Skip to content
2000
image of A Review of Analytical Methods for Microplastics in Soils

Abstract

Microplastics (MPs), as an emerging environmental pollutant, pose a potential threat to ecosystems and human health, and the study of their analytical methods has become particularly important. In this paper, the current research progress of analytical methods for MPs in soil is reviewed. The sources, ecological impacts and possible health risks of MPs are introduced, and the urgency of accurate detection and quantitative analysis of MPs is emphasized. Subsequently, MPs’ analytical methods based on different principles, including visual analysis, chemical analysis, spectroscopic techniques, microscopic observation, and mass spectrometry, are systematically outlined in response to the wide range of sample sources and wide particle size distribution of MPs. For each method, the advantages, limitations and scope of application are highlighted and evaluated, and the directions and development trends for future improvement are proposed. The review of this paper is expected to promote the continuous improvement and innovation of MPs analytical methods and provide more effective technical support and scientific basis for solving the MPs’ pollution problems.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110326936240927044318
2024-10-08
2024-11-26
Loading full text...

Full text loading...

References

  1. Thompson R.C. Olsen Y. Mitchell R.P. Davis A. Row-land S.J. John A.W.G. McGonigle D. Russell A.E. Lost at sea: Where is all the plastic? Science 2004 304 5672 838 10.1126/science.1094559 15131299
    [Google Scholar]
  2. Rochman C.M. Browne M.A. Halpern B.S. Hentschel B.T. Hoh E. Karapanagioti H.K. Rios-Mendoza L.M. Takada H. Teh S. Thompson R.C. Classify plastic waste as hazardous. Nature 2013 494 7436 169 171 10.1038/494169a 23407523
    [Google Scholar]
  3. Ivleva N.P. Wiesheu A.C. Niessner R. Microplastic in Aquatic Ecosystems. Angew. Chem. Int. Ed. 2017 56 7 1720 1739 10.1002/anie.201606957 27618688
    [Google Scholar]
  4. da Costa J.P. Santos P.S.M. Duarte A.C. Rocha-Santos T. (Nano)plastics in the environment – Sources, fates and ef-fects. Sci. Total Environ. 2016 566-567 15 26 10.1016/j.scitotenv.2016.05.041 27213666
    [Google Scholar]
  5. Wu P. Huang J. Zheng Y. Yang Y. Zhang Y. He F. Chen H. Quan G. Yan J. Li T. Gao B. Environmental occurrences, fate, and impacts of microplastics. Ecotoxicol. Environ. Saf. 2019 184 109612 10.1016/j.ecoenv.2019.109612 31476450
    [Google Scholar]
  6. Ding R. Tong L. Zhang W. Microplastics in Freshwater Environments: Sources, Fates and Toxicity. Water Air Soil Pollut. 2021 232 5 181 10.1007/s11270‑021‑05081‑8
    [Google Scholar]
  7. Wang J. Guo X. Xue J. Biofilm-Developed Microplastics As Vectors of Pollutants in Aquatic Environments. Environ. Sci. Technol 2021 55 19 1c04466 10.1021/acs.est.1c04466 34553907
    [Google Scholar]
  8. Zhang Q. Xu E.G. Li J. Chen Q. Ma L. Zeng E.Y. Shi H. A Review of Microplastics in Table Salt, Drinking Water, and Air: Direct Human Exposure. Environ. Sci. Technol. 2020 54 7 3740 3751 10.1021/acs.est.9b04535 32119774
    [Google Scholar]
  9. Rocha-Santos T. Duarte A.C. A critical overview of the analytical approaches to the occurrence, the fate and the be-havior of microplastics in the environment. Trends Analyt. Chem. 2015 65 47 53 10.1016/j.trac.2014.10.011
    [Google Scholar]
  10. Barnes D.K.A. Galgani F. Thompson R.C. Barlaz M. Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009 364 1526 1985 1998 10.1098/rstb.2008.0205 19528051
    [Google Scholar]
  11. Hidalgo-Ruz V. Gutow L. Thompson R.C. Thiel M. Mi-croplastics in the marine environment: A review of the meth-ods used for identification and quantification. Environ. Sci. Technol. 2012 46 6 3060 3075 10.1021/es2031505 22321064
    [Google Scholar]
  12. Rillig M.C. Lehmann A. de Souza Machado A.A. Yang G. Microplastic effects on plants. New Phytol. 2019 223 3 1066 1070 10.1111/nph.15794 30883812
    [Google Scholar]
  13. Jambeck J.R. Geyer R. Wilcox C. Siegler T.R. Perryman M. Andrady A. Narayan R. Law K.L. Plastic waste inputs from land into the ocean. Science 2015 347 6223 768 771 10.1126/science.1260352 25678662
    [Google Scholar]
  14. Lebreton L.C.M. van der Zwet J. Damsteeg J.W. Slat B. Andrady A. Reisser J. River plastic emissions to the world’s oceans. Nat. Commun. 2017 8 1 15611 10.1038/ncomms15611 28589961
    [Google Scholar]
  15. Santana-Viera S. Montesdeoca-Esponda S. Guedes-Alonso R. Sosa-Ferrera Z. Santana-Rodríguez J.J. Organic pollu-tants adsorbed on microplastics: Analytical methodologies and occurrence in oceans. Trends Environ. Analy. Chem. 2021 29 e00114
    [Google Scholar]
  16. Van Cauwenberghe L. Devriese L. Galgani F. Robbens J. Janssen C.R. Microplastics in sediments: A review of tech-niques, occurrence and effects. Mar. Environ. Res. 2015 111 5 17 10.1016/j.marenvres.2015.06.007 26095706
    [Google Scholar]
  17. Huang L. Zhang S. Li L. Zhang S. Wang J. Liu X. Zhang W. Research progress on microplastics pollution in polar oceans. Polar Sci. 2023 36 100946 10.1016/j.polar.2023.100946
    [Google Scholar]
  18. Li J. Liu H. Paul Chen J. Microplastics in freshwater sys-tems: A review on occurrence, environmental effects, and methods for microplastics detection. Water Res. 2018 137 362 374 10.1016/j.watres.2017.12.056 29580559
    [Google Scholar]
  19. Maréchal J.Y.A. Hansen L.T. Jensen P.E. Water quality in rural Greenland - acceptability and safety. Hygiene Environ. Health Advances 2023 7 100065 10.1016/j.heha.2023.100065
    [Google Scholar]
  20. Essert S.M. Zacharias N. Precht T. Pankratz D. Funken K. Mutters N.T. Kistemann T. Schreiber C. Persistence of MRSA and ESBL-producing E. coli and K. oxytoca in river water. Hygiene and Environ. Health Advances 2023 7 100072 10.1016/j.heha.2023.100072
    [Google Scholar]
  21. Lei L. Wu S. Lu S. Liu M. Song Y. Fu Z. Shi H. Raley-Susman K.M. He D. Microplastic particles cause in-testinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans. Sci. Total Environ. 2018 619-620 1 8 10.1016/j.scitotenv.2017.11.103 29136530
    [Google Scholar]
  22. Weber C.J. Santowski A. Chifflard P. Investigating the dispersal of macro- and microplastics on agricultural fields 30 years after sewage sludge application. Sci. Rep. 2022 12 1 6401 10.1038/s41598‑022‑10294‑w 35430621
    [Google Scholar]
  23. Bhagat K. Barrios A.C. Rajwade K. Kumar A. Oswald J. Apul O. Perreault F. Aging of microplastics increases their adsorption affinity towards organic contaminants. Chemosphere 2022 298 134238 10.1016/j.chemosphere.2022.134238 35276106
    [Google Scholar]
  24. Khalid N. Aqeel M. Noman A. Khan S.M. Akhter N. Interactions and effects of microplastics with heavy metals in aquatic and terrestrial environments. Environ. Pollut. 2021 290 118104 10.1016/j.envpol.2021.118104 34500399
    [Google Scholar]
  25. Hahladakis J.N. Velis C.A. Weber R. Iacovidou E. Pur-nell P. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. J. Hazard. Mater. 2018 344 179 199 10.1016/j.jhazmat.2017.10.014 29035713
    [Google Scholar]
  26. Ren Z. Gui X. Xu X. Zhao L. Qiu H. Cao X. Micro-plastics in the soil-groundwater environment: Aging, migra-tion, and co-transport of contaminants – A critical review. J. Hazard. Mater. 2021 419 126455 10.1016/j.jhazmat.2021.126455 34186423
    [Google Scholar]
  27. Ya H. Xing Y. Zhang T. Lv M. Jiang B. LDPE micro-plastics affect soil microbial community and form a unique plastisphere on microplastics. Appl. Soil Ecol. 2022 180 104623 10.1016/j.apsoil.2022.104623
    [Google Scholar]
  28. Dhevagi P. Poornima R. Keerthi Sahasa R.G. Ramya A. Karthika S. Sivasubramanian K. The crux of microplastics in soil - a review. Int. J. Environ. Anal. Chem. 2022 1 33 10.1080/03067319.2022.2148528
    [Google Scholar]
  29. Lim C. Kim N. Lee J. Yoon Y. Potential of Adsorption of Diverse Environmental Contaminants onto Microplastics. Water 2022 14 24 4086 10.3390/w14244086
    [Google Scholar]
  30. Luo H. Du Q. Zhong Z. Xu Y. Peng J. Protein-coated microplastics corona complex: An underestimated risk of mi-croplastics. Sci. Total Environ. 2022 851 Pt 1 157948 10.1016/j.scitotenv.2022.157948 35963400
    [Google Scholar]
  31. Pradhip V.P. Balu S. Subramanian B. Pond ash as a poten-tial material for sustainable geotechnical applications – a re-view. Environ. Sci. Pollut. Res. Int. 2023 30 46 102083 102103 10.1007/s11356‑023‑29671‑7 37682441
    [Google Scholar]
  32. Zarfl C. Promising techniques and open challenges for mi-croplastic identification and quantification in environmental matrices. Anal. Bioanal. Chem. 2019 411 17 3743 3756 10.1007/s00216‑019‑01763‑9 30919016
    [Google Scholar]
  33. Scheurer M. Bigalke M. Microplastics in Swiss Floodplain Soils. Environ. Sci. Technol. 2018 52 6 3591 3598 10.1021/acs.est.7b06003 29446629
    [Google Scholar]
  34. Prata J.C. da Costa J.P. Duarte A.C. Rocha-Santos T. Methods for sampling and detection of microplastics in water and sediment: A critical review. TrAC 2019 110 150 159
    [Google Scholar]
  35. Bläsing M. Amelung W. Plastics in soil: Analytical methods and possible sources. Sci. Total Environ. 2018 612 422 435 10.1016/j.scitotenv.2017.08.086 28863373
    [Google Scholar]
  36. Fuller S. Gautam A. A Procedure for Measuring Microplas-tics using Pressurized Fluid Extraction. Environ. Sci. Technol. 2016 50 11 5774 5780 10.1021/acs.est.6b00816 27172172
    [Google Scholar]
  37. Ziajahromi S. Neale P.A. Rintoul L. Leusch F.D.L. Wastewater treatment plants as a pathway for microplastics: Development of a new approach to sample wastewater-based microplastics. Water Res. 2017 112 93 99 10.1016/j.watres.2017.01.042 28160700
    [Google Scholar]
  38. Avio C.G. Gorbi S. Regoli F. Plastics and microplastics in the oceans: From emerging pollutants to emerged threat. Mar. Environ. Res. 2017 128 2 11 10.1016/j.marenvres.2016.05.012 27233985
    [Google Scholar]
  39. Cole M. Lindeque P. Halsband C. Galloway T.S. Micro-plastics as contaminants in the marine environment: A review. Mar. Pollut. Bull. 2011 62 12 2588 2597 10.1016/j.marpolbul.2011.09.025 22001295
    [Google Scholar]
  40. Barboza L.G.A. Dick Vethaak A. Lavorante B.R.B.O. Lundebye A.K. Guilhermino L. Marine microplastic debris: An emerging issue for food security, food safety and human health. Mar. Pollut. Bull. 2018 133 336 348 10.1016/j.marpolbul.2018.05.047 30041323
    [Google Scholar]
  41. Misra A. Zambrzycki C. Kloker G. Kotyrba A. Anjass M.H. Franco Castillo I. Mitchell S.G. Güttel R. Streb C. Water Purification and Microplastics Removal Using Magnetic Polyoxometalate‐Supported Ionic Liquid Phases (magPOM‐SILPs). Angew. Chem. Int. Ed. 2020 59 4 1601 1605 10.1002/anie.201912111 31639241
    [Google Scholar]
  42. Karami A. Golieskardi A. Choo C.K. Larat V. Karbalaei S. Salamatinia B. Microplastic and mesoplastic contamina-tion in canned sardines and sprats. Sci. Total Environ. 2018 612 1380 1386 10.1016/j.scitotenv.2017.09.005 28898945
    [Google Scholar]
  43. Dehaut A. Cassone A.L. Frère L. Hermabessiere L. Himber C. Rinnert E. Rivière G. Lambert C. Soudant P. Huvet A. Duflos G. Paul-Pont I. Microplastics in seafood: Benchmark protocol for their extraction and characterization. Environ. Pollut. 2016 215 223 233 10.1016/j.envpol.2016.05.018 27209243
    [Google Scholar]
  44. Mintenig S.M. Int-Veen I. Löder M.G.J. Primpke S. Gerdts G. Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging. Water Res. 2017 108 365 372 10.1016/j.watres.2016.11.015 27838027
    [Google Scholar]
  45. Courtene-Jones W. Quinn B. Ewins C. Gary S.F. Nara-yanaswamy B.E. Microplastic accumulation in deep-sea sed-iments from the Rockall Trough. Mar. Pollut. Bull. 2020 154 111092 10.1016/j.marpolbul.2020.111092 32319921
    [Google Scholar]
  46. Nakajima R. Tsuchiya M. Lindsay D.J. Kitahashi T. Fujikura K. Fukushima T. A new small device made of glass for separating microplastics from marine and freshwater sediments. PeerJ 2019 7 e7915 10.7717/peerj.7915 31656703
    [Google Scholar]
  47. Käppler A. Fischer D. Oberbeckmann S. Schernewski G. Labrenz M. Eichhorn K.J. Voit B. Analysis of environ-mental microplastics by vibrational microspectroscopy: FTIR, Raman or both? Anal. Bioanal. Chem. 2016 408 29 8377 8391 10.1007/s00216‑016‑9956‑3 27722940
    [Google Scholar]
  48. Dekiff J.H. Remy D. Klasmeier J. Fries E. Occurrence and spatial distribution of microplastics in sediments from Norderney. Environ. Pollut. 2014 186 248 256 10.1016/j.envpol.2013.11.019 24448461
    [Google Scholar]
  49. Free C.M. Jensen O.P. Mason S.A. Eriksen M. William-son N.J. Boldgiv B. High-levels of microplastic pollution in a large, remote, mountain lake. Mar. Pollut. Bull. 2014 85 1 156 163 10.1016/j.marpolbul.2014.06.001 24973278
    [Google Scholar]
  50. Sánchez C. Fungal potential for the degradation of petroleum-based polymers: An overview of macro- and microplastics biodegradation. Biotechnol. Adv. 2020 40 107501 10.1016/j.biotechadv.2019.107501 31870825
    [Google Scholar]
  51. Wang Z.M. Wagner J. Ghosal S. Bedi G. Wall S. SEM/EDS and optical microscopy analyses of microplastics in ocean trawl and fish guts. Sci. Total Environ. 2017 603-604 616 626 10.1016/j.scitotenv.2017.06.047 28646780
    [Google Scholar]
  52. Cooper D.A. Corcoran P.L. Effects of mechanical and chemical processes on the degradation of plastic beach debris on the island of Kauai, Hawaii. Mar. Pollut. Bull. 2010 60 5 650 654 10.1016/j.marpolbul.2009.12.026 20106491
    [Google Scholar]
  53. Song Y.K. Hong S.H. Jang M. Han G.M. Rani M. Lee J. Shim W.J. A comparison of microscopic and spectroscop-ic identification methods for analysis of microplastics in envi-ronmental samples. Mar. Pollut. Bull. 2015 93 1-2 202 209 10.1016/j.marpolbul.2015.01.015 25682567
    [Google Scholar]
  54. Käppler A. Fischer M. Scholz-Böttcher B.M. Oberbeck-mann S. Labrenz M. Fischer D. Eichhorn K.J. Voit B. Comparison of μ-ATR-FTIR spectroscopy and py-GCMS as identification tools for microplastic particles and fibers isolat-ed from river sediments. Anal. Bioanal. Chem. 2018 410 21 5313 5327 10.1007/s00216‑018‑1185‑5 29909455
    [Google Scholar]
  55. Baruah A. Sharma A. Sharma S. Nagraik R. An insight into different microplastic detection methods. Int. J. Environ. Sci. Technol. 2022 19 6 5721 5730 10.1007/s13762‑021‑03384‑1
    [Google Scholar]
  56. Collard F. Gilbert B. Eppe G. Parmentier E. Das K. De-tection of Anthropogenic Particles in Fish Stomachs: An Iso-lation Method Adapted to Identification by Raman Spectros-copy. Arch. Environ. Contam. Toxicol. 2015 69 3 331 339 10.1007/s00244‑015‑0221‑0 26289815
    [Google Scholar]
  57. Imhof H.K. Laforsch C. Wiesheu A.C. Schmid J. Anger P.M. Niessner R. Ivleva N.P. Pigments and plastic in lim-netic ecosystems: A qualitative and quantitative study on mi-croparticles of different size classes. Water Res. 2016 98 64 74 10.1016/j.watres.2016.03.015 27082693
    [Google Scholar]
  58. Laptenok S.P. Martin C. Genchi L. Duarte C.M. Liberale C. Stimulated Raman microspectroscopy as a new method to classify microfibers from environmental samples. Environ. Pollut. 2020 267 115640 10.1016/j.envpol.2020.115640 33254658
    [Google Scholar]
  59. Harrison J.P. Ojeda J.J. Romero-González M.E. The ap-plicability of reflectance micro-Fourier-transform infrared spectroscopy for the detection of synthetic microplastics in marine sediments. Sci. Total Environ. 2012 416 455 463 10.1016/j.scitotenv.2011.11.078 22221871
    [Google Scholar]
  60. Eisentraut P. Dümichen E. Ruhl A.S. Jekel M. Albrecht M. Gehde M. Braun U. Two Birds with One Stone—Fast and Simultaneous Analysis of Microplastics: Microparticles Derived from Thermoplastics and Tire Wear. Environ. Sci. Technol. Lett. 2018 5 10 608 613 10.1021/acs.estlett.8b00446
    [Google Scholar]
  61. Fries E. Dekiff J.H. Willmeyer J. Nuelle M.T. Ebert M. Remy D. Identification of polymer types and additives in ma-rine microplastic particles using pyrolysis-GC/MS and scan-ning electron microscopy. Environ. Sci. Process. Impacts 2013 15 10 1949 1956 10.1039/c3em00214d 24056666
    [Google Scholar]
  62. Dümichen E. Barthel A.K. Braun U. Bannick C.G. Brand K. Jekel M. Senz R. Analysis of polyethylene microplastics in environmental samples, using a thermal decomposition method. Water Res. 2015 85 451 457 10.1016/j.watres.2015.09.002 26376022
    [Google Scholar]
  63. Chen J. Wu J. Sherrell P.C. Chen J. Wang H. Zhang W. Yang J. How to Build a Microplastics‐Free Environment: Strategies for Microplastics Degradation and Plastics Recy-cling. Adv. Sci. (Weinh.) 2022 9 6 2103764 10.1002/advs.202103764 34989178
    [Google Scholar]
  64. Napper I.E. Thompson R.C. Plastic Debris in the Marine Environment: History and Future Challenges. Glob. Chall. 2020 4 6 1900081 10.1002/gch2.201900081 32685195
    [Google Scholar]
  65. Gong J. Xie P. Research progress in sources, analytical methods, eco-environmental effects, and control measures of microplastics. Chemosphere 2020 254 126790 10.1016/j.chemosphere.2020.126790 32330760
    [Google Scholar]
  66. Bornscheuer U.T. Feeding on plastic. Science 2016 351 6278 1154 1155 10.1126/science.aaf2853 26965614
    [Google Scholar]
  67. Gao R. Sun C. A marine bacterial community capable of degrading poly(ethylene terephthalate) and polyethylene. J. Hazard. Mater. 2021 416 125928 10.1016/j.jhazmat.2021.125928 34489083
    [Google Scholar]
  68. Yang Y. Yang J. Wu W.M. Zhao J. Song Y. Gao L. Yang R. Jiang L. Biodegradation and Mineralization of Poly-styrene by Plastic-Eating Mealworms: Part 2. Role of Gut Mi-croorganisms. Environ. Sci. Technol. 2015 49 20 12087 12093 10.1021/acs.est.5b02663 26390390
    [Google Scholar]
  69. Tagg A.S. Sapp M. Harrison J.P. Ojeda J.J. Identification and Quantification of Microplastics in Wastewater Using Fo-cal Plane Array-Based Reflectance Micro-FT-IR Imaging. Anal. Chem. 2015 87 12 6032 6040 10.1021/acs.analchem.5b00495 25986938
    [Google Scholar]
  70. Gao R. Liu R. Sun C. A marine fungus Alternaria alternata FB1 efficiently degrades polyethylene. J. Hazard. Mater. 2022 431 128617 10.1016/j.jhazmat.2022.128617 35359103
    [Google Scholar]
  71. Auta H.S. Emenike C.U. Fauziah S.H. Distribution and importance of microplastics in the marine environment: A re-view of the sources, fate, effects, and potential solutions. Environ. Int. 2017 102 165 176 10.1016/j.envint.2017.02.013 28284818
    [Google Scholar]
/content/journals/cac/10.2174/0115734110326936240927044318
Loading
/content/journals/cac/10.2174/0115734110326936240927044318
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Microplastics ; soils ; control ; analytical methods
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test