Skip to content
2000
image of Spectrophotometric Determination of 4-n-butylresorcinol in Cosmetics by Decolorization of Oxidized 3,3',5,5'-tetramethylbenzidine

Abstract

Background

4-n-butylresorcinol (4nBR) was widely used in the treatment of chloasma and skin whitening cosmetics. As a decolorizing agent, it can effectively control the activity of tyrosinase. Market regulatory authorities require truthful labeling of ingredients in cosmetics. Therefore, the quantitative determination of 4nBR is of great practical significance.

Hypothesis

At present, the main detection method of 4nBR reported in the literature is HPLC.Compared with the HPLC method, optical methods offer several advantages, including low cost, and simplicity, which make them suitable for on-field detection applications. A convenient spectrophotometric method was established for 4nBR detection.

Methods

Fe3+ can oxidize the common colorless chromogenic substrate 3,3',5,5'-tetramethylbenzidine (TMB) to blue oxTMB. Based on the fact that 4-n-butyl resorcinol (4nBR) can reduce oxTMB, a convenient and rapid spectrophotometric method for the determination of 4nBR was proposed.

Results

Under the optimum conditions, the absorbance at 652 nm has a good linear relationship with the concentration of 4nBR in the range of 1.2 - 16 μM. The linear equation for the detection of 4nBR was ΔA = 0.0546 (μM) - 0.0026 (r2=0.9962), and the detection limit was 0.33 μM. The accuracy of this method is comparable to that of HPLC.

Conclusion

This method has good selectivity for 4nBR and good anti-interference ability for common additives in cosmetics. The proposed method can be applied to the determination of 4nBR in thereal samples.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110329983241010042439
2024-10-24
2025-04-15
Loading full text...

Full text loading...

References

  1. Kolbe L. Mann T. Gerwat W. Batzer J. Ahlheit S. Scherner C. Wenck H. Stäb F. 4‐n‐butylresorcinol, a highly effective tyrosinase inhibitor for the topical treatment of hyperpigmentation. J. Eur. Acad. Dermatol. Venereol. 2013 27 s1 Suppl. 1 19 23 10.1111/jdv.12051 23205541
    [Google Scholar]
  2. Okubo T. Oyohikawa M. Futaki K. Matsukami M. Fujii A. 153 The inhibitory effects of 4-N-butyl-resorcinol on melanogenesis. J. Dermatol. Sci. 1995 10 1 88 10.1016/0923‑1811(95)93865‑X
    [Google Scholar]
  3. Shin J.W. Park K.C. Current clinical use of depigmenting agents. Zhonghua Pifuke Yixue Zazhi 2014 32 4 205 210 10.1016/j.dsi.2014.07.003
    [Google Scholar]
  4. Shamanna M. Mohan M. Gowda A. Kumar B.C.S. Shree S. Gangaboraiah B. Jaiswal A.K. Assessment of efficacy, safety, and tolerability of 4-n-butylresorcinol 0.3% cream: an Indian multicentric study on melasma. Clin. Cosmet. Investig. Dermatol. 2016 9 21 27 10.2147/CCID.S89451
    [Google Scholar]
  5. Huh S.Y. Shin J.W. Na J.I. Huh C.H. Youn S.W. Park K.C. Efficacy and safety of liposome‐encapsulated 4‐ n ‐butylresorcinol 0.1% cream for the treatment of melasma: A randomized controlled split‐face trial. J. Dermatol. 2010 37 4 311 315 10.1111/j.1346‑8138.2010.00787.x 20507399
    [Google Scholar]
  6. Kim S. Yang H. Kim M. Baek J.H. Kim S.J. An S.M. Koh J.S. Seo R. Jung H. 4‐n‐butylresorcinol dissolving microneedle patch for skin depigmentation: a randomized, double‐blind, placebo‐controlled trial. J. Cosmet. Dermatol. 2016 15 1 16 23 10.1111/jocd.12178 26341915
    [Google Scholar]
  7. Dwiastuti R. Marchaban M. Istyastono E.P. Riswanto F.D.O. Analytical method validation and determination of free drug content of 4-n-butylresorcinol in complex lipid nanoparticles using RP-HPLC method. Indonesian Journal of Chemistry 2018 18 3 496 502 10.22146/ijc.28919
    [Google Scholar]
  8. Wargniez W. Jungman E. Wilkinson S. Seyler N. Grégoire S. Inter-laboratory skin distribution study of 4-n-butyl resorcinol: The importance of liquid chromatography/mass spectrometry (HPLC–MS/MS) bioanalytical validation. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017 1060 416 423 10.1016/j.jchromb.2017.05.026 28675855
    [Google Scholar]
  9. Zhu X. Chen C. Che D. Yan H. A high oxidase-like activity, bimetallic single-atom nanozyme FeCe/NC prepared by FeCe-ZIF-8 approach for sensing tannic acid in tea. Food Chem. X 2024 23 101552 10.1016/j.fochx.2024.101552 39022784
    [Google Scholar]
  10. Geirola N. Greco S. Mare R. Ricupero D. Settino M. Tirinato L. Maurotti S. Montalcini T. Pujia A. Assessment of 5-Hydroxymethylfurfural in Food Matrix by an Innovative Spectrophotometric Assay. Int. J. Mol. Sci. 2024 25 15 8501 10.3390/ijms25158501 39126070
    [Google Scholar]
  11. Ferreira C.P. Techera Antunes F.T. Rebelo I.N. da Silva C.A. Junior; Vilanova, F.N.; Corrêa, D.S.; de Souza, A.H. Application of the UV–vis spectrophotometry method for the determination of glutamate in the cerebrospinal fluid of rats. J. Pharm. Biomed. Anal. 2020 186 113290 10.1016/j.jpba.2020.113290 32416445
    [Google Scholar]
  12. Lee D.K. Jeon S. Jeong J. Song K.S. Cho W.S. Carbon nanomaterial-derived lung burden analysis using UV-Vis spectrophotometry and proteinase K digestion. Part. Fibre Toxicol. 2020 17 1 43 10.1186/s12989‑020‑00377‑9 32917232
    [Google Scholar]
  13. Guo Y. Liu C. Ye R. Duan Q. Advances on water quality detection by uv-vis spectroscopy. Appl. Sci. (Basel) 2020 10 19 6874 10.3390/app10196874
    [Google Scholar]
  14. Moreno-Martin G. León-González M.E. Madrid Y. Simultaneous determination of the size and concentration of AgNPs in water samples by UV–vis spectrophotometry and chemometrics tools. Talanta 2018 188 393 403 10.1016/j.talanta.2018.06.009 30029393
    [Google Scholar]
  15. Lin L. Shi D. Li Q. Wang G. Zhang X. Detection of T4 polynucleotide kinase based on a MnO 2 nanosheet-3,3′,5,5′-tetramethylbenzidine (TMB) colorimetric system. Anal. Methods 2016 8 20 4119 4126 10.1039/C6AY00269B
    [Google Scholar]
  16. Wang J. Su P. Li D. Wang T. Yang Y. Fabrication of CeO2/rGO nanocomposites with oxidase-like activity and their application in colorimetric sensing of ascorbic acid. Chem. Res. Chin. Univ. 2017 33 4 540 545 10.1007/s40242‑017‑7002‑4
    [Google Scholar]
  17. Jiao Y. Li J. Xiang J. Chen Z. Tungsten disulfide nanosheets-based colorimetric assay for glucose sensing. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020 242 118706 10.1016/j.saa.2020.118706 32745935
    [Google Scholar]
  18. Wang X. Yao Q. Tang X. Zhong H. Qiu P. Wang X. A highly selective and sensitive colorimetric detection of uric acid in human serum based on MoS2-catalyzed oxidation TMB. Anal. Bioanal. Chem. 2019 411 4 943 952 10.1007/s00216‑018‑1524‑6 30542813
    [Google Scholar]
  19. Liang Y. Sun F. Qu S. Zhou X. Shang L. Ligand density-optimized peroxidase-like activity of gold nanoclusters for colorimetric sensing of biothiols and acetylcholinesterase. Sens. Actuators B Chem. 2024 417 136069 10.1016/j.snb.2024.136069
    [Google Scholar]
  20. He S.B. Yang L. Lin X.L. Chen L.M. Peng H.P. Deng H.H. Xia X.H. Chen W. Heparin-platinum nanozymes with enhanced oxidase-like activity for the colorimetric sensing of isoniazid. Talanta 2020 211 120707 10.1016/j.talanta.2019.120707 32070586
    [Google Scholar]
  21. Yao Z. Li Z. Liu H. Liu Y. Sun Y. Li Z. A novel colorimetric assay based on the peroxidase-like properties of amino functionalized copper metal–organic framework nanoparticles for ascorbic acid sensing. Anal. Methods 2019 11 12 1697 1706 10.1039/C9AY00172G
    [Google Scholar]
  22. Wang Y. Zhu Y. Binyam A. Liu M. Wu Y. Li F. Discovering the enzyme mimetic activity of metal-organic framework (MOF) for label-free and colorimetric sensing of biomolecules. Biosens. Bioelectron. 2016 86 432 438 10.1016/j.bios.2016.06.036 27419909
    [Google Scholar]
  23. Ma H. He Y. Liu H. Xu L. Li J. Huang M. Wei Y. Anchoring of Prussian blue nanoparticles on polydopamine nanospheres as an efficient peroxidase mimetic for colorimetric sensing. Colloids Surf. A Physicochem. Eng. Asp. 2019 577 622 629 10.1016/j.colsurfa.2019.06.035
    [Google Scholar]
  24. Yin D. Cao X. Liu X. Yang Z. Liu Z. Wang D. Liu Q. Zhang X. Zhang X. Rapid colorimetric sensing of ascorbic acid based on the excellent peroxidase-like activity of Pt deposited on ZnCo 2 O 4 spheres. New J. Chem. 2020 44 28 12002 12008 10.1039/D0NJ02795B
    [Google Scholar]
  25. Ni P. Sun Y. Dai H. Jiang S. Lu W. Wang Y. Li Z. Li Z. Colorimetric assay for acetylcholinesterase and inhibitor screening based on the Ag [I] ion–3,3′,5,5′-tetramethylbenzidine (TMB). Sens. Actuators B Chem. 2016 226 104 109 10.1016/j.snb.2015.11.076
    [Google Scholar]
  26. Sun J. Wang R. Xia M. Zhu S. Zhao X.E. Convenient and sensitive colorimetric determination of alendronate sodium with Ce 4+ -triggered oxidation of TMB. New J. Chem. 2020 44 30 12962 12966 10.1039/D0NJ02816A
    [Google Scholar]
  27. Zhang L. Du J. Selective sensing of submicromolar iron(III) with 3,3′,5,5′-tetramethylbenzidine as a chromogenic probe. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2016 158 24 28 10.1016/j.saa.2016.01.012 26783724
    [Google Scholar]
  28. Lin M. Guo Y. Liang Z. Zhao X. Chen J. Wang Y. Simple and fast determination of biothiols using Fe3+-3, 3′, 5, 5′-tetramethylbenzidine as a colorimetric probe. Microchem. J. 2019 147 319 323 10.1016/j.microc.2019.03.049
    [Google Scholar]
  29. Josephy P.D. Eling T. Mason R.P. The horseradish peroxidase-catalyzed oxidation of 3,5,3′,5′-tetramethylbenzidine. Free radical and charge-transfer complex intermediates. J. Biol. Chem. 1982 257 7 3669 3675 10.1016/S0021‑9258(18)34832‑4 6277943
    [Google Scholar]
  30. Li H. Chen J. Sun J. Cao J. Xu C. Ouyang M. Xu D. Lin Q. A simple and practical fluorescence method for on-site screening and accurate detection of 4-hexylresorcinol in crustacean aquatic products. Lebensm. Wiss. Technol. 2024 205 116454 10.1016/j.lwt.2024.116454
    [Google Scholar]
  31. Sheikh T.A. Rahman M.M. Asiri A.M. Marwani H.M. Awual M.R. 4-Hexylresorcinol sensor development based on wet-chemically prepared Co3O4@Er2O3 nanorods: A practical approach. J. Ind. Eng. Chem. 2018 66 446 455 10.1016/j.jiec.2018.06.012
    [Google Scholar]
  32. George A. Cherian A.R. Benny L. Varghese A. Hegde G. Surface-engineering of carbon fibre paper electrode through molecular imprinting technique towards electrochemical sensing of food additive in shrimps. Microchem. J. 2023 184 108155 10.1016/j.microc.2022.108155
    [Google Scholar]
  33. Nugrahani I. Ibrahim S. Kembaren Y.N. Development of HPLC method for phenylethyl resorcinol content determination in whitening cream preparation. Journal of Research in Pharmacy 2020 24 5 748 764 10.35333/jrp.2020.228
    [Google Scholar]
/content/journals/cac/10.2174/0115734110329983241010042439
Loading
/content/journals/cac/10.2174/0115734110329983241010042439
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: iron ; TMB ; 4-n-butylresorcinol ; optical sensor ; spectrophotometry ; decolorization
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test