Skip to content
2000
image of Potentiometric Ion-selective Electrode for the Determination of Antazoline in Different Formulations and Biological Fluids Using Biomimetic 
Receptors

Abstract

Background

Traditional analysis techniques usually involve separation and pre-treatment steps prior to analysis, resulting in time and solvent consumption. In contrast, a potentiometric ion selective electrode is a simple, environmentally friendly, and cost-effective technique that is used as an alternative analytical technique, utilizing the efficacy of potentiometric sensors used in stability research and quality control investigations.

Methods

An innovative Antazoline selective membrane sensor was constructed and evaluated to detect Antazoline in its pure form, eye drop formulations, degradation products, and biological fluid. Sensor fabrication was achieved using potassium tetrakis borate and polyvinyl chloride polymeric matrix plasticized with 2-nitrophenyl octyl ether and using calix[8]arene (CX8) as an ionophore. A comparative potentiometric study was implemented using two sensors, one using an ionophore and the other lacking the ionophore.

Results

Linear responses of Antazoline were obtained utilizing sensors 1 and 2 in concentration ranges of 1.0×10-2 to 1.0×10-7 mole/L and 1.0×10-2 to 1.0×10-6 mole/L, correspondingly. Nernstian slopes of 58.486 and 51.2 mV/decade over pH 8.0 were attainted using 1 and 2 sensors, respectively.

Conclusion

The proposed method was applied to determine antazoline without any need for any pretreatment or separation steps in both formulated eye drops Trillerg® sterile ophthalmic solution and Otrivine- Antistin® Eye Drops as well as in rabbit aqueous humor and the presence of its degradation products. Estimation of the method's greenness was confirmed using several assessment tools.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110330483241003112945
2025-01-16
2025-04-22
Loading full text...

Full text loading...

References

  1. Pena-Pereira F. Wojnowski W. Tobiszewski M. AGREE—Analytical GREEnness metric approach and software. Anal. Chem. 2020 92 14 10076 10082 10.1021/acs.analchem.0c01887 32538619
    [Google Scholar]
  2. Abd El-Rahman M.K. Zaazaa H.E. ElDin N.B. Moustafa A.A. Just-dip-it (potentiometric ion-selective electrode): an innovative way of greening analytical chemistry. ACS Sustain. Chem.& Eng. 2016 4 6 3122 3132 10.1021/acssuschemeng.6b00138
    [Google Scholar]
  3. Ersoz M. Transport of mercury through liquid membranes containing calixarene carriers. Adv. Colloid Interface Sci. 2007 134-135 96 104 10.1016/j.cis.2007.04.007 17553442
    [Google Scholar]
  4. Eddaif L. Shaban A. Telegdi J. Sensitive detection of heavy metals ions based on the calixarene derivatives-modified piezoelectric resonators: A review. Int. J. Environ. Anal. Chem. 2019 99 9 824 853 10.1080/03067319.2019.1616708
    [Google Scholar]
  5. Sayin S. Ozbek C. Okur S. Yilmaz M. Preparation of the ferrocene-substituted 1,3-distal p-tert-butylcalix[4]arene based QCM sensors array and utilization of its gas-sensing affinities. J. Organomet. Chem. 2014 771 9 13 10.1016/j.jorganchem.2014.06.004
    [Google Scholar]
  6. Palanisamy S. Thirumalraj B. Chen S.M. A novel amperometric nitrite sensor based on screen printed carbon electrode modified with graphite/β-cyclodextrin composite. J. Electroanal. Chem. 2016 760 97 104 10.1016/j.jelechem.2015.11.017
    [Google Scholar]
  7. Liu Z. Xue Q. Guo Y. Sensitive electrochemical detection of rutin and isoquercitrin based on SH-β-cyclodextrin functionalized graphene-palladium nanoparticles. Biosens. Bioelectron. 2017 89 Pt 1 444 452 10.1016/j.bios.2016.04.056 27133027
    [Google Scholar]
  8. Ogoshi T. Harada A. Chemical sensors based on cyclodextrin derivatives. Sensors (Basel) 2008 8 8 4961 4982 10.3390/s8084961 27873795
    [Google Scholar]
  9. Faridbod F. Ganjali M.R. Dinarvand R. Norouzi P. Riahi S. Schiff’s bases and crown ethers as supramolecular sensing materials in the construction of potentiometric membrane sensors. Sensors (Basel) 2008 8 3 1645 1703 10.3390/s8031645 27879786
    [Google Scholar]
  10. Wang R. Chu Y. Li X. Wan B. Yu T. Wang L. Hao L. Guo M. Determination of antazoline hydrochloride in rat plasma and excreta by reversed‐phase ion‐pair chromatography and its application to pharmacokinetics. Biomed. Chromatogr. 2013 27 12 1595 1602 10.1002/bmc.2965 23847054
    [Google Scholar]
  11. Martindale iSCSE, The Extra Pharmacopoeia. 35th ed London, UK Pharmaceutical Press 2007
    [Google Scholar]
  12. Reynolds J. The Extra Pharmacopoeia London Royal Pharmaceutical Society 1996
    [Google Scholar]
  13. Medicines EDftQ, Healthcare: European pharmacopoeia. 2010 Available from:https://www.edqm.eu/en/european-pharmacopoeia (accessed on 18-11-2024).
  14. The United States Pharmacopeia : USP 24 : the National Formulary : NF 19 : By authority of the United States Pharmacopoeial Rockville, Md. United States Pharmacopeial Convention 1999 Available from:https://search.worldcat.org/title/The-United-States-Pharmacopeia-:-USP-24-:-the-National-Formulary-:-NF-19-:-by-authority-of-the-United-States-Pharmacopoeial-Convention-Inc.-meeting-at-Washington-D.C.-March-9-12-1995-prepared-by-the-Committee-of-Revision-and-published-by-the-Board-of-Trustees/oclc/41993333 (accessed on 18-11-2024).
    [Google Scholar]
  15. Abdel-Halim L.M. Abd-El Rahman M.K. Ramadan N.K. EL Sanabary H.F.A. Salem M.Y. Comparative study between recent methods manipulating ratio spectra and classical methods based on two-wavelength selection for the determination of binary mixture of antazoline hydrochloride and tetryzoline hydrochloride. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2016 159 98 105 10.1016/j.saa.2016.01.014 26836449
    [Google Scholar]
  16. Hussein O.G. Ahmed D.A. Abdelkawy M. Rezk M.R. Rostom Y. A novel green spectrofluorimetric method for simultaneous determination of antazoline and tetryzoline in their ophthalmic formulation. Luminescence 2024 39 3 e4728 10.1002/bio.4728 38516711
    [Google Scholar]
  17. Shadoul W.A. Kariem E.A.G. Ibrahim K.E.E. Ebied M. Simultaneous determination of tetrahydrozoline hydrochloride and antazoline hydrochloride in ophthalmic solutions using HPLC. Asian J. Pharmaceut. Sci. Res. 2011 1 29 38
    [Google Scholar]
  18. Gumustas M. Alshana U. Ertas N. Goger N.G. Ozkan S.A. Uslu B. Determination of antazoline and tetrahydrozoline in ophthalmic solutions by capillary electrophoresis and stability-indicating HPLC methods. J. Pharm. Biomed. Anal. 2016 124 390 398 10.1016/j.jpba.2016.02.032 26952922
    [Google Scholar]
  19. Bekele A. Hymete A. Bekhit A.A. Development and validation of HPTLC densitometric method for simultaneous determination of antazoline hydrochloride and tetryzoline hydrochloride in eye drop and its application as stability indicator. Thaiphesatchasan 2013 37 3
    [Google Scholar]
  20. Hussein O.G. Abdelkawy M. Rezk M.R. Ahmed D.A. Rostom Y. Novel stability-indicating TLC-densitometric method for quantification of antazoline and tetryzoline; application to pharmaceutical formulation. Result. Chem. 2023 5 100920 10.1016/j.rechem.2023.100920
    [Google Scholar]
  21. Hussein O.G. Rostom Y. Abdelkawy M. Rezk M.R. Ahmed D.A. Green TLC-densitometric method for simultaneous determination of antazoline and tetryzoline: Application to pharmaceutical formulation and rabbit aqueous humor. J. Chromatogr. Sci. 2024 62 9 807 814
    [Google Scholar]
  22. Rostom Y. Hussein O.G. Abdelkawy M. Rezk M.R. Ahmed D.A. A novel spectrofluorimetric determination of antazoline and xylometazoline in their ophthalmic formulation; green approach and evaluation. J. Fluoresc. 2024 2024 1 14 10.1007/s10895‑024‑03585‑0 38319520
    [Google Scholar]
  23. Hussein O.G. Ahmed D.A. Rezk M.R. Abdelkawy M. Rostom Y. Exquisite integration of quality-by-design and green analytical approaches for simultaneous determination of xylometazoline and antazoline in eye drops and rabbit aqueous humor, application to stability study. J. Pharm. Biomed. Anal. 2023 235 115598 10.1016/j.jpba.2023.115598 37516064
    [Google Scholar]
  24. Rostom Y. Hussein O.G. Mahmoud A.M. Abdelkawy M. Rezk M.R. Ahmed D.A. Novel carbon nanotubes/gold nanoparticles modified carbon paste electrochemical sensor for antazoline determination in aqueous humor. J. Electrochem. Soc. 2024 171 3 037510 10.1149/1945‑7111/ad2d89
    [Google Scholar]
  25. Gałuszka A. Migaszewski Z.M. Konieczka P. Namieśnik J. Analytical Eco-Scale for assessing the greenness of analytical procedures. Trends Analyt. Chem. 2012 37 61 72 10.1016/j.trac.2012.03.013
    [Google Scholar]
  26. Keith L.H. Gron L.U. Young J.L. Green analytical methodologies. Chem. Rev. 2007 107 6 2695 2708 10.1021/cr068359e 17521200
    [Google Scholar]
  27. Płotka-Wasylka J. A new tool for the evaluation of the analytical procedure: Green analytical procedure index. Talanta 2018 181 204 209 10.1016/j.talanta.2018.01.013 29426502
    [Google Scholar]
  28. Rostom Y. Wadie M. Rezk M.R. Marzouk H.M. Moety E.M. Fingerprinting and iso-absorptive resolution techniques for the spectrally overlapping Dutasteride and Silodosin mixture: Content uniformity testing along with greenness profile assessment. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022 273 121063 10.1016/j.saa.2022.121063 35219273
    [Google Scholar]
  29. Ahmed D.A. Lotfy H.M. Sticking - pulling strategy for assessment of combined medicine for management of tough symptoms in COVID-19 Pandemic using different windows of spectrophotometric Platform-Counterfeit products’ detection. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022 277 121256 10.1016/j.saa.2022.121256 35483258
    [Google Scholar]
  30. Yoshio U. Philippe B. Potentiometric selectivity coefficients of ion-selective electrodes. Part I. Inorganic cations (Technical Report). Pure Appl. Chem. 2000 72 10 1851 2028
    [Google Scholar]
  31. Bakker E. Telting-Diaz M. Electrochemical Sensors. Anal. Chem. 2002 74 12 2781 2800 10.1021/ac0202278 12090665
    [Google Scholar]
  32. Chen L. Zhang J. Zhao W. He X. Liu Y. Double-armed calix[4]arene amide derivatives as ionophores for lead ion-selective electrodes. J. Electroanal. Chem. 2006 589 1 106 111 10.1016/j.jelechem.2006.02.001
    [Google Scholar]
  33. Zareh M.M. Malinowska E. Phosphorated calix[6]arene derivatives as an ionophore for atropine-selective membrane electrodes. J. AOAC Int. 2007 90 1 147 152 10.1093/jaoac/90.1.147 17373445
    [Google Scholar]
  34. Moaaz E.M. Mahmoud A.M. Fayed A.S. Rezk M.R. Abdel-Moety E.M. Determination of tedizolid phosphate using graphene nanocomposite based solid contact ion selective electrode; green profile assessment by eco‐scale and GAPI approach. Electroanalysis 2021 33 8 1895 1901 10.1002/elan.202100067
    [Google Scholar]
  35. Wadie M. Marzouk H.M. Rezk M.R. Abdel-Moety E.M. Tantawy M.A. A sensing platform of molecular imprinted polymer-based polyaniline/carbon paste electrodes for simultaneous potentiometric determination of alfuzosin and solifenacin in binary co-formulation and spiked plasma. Anal. Chim. Acta 2022 1200 339599 10.1016/j.aca.2022.339599 35256148
    [Google Scholar]
  36. Rezk M.R. Fayed A.S. Marzouk H.M. Abbas S.S. Potentiometric ion-selective electrodes for determination of cyclopentolate hydrochloride and phenylephrine hydrochloride in their challenging ophthalmic formulation. J. Solid State Electrochem. 2018 22 11 3351 3361 10.1007/s10008‑018‑4045‑5
    [Google Scholar]
  37. Wadie M. Abdel-Moety E.M. Rezk M.R. Mahmoud A.M. Marzouk H.M. Electro-polymerized poly-methyldopa as a novel synthetic mussel-inspired molecularly imprinted polymeric sensor for darifenacin: Computational and experimental study. Appl. Mater. Today 2022 29 101595 10.1016/j.apmt.2022.101595
    [Google Scholar]
  38. Elghobashy M.R. Rezk M.R. Comparative study of different ionophores in ion selective electrodes for stability indicating determination of moxifloxacin. Anal. Bioanal. Electrochem. 2014 6 4 461 474
    [Google Scholar]
  39. Mahmoud A.M. Abd El-Rahman M.K. Elghobashy M.R. Rezk M.R. Carbon nanotubes versus polyaniline nanoparticles; which transducer offers more opportunities for designing a stable solid contact ion-selective electrode. J. Electroanal. Chem. 2015 755 122 126 10.1016/j.jelechem.2015.07.045
    [Google Scholar]
  40. Hussein O.G. Ahmed D.A. Abdelkawy M. Rezk M.R. Mahmoud A.M. Rostom Y. Novel solid-contact ion-selective electrode based on a polyaniline transducer layer for determination of alcaftadine in biological fluid. RSC Advances 2023 13 11 7645 7655 10.1039/D3RA00597F 36908536
    [Google Scholar]
  41. Hussein O. Elzanfaly E. Potentiometric method to determine montelukast sodium in its tablets with in-line monitoring of its dissolution behaviour. Analyt. Bioanal. Electrochem. 2020 12 4 502 516
    [Google Scholar]
  42. Hussein O.G. Elzanfaly E.S. Zaazaa H.E. Abdelkawy M. Atty S.A. Analytical eco-scale for evaluating the greenness of advanced voltammetric method used for the simultaneous analysis of combined urinary tract infection drugs in different matrices. J. Electrochem. Soc. 2022 169 4 043507 10.1149/1945‑7111/ac638f
    [Google Scholar]
  43. Gouda A.S. Marzouk H.M. Rezk M.R. Salem A.M. Morsi M.I. Nouman E.G. Abdallah Y.M. Hassan A.Y. Abdel-Megied A.M. A validated LC-MS/MS method for determination of antiviral prodrug molnupiravir in human plasma and its application for a pharmacokinetic modeling study in healthy Egyptian volunteers. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2022 1206 123363 10.1016/j.jchromb.2022.123363 35810537
    [Google Scholar]
  44. Wadie M. Abdel-Moety E.M. Rezk M.R. Marzouk H.M. A novel smartphone HPTLC assaying platform versus traditional densitometric method for simultaneous quantification of alfuzosin and solifenacin in their dosage forms as well as monitoring content uniformity and drug residues on the manufacturing equipment. RSC Advances 2023 13 17 11642 11651 10.1039/D3RA01211E 37063718
    [Google Scholar]
  45. Wadie M. Abdel-Moety E.M. Rezk M.R. Marzouk H.M. Sustainable and smart HPTLC determination of silodosin and solifenacin using a constructed two illumination source chamber with a smartphone camera as a detector: Comparative study with conventional densitometric scanner. Sustain. Chem. Pharm. 2023 33 101095 10.1016/j.scp.2023.101095
    [Google Scholar]
  46. Soudi A.T. Hussein O.G. Elzanfaly E.S. Zaazaa H.E. Abdelkawy M. Stability indicating TLC–densitometric method for determination of alcaftadine in presence of its degradation products and dosage form preservatives. Res J Pharm Technol 2020 13 11 5171 5176
    [Google Scholar]
  47. Marzouk H.M. Gouda A.S. Rezk M.R. Abdel-Megied A.M. Innovative eco-friendly stability-indicating HPLC-PDA method for simultaneous determination of the emerging antiviral drugs against COVID-19 infection molnupiravir and favipiravir; degradation kinetic studies along with LC-MS based structure elucidation. Microchem. J. 2024 205 111197 10.1016/j.microc.2024.111197
    [Google Scholar]
  48. Hussein O.G. Rezk M.R. Wadie M. An integrated paradigm between green analytical chemistry and quality-by-design for robust analysis of alcaftadine and ketorolac tromethamine in aqueous humor via sustainable chromatographic methods. Sustain. Chem. Pharm. 2024 42 101827 10.1016/j.scp.2024.101827
    [Google Scholar]
  49. Rezk M.R. Monir H.H. Marzouk H.M. Novel determination of a new antiviral combination; sofosbuvir and velpatasvir by high performance thin layer chromatographic method; application to real human samples. Microchem. J. 2019 146 828 834 10.1016/j.microc.2019.02.012
    [Google Scholar]
  50. Tantawy M.A. Weshahy S.A. Wadie M. Rezk M.R. Eco-friendly spectrophotometric methods for assessment of alfuzosin and solifenacin in their new pharmaceutical formulation; green profile evaluation via eco-scale and GAPI tools. Curr. Pharm. Anal. 2021 17 8 1093 1103 10.2174/1573412916999200730005740
    [Google Scholar]
  51. Lotfy H.M. Hegazy M.A. Rezk M.R. Omran Y.R. Comparative study of novel versus conventional two-wavelength spectrophotometric methods for analysis of spectrally overlapping binary mixture. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015 148 328 337 10.1016/j.saa.2015.04.004 25909908
    [Google Scholar]
  52. Soudi A.T. Hussein O.G. Elzanfaly E.S. Zaazaa H.E. Abdelkawy M. Simultaneous determination of phenazopyridine HCl and trimethoprim in presence of phenazopyridine HCl impurity by univariate and multivariate spectrophotometric methods - Quantification of phenazopyridine HCl impurity by univariate methods. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020 239 118516 10.1016/j.saa.2020.118516 32492634
    [Google Scholar]
  53. ICH Q1A (R2) Stability testing of new drug substances and drug products - Scientific guideline. 2003 Available from:https://www.ema.europa.eu/en/ich-q1a-r2-stability-testing-new-drug-substances-drug-products-scientific-guideline (accessed on 18-11-2024).
  54. Buck R.P. Lindner E. Recommendations for nomenclature of ionselective electrodes (IUPAC Recommendations 1994). Pure Appl. Chem. 1994 66 12 2527 2536 10.1351/pac199466122527
    [Google Scholar]
/content/journals/cac/10.2174/0115734110330483241003112945
Loading
/content/journals/cac/10.2174/0115734110330483241003112945
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: rabbit aqueous humor ; Antazoline ; liquid contact ; calix[8]arene ; stability-indicating
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test