4034996 24358957
    [Google Scholar]
  50. Li L. Chin W.S. Rapid Fabrication of a Flexible and Transparent Ag Nanocubes@PDMS Film as a SERS Substrate with High Performance. ACS Appl. Mater. Interfaces 2020 12 33 37538 37548 10.1021/acsami.0c07178 32701289
    [Google Scholar]
  51. Ma X. Xie J. Wang Z. Zhang Y. Transparent and flexible AuNSs/PDMS-based SERS substrates for in-situ detection of pesticide residues. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022 267 Pt 2 120542 10.1016/j.saa.2021.120542 34749261
    [Google Scholar]
  52. Wang Y. Chen C. Lu J. Liu J. Zhai J. Zhao H. Lu N. Fabrication of rose-petal-like flexible substrate for rapid sampling and in-situ Raman detection. Sens. Actuators B Chem. 2024 402 135087 10.1016/j.snb.2023.135087
    [Google Scholar]
  53. Kumar M. Bhardwaj R. Wetting characteristics of Colocasia esculenta (Taro) leaf and a bioinspired surface thereof. Sci. Rep. 2020 10 1 935 10.1038/s41598‑020‑57410‑2 31969578
    [Google Scholar]
  54. Chen H. Zhang P. Zhang L. Liu H. Jiang Y. Zhang D. Han Z. Jiang L. Continuous directional water transport on the peristome surface of Nepenthes alata . Nature 2016 532 7597 85 89 10.1038/nature17189 27078568
    [Google Scholar]
  55. Bai F. Dong J. Qu J. Zhang Z. Construction of flexible, transparent and mechanically robust SERS-active substrate with an efficient spin coating method for rapid in-situ target molecules detection. Nanotechnology 2021 32 38 385501 10.1088/1361‑6528/ac09ab 34107456
    [Google Scholar]
  56. Wang K. Sun D.W. Pu H. Wei Q. Polymer multilayers enabled stable and flexible Au@Ag nanoparticle array for nondestructive SERS detection of pesticide residues. Talanta 2021 223 Pt 2 121782 10.1016/j.talanta.2020.121782 33298287
    [Google Scholar]
  57. Wang Y. Wang Z. Chen C. Liu J. Lu J. Lu N. Fabrication of flexible pyramid array as SERS substrate for direct sampling and reproducible detection. Anal. Chem. 2023 95 38 14184 14191 10.1021/acs.analchem.3c01455 37721016
    [Google Scholar]
  58. Xu Q. Wan Y. Hu T.S. Liu T.X. Tao D. Niewiarowski P.H. Tian Y. Liu Y. Dai L. Yang Y. Xia Z. Robust self-cleaning and micromanipulation capabilities of gecko spatulae and their bio-mimics. Nat. Commun. 2015 6 1 8949 10.1038/ncomms9949 26584513
    [Google Scholar]
  59. Available from: https://www.nisenet.org/catalog/scientific-image-sem-image-blue-morpho-butterfly-wing.
  60. Song Z. Tong J. Pfleging W. Sun J. A review: Learning from the flight of beetles. Comput. Biol. Med. 2021 133 104397 10.1016/j.compbiomed.2021.104397 33895456
    [Google Scholar]
  61. Xie G. Zhang G. Lin F. Zhang J. Liu Z. Mu S. The fabrication of subwavelength anti-reflective nanostructures using a bio-template. Nanotechnology 2008 19 9 095605 10.1088/0957‑4484/19/9/095605 21817680
    [Google Scholar]
  62. Lovera P. Creedon N. Alatawi H. O’Riordan A. Metal capped polystyrene nanotubes arrays as super-hydrophobic substrates for SERS applications. Nanotechnology 2014 25 17 175502
    [Google Scholar]
  63. Wang P. Wu L. Lu Z. Li Q. Yin W. Ding F. Han H. Gecko-Inspired Nanotentacle Surface-Enhanced Raman Spectroscopy Substrate for Sampling and Reliable Detection of Pesticide Residues in Fruits and Vegetables. Anal. Chem. 2017 89 4 2424 2431 10.1021/acs.analchem.6b04324 28194954
    [Google Scholar]
  64. Mu Z. Zhao X. Xie Z. Zhao Y. Zhong Q. Bo L. Gu Z. In situ synthesis of gold nanoparticles (AuNPs) in butterfly wings for surface enhanced Raman spectroscopy (SERS). J. Mater. Chem. B Mater. Biol. Med. 2013 1 11 1607 1613 10.1039/c3tb00500c 32260723
    [Google Scholar]
  65. Tan Y. Gu J. Zang X. Xu W. Shi K. Xu L. Zhang D. Versatile fabrication of intact three-dimensional metallic butterfly wing scales with hierarchical sub-micrometer structures. Angew. Chem. Int. Ed. 2011 50 36 8307 8311 10.1002/anie.201103505 21780267
    [Google Scholar]
  66. Zhang M. Meng J. Wang D. Tang Q. Chen T. Rong S. Liu J. Wu Y. Biomimetic synthesis of hierarchical 3D Ag butterfly wing scale arrays/graphene composites as ultrasensitive SERS substrates for efficient trace chemical detection. J. Mater. Chem. C Mater. Opt. Electron. Devices 2018 6 8 1933 1943 10.1039/C7TC03922K
    [Google Scholar]
  67. Garrett N.L. Sekine R. Dixon M.W.A. Tilley L. Bambery K.R. Wood B.R. Bio-sensing with butterfly wings: Naturally occurring nano-structures for SERS-based malaria parasite detection. Phys. Chem. Chem. Phys. 2015 17 33 21164 21168 10.1039/C4CP04930F 25491490
    [Google Scholar]
  68. Tan Y. Gu J. Xu W. Chen Z. Liu D. Liu Q. Zhang D. Reduction of CuO butterfly wing scales generates Cu SERS substrates for DNA base detection. ACS Appl. Mater. Interfaces 2013 5 20 9878 9882 10.1021/am402699c 24080166
    [Google Scholar]
  69. Song G. Zhou H. Gu J. Liu Q. Zhang W. Su H. Su Y. Yao Q. Zhang D. Tumor marker detection using surface enhanced Raman spectroscopy on 3D Au butterfly wings. J. Mater. Chem. B Mater. Biol. Med. 2017 5 8 1594 1600 10.1039/C6TB03026B 32263931
    [Google Scholar]
  70. Yang W. Li Z. Lu Z. Yu J. Huo Y. Man B. Pan J. Si H. Jiang S. Zhang C. Graphene-Ag nanoparticles-cicada wings hybrid system for obvious SERS performance and DNA molecular detection. Opt. Express 2019 27 3 3000 3013 10.1364/OE.27.003000 30732328
    [Google Scholar]
  71. Shi G. Wang M. Zhu Y. Wang Y. Ma W. Synthesis of flexible and stable SERS substrate based on Au nanofilms/cicada wing array for rapid detection of pesticide residues. Opt. Commun. 2018 425 49 57 10.1016/j.optcom.2018.04.065
    [Google Scholar]
  72. Li X. Li H. Zhao K. Wang H. Zhang Z. Huang L. Niu H. Yang Z. Wang C. Biomimetic flexible SERS substrates replicated from cicada wings for portable in situ detection. Opt. Mater. 2024 149 114801 10.1016/j.optmat.2023.114801
    [Google Scholar]
  73. Jiwei Q. Yudong L. Ming Y. Qiang W. Zongqiang C. Wudeng W. Wenqiang L. Xuanyi Y. Jingjun X. Qian S. Large-area high-performance SERS substrates with deep controllable sub-10-nm gap structure fabricated by depositing Au film on the cicada wing. Nanoscale Res. Lett. 2013 8 1 437 10.1186/1556‑276X‑8‑437 24148212
    [Google Scholar]
  74. Nair S. Gomez-Cruz J. Ascanio G. Docoslis A. Sabat R.G. Escobedo C. Cicada wing inspired template-stripped SERS active 3D metallic nanostructures for the detection of toxic substances. Sensors (Basel) 2021 21 5 1699 10.3390/s21051699 33801222
    [Google Scholar]
  75. Thanh Nguyen D. Phuong Nguyen L. Duc Luu P. Quoc Vu T. Quynh Nguyen H. Phat Dao T. Nhut Pham T. Quoc Tran T. Surface-enhanced Raman scattering (SERS) from low-cost silver nanoparticle-decorated cicada wing substrates for rapid detection of difenoconazole in potato. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022 275 121117 10.1016/j.saa.2022.121117 35364411
    [Google Scholar]
  76. Yan X. Wang Y. Shi G. Wang M. Zhang J. Sun X. Xu H. Flower-like Cu nanoislands decorated onto the cicada wing as SERS substrates for the rapid detection of crystal violet. Optik (Stuttg.) 2018 172 812 821 10.1016/j.ijleo.2018.07.088
    [Google Scholar]
  77. Kumari N. Sood N. Krishnan V. Beetle wing inspired fabrication of nanojunction based biomimetic SERS substrates for sensitive detection of analytes. Mater. Technol. 2022 37 2 112 123 10.1080/10667857.2020.1816382
    [Google Scholar]
  78. Lu C.H. Cheng M.R. Chen S. Syu W.L. Chien M.Y. Wang K.S. Chen J.S. Lee P.H. Liu T.Y. Flexible PDMS-Based SERS substrates replicated from beetle wings for water pollutant detection. Polymers (Basel) 2022 15 1 191 10.3390/polym15010191 36616540
    [Google Scholar]
  79. Wang M. Shi G. Zhu Y. Wang Y. Ma W. Au-decorated dragonfly wing bioscaffold arrays as flexible surface-enhanced Raman scattering (SERS) substrate for simultaneous determination of pesticide residues. Nanomaterials (Basel) 2018 8 5 289 10.3390/nano8050289 29710795
    [Google Scholar]
  80. Shi G.C. Wang M.L. Zhu Y.Y. Shen L. Ma W.L. Wang Y.H. Li R.F. Dragonfly wing decorated by gold nanoislands as flexible and stable substrates for surface-enhanced Raman scattering (SERS). Sci. Rep. 2018 8 1 6916 10.1038/s41598‑018‑25228‑8 29720685
    [Google Scholar]
  81. Wei Y. Zhu Y. Wang M. A facile surface-enhanced Raman spectroscopy detection of pesticide residues with Au nanoparticles/dragonfly wing arrays. Optik (Stuttg.) 2016 127 22 10735 10739 10.1016/j.ijleo.2016.08.118
    [Google Scholar]
  82. Wang Y. Wang M. Shen L. Sun X. Shi G. Ma W. Yan X. High-performance flexible surface-enhanced Raman scattering substrates fabricated by depositing Ag nanoislands on the dragonfly wing. Appl. Surf. Sci. 2018 436 391 397 10.1016/j.apsusc.2017.11.212
    [Google Scholar]
  83. Yang J. Petrescu F.I.T. Li Y. Song D. Shi G. A novel bio-inspired Ag/3D-TiO2/Si SERS substrate with ordered moth-like structure. Nanomaterials (Basel) 2022 12 18 3127 10.3390/nano12183127 36144914
    [Google Scholar]
  84. Zhang Z. Yu W. Wang J. Luo D. Qiao X. Qin X. Wang T. Ultrasensitive Surface-Enhanced Raman Scattering Sensor of Gaseous Aldehydes as Biomarkers of Lung Cancer on Dendritic Ag Nanocrystals. Anal. Chem. 2017 89 3 1416 1420 10.1021/acs.analchem.6b05117 28208308
    [Google Scholar]
  85. Evidence for van der Waals adhesion in gecko setae. Nature 2002
    [Google Scholar]
  86. Lovera P. Creedon N. Alatawi H. Mitchell M. Burke M. Quinn A.J. O’Riordan A. Low-cost silver capped polystyrene nanotube arrays as super-hydrophobic substrates for SERS applications. Nanotechnology 2014 25 17 175502 10.1088/0957‑4484/25/17/175502 24717806
    [Google Scholar]
  87. Ghiradella H. Radigan W. Development of butterfly scales. II. Struts, lattices and surface tension. J. Morphol. 1976 150 2 279 297 10.1002/jmor.1051500202 30257531
    [Google Scholar]
  88. Nguyen S. Webb H. Mahon P. Crawford R. Ivanova E. Natural insect and plant micro-/nanostructsured surfaces: An excellent selection of valuable templates with superhydrophobic and self-cleaning properties. Molecules 2014 19 9 13614 13630 10.3390/molecules190913614 25185068
    [Google Scholar]
  89. Dellieu L. Sarrazin M. Simonis P. Deparis O. Vigneron J.P. A two-in-one superhydrophobic and anti-reflective nanodevice in the grey cicada Cicada orni (Hemiptera). J. Appl. Phys. 2014 116 2 024701 10.1063/1.4889849
    [Google Scholar]
  90. Stoddart P.R. Cadusch P.J. Boyce T.M. Erasmus R.M. Comins J.D. Optical properties of chitin: Surface-enhanced Raman scattering substrates based on antireflection structures on cicada wings. Nanotechnology 2006 17 3 680 686 10.1088/0957‑4484/17/3/011
    [Google Scholar]
  91. Clapham P.B. Hutley M.C. Reduction of Lens Reflexion by the “Moth Eye” Principle. Nature 1973 244 5414 281 282 10.1038/244281a0
    [Google Scholar]
  92. Li F. Wang Q. Fabrication of nanoarchitectures templated by virus-based nanoparticles: Strategies and applications. Small 2014 10 2 230 245 10.1002/smll.201301393 23996911
    [Google Scholar]
  93. Koh E.H. Mun C. Kim C. Park S.G. Choi E.J. Kim S.H. Dang J. Choo J. Oh J.W. Kim D.H. Jung H.S. M13 bacteriophage/silver nanowire surface-enhanced Raman scattering sensor for sensitive and selective pesticide detection. ACS Appl. Mater. Interfaces 2018 10 12 10388 10397 10.1021/acsami.8b01470 29505228
    [Google Scholar]
  94. Bi L. Zhang H. Hu W. Chen J. Wu Y. Chen H. Li B. Zhang Z. Choo J. Chen L. Self-assembly of Au@AgNR along M13 framework: A SERS nanocarrier for bacterial detection and killing. Biosens. Bioelectron. 2023 237 115519 10.1016/j.bios.2023.115519 37437455
    [Google Scholar]
  95. Nguyen A.H. Shin Y. Sim S.J. Development of SERS substrate using phage-based magnetic template for triplex assay in sepsis diagnosis. Biosens. Bioelectron. 2016 85 522 528 10.1016/j.bios.2016.05.043 27209579
    [Google Scholar]
  96. Moon J.I. Choi E.J. Joung Y. Oh J.W. Joo S.W. Choo J. Development of highly sensitive plasmonic biosensors encoded with gold nanoparticles on M13 bacteriophage networks. Sens. Actuators B Chem. 2024 400 134916 10.1016/j.snb.2023.134916
    [Google Scholar]
  97. Wang X.Y. Yang J.Y. Wang Y.T. Zhang H.C. Chen M.L. Yang T. Wang J.H. M13 phage-based nanoprobe for SERS detection and inactivation of Staphylococcus aureus . Talanta 2021 221 121668 10.1016/j.talanta.2020.121668 33076174
    [Google Scholar]
  98. Nguyen H.A. Jupin I. Decorse P. Lau-Truong S. Ammar S. Ha-Duong N.T. Assembly of gold nanoparticles using turnip yellow mosaic virus as an in-solution SERS sensor. RSC Advances 2019 9 55 32296 32307 10.1039/C9RA08015E 35530810
    [Google Scholar]
  99. Li K. Chen Y. Li S. Nguyen H.G. Niu Z. You S. Mello C.M. Lu X. Wang Q. Chemical modification of M13 bacteriophage and its application in cancer cell imaging. Bioconjug. Chem. 2010 21 7 1369 1377 10.1021/bc900405q 20499838
    [Google Scholar]
  100. Han X.X. Ji W. Zhao B. Ozaki Y. Semiconductor-enhanced Raman scattering: Active nanomaterials and applications. Nanoscale 2017 9 15 4847 4861 10.1039/C6NR08693D 28150834
    [Google Scholar]
  101. Tan L. Cao Y. Yan J. Mao K. Liu L. Wang X. Ye W. Harris R.A. Zhang H. TiO2 nanorod arrays@PDA/Ag with biomimetic polydopamine as binary mediators for duplex SERS detection of illegal food dyes. Anal. Chim. Acta 2024 1287 342047 10.1016/j.aca.2023.342047 38182363
    [Google Scholar]
  102. Boden S.A. Bagnall D.M. Moth-eye antireflective structures. Encyclopedia of Nanotechnology. Bhushan B. Dordrecht Springer Netherlands 2012 1467 1477
    [Google Scholar]
  103. Zang S. Liu H. Wang Q. Yang J. Pang Z. Liu K. Cai S. Ren X. Facile fabrication of Au nanoworms covered polyethylene terephthalate (PET) film: Towards flexible SERS substrates. Mater. Lett. 2021 294 129643 10.1016/j.matlet.2021.129643
    [Google Scholar]
  104. Riswana Barveen N. Wang T.J. Chang Y.H. Photochemical synthesis of Au nanostars on PMMA films by ethanol action as flexible SERS substrates for in-situ detection of antibiotics on curved surfaces. Chem. Eng. J. 2022 431 134240 10.1016/j.cej.2021.134240
    [Google Scholar]
  105. Li P. Li P. Tan X. Wang J. Zhang Y. Han H. Yang L. Assembling PVP-Au NPs as portable chip for sensitive detection of cyanide with surface-enhanced Raman spectroscopy. Anal. Bioanal. Chem. 2020 412 12 2863 2871 10.1007/s00216‑020‑02517‑8 32112131
    [Google Scholar]
  106. Li Y. Zhu J. Ma Y. Li Y. Shao J. Li H. High transparent Ag NPs/PVC SERS membrane combined with molecular imprinting technology for selective detection of norfloxacin. J. Environ. Chem. Eng. 2022 10 6 108916 10.1016/j.jece.2022.108916
    [Google Scholar]
  107. Sun J. Zhang Z. Liu C. Dai X. Zhou W. Jiang K. Zhang T. Yin J. Gao J. Yin H. Li H. Continuous in situ portable SERS analysis of pollutants in water and air by a highly sensitive gold nanoparticle-decorated PVDF substrate. Anal. Bioanal. Chem. 2021 413 21 5469 5482 10.1007/s00216‑021‑03531‑0 34312691
    [Google Scholar]
  108. Gao R. Song X. Zhan C. Weng C. Cheng S. Guo K. Ma N. Chang H. Guo Z. Luo L.B. Yu L. Light trapping induced flexible wrinkled nanocone SERS substrate for highly sensitive explosive detection. Sens. Actuators B Chem. 2020 314 128081 10.1016/j.snb.2020.128081
    [Google Scholar]
  109. Kalachyova Y. Erzina M. Postnikov P. Svorcik V. Lyutakov O. Flexible SERS substrate for portable Raman analysis of biosamples. Appl. Surf. Sci. 2018 458 95 99 10.1016/j.apsusc.2018.07.073
    [Google Scholar]
  110. Jiao L. Fan B. Xian X. Wu Z. Zhang J. Liu Z. Creation of nanostructures with poly(methyl methacrylate)-mediated nanotransfer printing. J. Am. Chem. Soc. 2008 130 38 12612 12613 10.1021/ja805070b 18763767
    [Google Scholar]
  111. Abu Hatab N.A. Oran J.M. Sepaniak M.J. Surface-enhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing. ACS Nano 2008 2 2 377 385 10.1021/nn7003487 19206640
    [Google Scholar]
/content/journals/cac/10.2174/0115734110331157241003103106
Loading
/content/journals/cac/10.2174/0115734110331157241003103106
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test