Skip to content
2000
image of Identification, Isolation, Structure Characterization, and Chromatographic Separation of a New Highly Analogous Impurity of the Ubrogepant

Abstract

Background

Ubrogepant is a regulated peptide receptor antagonist associated with the calcitonin gene, granted approval in the United States for the specific treatment of migraine headaches.

Objective

An impurity found in the alkali hydrolysis of drug dosage forms has a structure very similar to that of ubrogepant. This research aims to characterize this analogous impurity utilizing NMR and LC-MS spectroscopy tools. Moreover, it is critical to develop an extremely sensitive and superior resolution analytical procedure for identifying and determining the amount of analogous impurity in pharmaceutical products.

Method

The ubrogepant impurity was identified using an optimized chromatographic method that relies on reversed-phase HPLC with UV detection. This technique utilized a charged surface hybrid (CSH) technology column operating in gradient elution mode. A mixture of A-channel (0.1% trifluoroacetic acid) and B-channel (acetonitrile and water, 80:20% v/v) constituted the eluent. The analogous impurity was isolated through fraction collection, purified using flash chromatography, and characterized using NMR (1D and 2D) and LC-MS.

Results

The analogous impurity was successfully separated from the ubrogepant peak with a resolution above 2.0. The concentration of the impurity was approximately 10% compared to the ubrogepant peak after alkaline stressing at room temperature for 30 minutes. NMR (1D 13C NMR and 1H, 2D HMBC, HSQC, NOESY, and COSY) and LC-MS analysis characterized the ubrogepant impurity, revealing it to be an epimer of ubrogepant. The developed approach was highly sensitive, allowing for the quantification of the ubrogepant impurity even at a concentration of 0.2 µg/mL.

Conclusion

The approach demonstrated a remarkable degree of precision, linearity, specificity, and accuracy. This new impurity deserves special attention because of its striking similarity to the active ingredient, ubrogepant.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110324919240918112907
2025-01-01
2025-01-31
Loading full text...

Full text loading...

References

  1. Dhir A. Ubrogepant to treat migraine. Drugs Today (Barc) 2020 56 7 459 467 10.1358/dot.2020.56.7.3157311 32648856
    [Google Scholar]
  2. Scott L.J. Ubrogepant: First Approval. Drugs 2020 80 3 323 328 10.1007/s40265‑020‑01264‑5 32020557
    [Google Scholar]
  3. Food and Drug Administration. This label may not be the latest approved by FDA. 2019 Available From: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/211765s000lbl.pdf
  4. Lars Edvinsson Petersen K.A. CGRP-receptor antagonism in migraine treatment. CNS Neurol. Disord. Drug Targets 2007 6 4 240 246 10.2174/187152707781387314 17691979
    [Google Scholar]
  5. Dickerson I. Role of CGRP-receptor component protein (RCP) in CLR/RAMP function. Curr. Protein Pept. Sci. 2013 14 5 407 415 10.2174/13892037113149990057 23745704
    [Google Scholar]
  6. Evangelista S. Role of calcitonin gene-related Peptide in gastric mucosal defence and healing. Curr. Pharm. Des. 2009 15 30 3571 3576 10.2174/138161209789207024 19860701
    [Google Scholar]
  7. Davis C. Xu C. The tortuous road to an ideal CGRP function blocker for the treatment of migraine. Curr. Top. Med. Chem. 2008 8 16 1468 1479 10.2174/156802608786264218 18991732
    [Google Scholar]
  8. Ocheretyaner E.R. Kofman M. Quattrocchi E. Calcitonin gene-related peptide (CGRP) receptor antagonists for the acute treatment of migraines in adults. Drugs Context 2022 11 1 10 10.7573/dic.2022‑3‑5 36339294
    [Google Scholar]
  9. Russell F.A. King R. Smillie S.J. Kodji X. Brain S.D. Calcitonin gene-related peptide: Physiology and pathophysiology. Physiol. Rev. 2014 94 4 1099 1142 10.1152/physrev.00034.2013 25287861
    [Google Scholar]
  10. Rubio-Beltran E. Chan K.Y. Danser A.H.J. MaassenVanDenBrink A. Edvinsson L. Characterisation of the calcitonin gene-related peptide receptor antagonists ubrogepant and atogepant in human isolated coronary, cerebral and middle meningeal arteries. Cephalalgia 2020 40 4 357 366 10.1177/0333102419884943 31674221
    [Google Scholar]
  11. ICH HARMONISED TRIPARTITE GUIDELINE IMPURITIES IN NEW DRUG PRODUCTS Q3B(R2). 2006 Available From: https://database.ich.org/sites/default/files/Q3B%28R2%29%20Guideline.pdf
  12. https://www.fda.gov/media/124859/download
  13. Nath D. Sharma B. Impurity Profiling-A Significant Approach in Pharmaceuticals. Curr. Pharm. Anal. 2019 15 7 669 680 10.2174/1573412914666181024150632
    [Google Scholar]
  14. Kogawa A.C. Salgado H.R.N. Impurities and Forced Degradation Studies: A Review. Curr. Pharm. Anal. 2015 12 1 18 24 10.2174/1573412911666150519000155
    [Google Scholar]
  15. Tian Y. Chong X.M. Liu Y. Han Y. Hu C.Q. Yao S. Xu M.Z. Study on Isomeric Impurities in Cefotiam Hydrochloride. Front Chem. 2021 8 619307 10.3389/fchem.2020.619307 33585401
    [Google Scholar]
  16. Ren X. Zhou J. Wang J. Separation and characterization of impurities and isomers in cefpirome sulfate by liquid chromatography/tandem mass spectrometry and a summary of the fragmentation pathways of oxime‐type cephalosporins. Rapid Commun. Mass Spectrom. 2021 35 4 e9004 10.1002/rcm.9004 33188542
    [Google Scholar]
  17. Lajin B. Steiner O. Fasshold L. Zangger K. Goessler W. The identification and chromatographic separation of a new highly analogous impurity of the active pharmaceutical ingredient icatibant. Eur. J. Pharm. Sci. 2019 132 121 124 10.1016/j.ejps.2019.03.003 30849486
    [Google Scholar]
  18. Wipf P. Skoda E. M. Mann A. Conformational Restriction and Steric Hindrance in Medicinal Chemistry. The Practice of Medicinal Chemistry (Fourth Edition) Cambridge, Massachusetts Academic Press 2015 10.1016/B978‑0‑12‑417205‑0.00011‑0
    [Google Scholar]
  19. Dighe S.V. A review of the safety of generic drugs. Transplant. Proc. 1999 31 3 23S 24S 10.1016/S0041‑1345(99)00109‑8 10330955
    [Google Scholar]
  20. Wang Y.J. Zheng Y.G. Xue Y.P. Wang Y.S. Shen Y.C. Analysis and Determination of Anti-diabetes Drug Acarbose and its Structural Analogs. Curr. Pharm. Anal. 2011 7 1 12 20 10.2174/157341211794708721
    [Google Scholar]
  21. Ali I. Hussain I. Saleem K. Aboul-Enein H.Y. Enantiomeric resolution of ibuprofen and flurbiprofen in human plasma by SPE-chiral HPLC methods. Comb. Chem. High Throughput Screen. 2012 15 6 509 514 10.2174/138620712800563882 22571370
    [Google Scholar]
  22. Zhang Y. Yao S. Zeng H. Song H. Chiral Separation of Pharmaceuticals by High Performance Liquid Chromatography. Curr. Pharm. Anal. 2010 6 2 114 130 10.2174/157341210791202636
    [Google Scholar]
  23. Raikar P. Gurupadayya B. Koganti V.S. Recent Advances in Chiral Separation of Antihistamine Drugs: Analytical and Bioanalytical Methods. Curr. Drug Deliv. 2018 15 10 1393 1410 10.2174/1567201815666180830100015 30160212
    [Google Scholar]
  24. Buszewski B. Krupczynska K. Bazylak G. Effect of stationary phase structure on retention and selectivity tuning in the high-throughput separation of tocopherol isomers by HPLC. Comb. Chem. High Throughput Screen. 2004 7 4 383 391 10.2174/1386207043328788 15200386
    [Google Scholar]
  25. Aboul-Enein H. Derayea S. Omar M. Abdelmageed O. El-Gizawy S. Abdel-Megied A. A Validated Enantioselective HPLC Method for Assay of S-Amlodipine Using Crown Ether as a Chiral Stationary Phase. Curr. Anal. Chem. 2017 13 2 117 123 10.2174/1573411012666160527151803
    [Google Scholar]
  26. Gunnam S. Choppari T. Lakshmi N.C. Cherla P.M. Siddiqui S.I. Development and validation of teneligliptin stereoisomers by HPLC using cellulose based immobilized polysaccharide chiral stationary phase. Curr. Pharm. Anal. 2021 17 10 1317 1322 10.2174/1573412917999201102204804
    [Google Scholar]
  27. Gunjal P. Singh S.K. Kumar R. Kumar R. Gulati M. Role of Chromatograph-based Analytical Techniques in Quantification of Chiral Compounds: An Update. Curr. Anal. Chem. 2021 17 3 355 373 10.2174/1573411016999200525144506
    [Google Scholar]
  28. Raju I.V.S. Raghuram P. Sriramulu J. Novel Chiral LC Methods for the Enantiomeric Separation of Bicalutamide and Thalidomide on Amylose Based Immobilized CSP. Curr. Pharm. Anal. 2011 7 1 47 53 10.2174/157341211794708758
    [Google Scholar]
  29. Christodoulou E.A. An Overview of HPLC Methods for the Enantiomer Separation of Active Pharmaceutical Ingredients in Bulk and Drug Formulations. Curr. Org. Chem. 2010 14 19 2337 2347 10.2174/138527210793351436
    [Google Scholar]
  30. Kumar R. Meyyanathan S. Gowramma B. A Validated Chiral Liquid Chromatographic Method for the Enantiomeric Separation of Orphenadrine Citrate in Pharmaceutical Dosage Form. Curr. Pharm. Anal. 2016 12 4 357 364 10.2174/1573412912666160128224822
    [Google Scholar]
  31. Gazdag M. 2.7 High Performance Liquid Chromatography (HPLC) and Related Techniques. Identification and Determination of Impurities in Drugs Amsterdam Elsevier 2000 210 239 10.1016/S1464‑3456(00)80014‑9
    [Google Scholar]
  32. Rossi Forim M. Perlatti B. Soares Costa E. Facchini Magnani R. Donizetti de Souza G. Concerns and Considerations about the Quality Control of Natural Products Using Chromatographic Methods. Curr. Chromatogr. 2015 2 1 20 31 10.2174/2213240601666141113212732
    [Google Scholar]
  33. Santhanam M.K. Nagarajan N.C. Ponraj P.B. Mohamed Hilurudeen M.S. A Complete Roadmap of Analytical Quality by Design in Various Analytical Techniques. Curr. Pharm. Anal. 2023 19 3 184 215 10.2174/1573412919666230118105908
    [Google Scholar]
  34. Reddy C.B. Kumari M.V. Eswaramma P. Analytical Method Development and Validation of Ubrogepant and their Degradation Studies in Bulk and Pharmaceutical Dosage form by RP-HPLC. Int. J. Pharmaceut. Edu. Res. 2023 5 1 13 19 10.37021/ijper.v5i1.03
    [Google Scholar]
  35. Vanga N. R. K V. R. Ummiti K. Ratnakaram V. N. Development of a stability-indicating purity method for ubrogepant through stress degradation analysis, extraction, and characterization of unidentified degradation products using flash chromatography, NMR, IR, and LC-MS. J. AOAC Int. 2024 107 5 761 773 10.1093/jaoacint/qsae057 38941508
    [Google Scholar]
  36. Chaganti S. Chauhan U. Bhatt N. Kommalapati H. Golla V.M. Pilli P. Samanthula G. LC-HRMS and NMR studies for the characterization of degradation impurities of ubrogepant along with the in silico approaches for the prediction of degradation and toxicity. J. Pharm. Biomed. Anal. 2024 243 116117 10.1016/j.jpba.2024.116117 38522383
    [Google Scholar]
  37. EMEA. Note for guidance on validation of analytical procedures: Text and methodology. 1995 Available From: https://www.ema.europa.eu/en/documents/scientific-guideline/ich-q-2-r1-validation-analytical-procedures-text-and-methodology-step-5_en.pdf
  38. Narayanam M. Handa T. Sharma P. Jhajra S. Muthe P.K. Dappili P.K. Shah R.P. Singh S. Critical practical aspects in the application of liquid chromatography–mass spectrometric studies for the characterization of impurities and degradation products. J. Pharm. Biomed. Anal. 2014 87 191 217 10.1016/j.jpba.2013.04.027 23706957
    [Google Scholar]
  39. Lee S.M. Kim S. Shin D. Shin K.H. Determination of Sufentanil in Human Plasma Using Ultra-high Performance Liquid Chromatography Coupled with Tandem Mass Spectrometry (UPLC–MS/MS). Curr. Anal. Chem. 2023 19 7 531 540 10.2174/1573411019666230823094749
    [Google Scholar]
  40. Susanna K.J. Gajbhiye R. Sarmah B. Pawar S.D. Mehta P. Murty U.S. Ravichandiran V. Alexander A. Kumar P. Simultaneous Method Development and Validation of Anastrozole Along with Piperine: Degradation Studies and Degradants Characterization Using LC-QTOF-ESI-MS Along with In-silico ADMET Predictions. Curr. Drug Metab. 2022 23 2 113 130 10.2174/1389200223666220215152606 35168518
    [Google Scholar]
  41. Yang Y. Jian Y. Liu B. Rapid Determination of Diverse Ganoderic Acids in Ganoderma Using UPLC–MS/MS. Curr. Anal. Chem. 2024 20 3 191 200 10.2174/0115734110289769240125115919
    [Google Scholar]
  42. Ummiti K. Shanmukha Kumar J.V. Establishment of validated stability indicating purity method based on the stress degradation behavior of gonadotropin-releasing hormone antagonist (ganirelix) in an injectable formulation using HPLC and LC-MS-QTOF. Eur. J. Mass Spectrom. (Chichester, Eng.) 2021 27 2-4 126 140 10.1177/14690667211005335 33823624
    [Google Scholar]
  43. Fejzo J. Lepre C. Xie X. Application of NMR screening in drug discovery. Curr. Top. Med. Chem. 2003 3 1 81 97 10.2174/1568026033392796 12570779
    [Google Scholar]
  44. Chaganti S. Dhiman V. Madhyanapu Golla V. K R R. Khemchandani R. Samanthula G. Forced degradation study of baricitinib and structural characterization of its degradation impurities by high‐resolution mass spectrometry and nuclear magnetic resonance spectroscopy. Rapid Commun. Mass Spectrom. 2023 37 18 e9605 10.1002/rcm.9605 37580847
    [Google Scholar]
  45. Saibaba B. Vishnuvardhan C. Johnsi Rani P. Satheesh Kumar N. Stability-Indicating Reversed-Phase UHPLC Method Development and Characterization of Degradation Products of Almotriptan Maleate by LC-QTOF-MS/MS. J. Chromatogr. Sci. 2018 56 1 6 17 10.1093/chromsci/bmx074 28977362
    [Google Scholar]
  46. Ummiti K. Vakkala S. Panuganti V. Annarapu M.R. Isolation, identification, and characterization of 17-oxo dexamethasone, an oxidative degradation impurity of dexamethasone using flash chromatography and NMR/HRMS/IR. J. Liq. Chromatogr. Relat. Technol. 2014 37 17 2403 2419 10.1080/10826076.2013.836712
    [Google Scholar]
  47. Shi Y. Yao Q. Lin L. Ren X. Ai J. Chen Y. Separation and Characterization of the Components and Impurities in Policresulen Solution using LC-Q-TOF MS. Curr. Pharm. Anal. 2023 19 3 246 257 10.2174/1573412919666221223150943
    [Google Scholar]
  48. Zhang D.D. Jung Y.H. Seol M.J. Zhou S. Chaudhary D. Jeong J.H. Kim J.H. HPLC-MS/MS Method for the Quantitative Determination of Metformin in Rat Plasma and Its Application to Comparative Bioavailability Assessment. Curr. Anal. Chem. 2024 20 4 255 263 10.2174/0115734110288849240116045045
    [Google Scholar]
  49. FDA. Guidance for Industry Q1A(R2) Stability Testing of New Drug Substances and Products. 2003 Available From: https://www.fda.gov/media/71707/download
  50. International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use. ICH harmonised tripartite guideline stability testing: Photostability testing of new drug substances and products Q1B. 1996 Available From: https://database.ich.org/sites/default/files/Q1B%20Guideline.pdf
  51. Annex 10. Stability testing of active pharmaceutical ingredients and finished pharmaceutical products. 2018 Available From: https://cdn.who.int/media/docs/default-source/medicines/norms-and-standards/guidelines/regulatory-standards/trs1010-annex10-who-stability-testing-of-active-pharmaceutical-ingredients.pdf?sfvrsn=7cb7a4c9_4&download=true
  52. Zelesky T. Baertschi S.W. Foti C. Allain L.R. Hostyn S. Franca J.R. Li Y. Marden S. Mohan S. Ultramari M. Huang Z. Adams N. Campbell J.M. Jansen P.J. Kotoni D. Laue C. Pharmaceutical Forced Degradation (Stress Testing) Endpoints: A Scientific Rationale and Industry Perspective. J. Pharm. Sci. 2023 112 12 2948 2964 10.1016/j.xphs.2023.09.003 37690775
    [Google Scholar]
  53. Singh S. Junwal M. Modhe G. Tiwari H. Kurmi M. Parashar N. Sidduri P. Forced degradation studies to assess the stability of drugs and products. Trends Analyt. Chem. 2013 49 71 88 10.1016/j.trac.2013.05.006
    [Google Scholar]
  54. Alsante K. Ando A. Brown R. Ensing J. Hatajik T. Kong W. Tsuda Y. The role of degradant profiling in active pharmaceutical ingredients and drug products. Adv. Drug Deliv. Rev. 2007 59 1 29 37 10.1016/j.addr.2006.10.006 17187892
    [Google Scholar]
  55. Ketha N.V.D.P. Kolli D. Subbappa P.K. Structural Elucidation of Novel Degradation Impurity and Development, Validation of a Single HPLC Method for All Putative Impurities of Clobetasol Propionate in a Foam Drug Product. J. Chromatogr. Sci. 2023 2023 bmad016 10.1093/chromsci/bmad016 36857571
    [Google Scholar]
  56. Blessy M. Patel R.D. Prajapati P.N. Agrawal Y.K. Development of forced degradation and stability indicating studies of drugs—A review. J. Pharm. Anal. 2014 4 3 159 165 10.1016/j.jpha.2013.09.003 29403878
    [Google Scholar]
  57. Bapatu H.R. Maram R.K. Murthy R.S. Robust and Rugged Stability-Indicating HPLC Method for the Determination of Plerixafor and Its Related Impurities in Drug Substances. J. Chromatogr. Sci. 2015 53 9 1432 1442 10.1093/chromsci/bmv029 25858970
    [Google Scholar]
  58. Prasad Ketha N.V.D. Kolli D. Using preparative chromatography and NMR/LCMS/FT-IR, Isolation, Identification, and Characterization of Posaconazole oxidative degradation impurities. Rasayan J. Chem. 2022 15 1 619 627 10.31788/RJC.2022.1516707
    [Google Scholar]
  59. Ganthi H.K.R. Stability Indicating HPLC Method for Quantification of Solifenacin Succinate & Tamsulosin Hydrochloride along with Its Impurities in Tablet Dosage Form. Am. J. Anal. Chem. 2016 07 11 840 862 10.4236/ajac.2016.711073
    [Google Scholar]
  60. Sweidan K. Elayan M. Sabbah D. Idrees G. Arafat T. Study of Forced Degradation Behavior of Amisulpride by LC-MS and NMR and Development of a Stability-Indicating Method. Curr. Pharm. Anal. 2018 14 2 62009 10.2174/1573412913666170822162009
    [Google Scholar]
  61. Dendeni M. Cimetiere N. Huguet S. Amrane A. Hamida N.B. Forced Degradation Study of Quinapril by UPLC-DAD and UPLC/ MS/MS: Identification of By-products and Development of Degradation Kinetics. Curr. Pharm. Anal. 2013 9 3 278 290 10.2174/1573412911309030006
    [Google Scholar]
  62. Lv Y. Du G. Yang D. Wang F. Study on the Formation Mechanisms of the Degradation Products of Salvianolic Acid A. Curr. Anal. Chem. 2017 13 2 150 157 10.2174/1573411012666160906154333
    [Google Scholar]
  63. Tutar E. High Performance Liquid Chromatography (HPLC) – Theoretical and Practical Aspects. Essential Techniques for Medical and Life Scientists: A Guide to Contemporary Methods and Current Applications- Part II Sharjah, Sharjah, United Arab Emirates Bentham Science Publishers 2020 10.2174/9789811464867120010005
    [Google Scholar]
  64. Hu Y. Zhou G. Kang J. Du Y. Huang F. Ge J. Assessment of chromatographic peak purity by means of artificial neural networks. J. Chromatogr. A 1996 734 2 259 270 10.1016/0021‑9673(95)01303‑2 8673242
    [Google Scholar]
  65. Iraneta P.C. Wyndham K.D. McCabe D.R. Walter T.H. A review of Waters hybrid particle technology. 2010 Available From: https://www.waters.com/webassets/cms/library/docs/720003929en.pdf
  66. Neue U.D. O’Gara J.E. Méndez A. Selectivity in reversed-phase separations. J. Chromatogr. A 2006 1127 1-2 161 174 10.1016/j.chroma.2006.06.006 16806238
    [Google Scholar]
  67. Wyndham K.D. O’Gara J.E. Walter T.H. Glose K.H. Lawrence N.L. Alden B.A. Izzo G.S. Hudalla C.J. Iraneta P.C. Characterization and evaluation of C18 HPLC stationary phases based on ethyl-bridged hybrid organic/inorganic particles. Anal. Chem. 2003 75 24 6781 6788 10.1021/ac034767w 14670036
    [Google Scholar]
  68. Žuvela P. Skoczylas M. Jay Liu J. Ba̧czek T. Kaliszan R. Wong M.W. Buszewski B. Héberger K. Column Characterization and Selection Systems in Reversed-Phase High-Performance Liquid Chromatography. Chem. Rev. 2019 119 6 3674 3729 10.1021/acs.chemrev.8b00246 30604951
    [Google Scholar]
  69. Nshanian M. Lakshmanan R. Chen H. Loo R.R.O. Loo J.A. Enhancing sensitivity of liquid chromatography–mass spectrometry of peptides and proteins using supercharging agents. Int. J. Mass Spectrom. 2018 427 157 164 10.1016/j.ijms.2017.12.006 29750076
    [Google Scholar]
  70. Chen Y. Mehok A.R. Mant C.T. Hodges R.S. Optimum concentration of trifluoroacetic acid for reversed-phase liquid chromatography of peptides revisited. J. Chromatogr. A 2004 1043 1 9 18 10.1016/j.chroma.2004.03.070 15317407
    [Google Scholar]
  71. van de Venne J.L.M. Hendrikx J.L.H.M. Deelder R.S. Retention behaviour of carboxylic acids in reversed-phase column liquid chromatography. J. Chromatogr. A 1978 167 1 16 10.1016/S0021‑9673(00)91142‑7
    [Google Scholar]
  72. Warren F.V. Jr Bidlingmeyer B.A. Delaney M.F. Selection of wavelengths for absorbance ratio monitoring in liquid chromatography. Anal. Chem. 1987 59 15 1897 1907 10.1021/ac00142a003 3631514
    [Google Scholar]
  73. Wickham D. Photodiode array absorbance detection. Amsterdam Elsevier 1993 10.1016/B978‑0‑12‑545680‑7.50006‑2
    [Google Scholar]
  74. Walters F.H. Statistical Analysis of Multivariate Multiple Wavelength Liquid Chromatographic Response Data. Anal. Lett. 1989 22 3 635 645 10.1080/00032718908051354
    [Google Scholar]
  75. UV Cutoff. 2024 Available From: https://macro.lsu.edu/HowTo/solvents/UV%20Cutoff.htm
/content/journals/cac/10.2174/0115734110324919240918112907
Loading
/content/journals/cac/10.2174/0115734110324919240918112907
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: NOESY ; LC-MS ; flash chromatography ; Ubrogepant ; NMR ; epimer ; HPLC
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test