Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Background

Ubrogepant is a regulated peptide receptor antagonist associated with the calcitonin gene, granted approval in the United States for the specific treatment of migraine headaches.

Objectives

An impurity found in the alkali hydrolysis of drug dosage forms has a structure very similar to that of ubrogepant. This research aims to characterize this analogous impurity utilizing NMR and LC-MS spectroscopy tools. Moreover, it is critical to develop an extremely sensitive and superior resolution analytical procedure for identifying and determining the amount of analogous impurity in pharmaceutical products.

Methods

The ubrogepant impurity was identified using an optimized chromatographic method that relies on reversed-phase HPLC with UV detection. This technique utilized a charged surface hybrid (CSH) technology column operating in gradient elution mode. A mixture of A-channel (0.1% trifluoroacetic acid) and B-channel (acetonitrile and water, 80:20% ) constituted the eluent. The analogous impurity was isolated through fraction collection, purified using flash chromatography, and characterized using NMR (1D and 2D) and LC-MS.

Results

The analogous impurity was successfully separated from the ubrogepant peak with a resolution above 2.0. The concentration of the impurity was approximately 10% compared to the ubrogepant peak after alkaline stressing at room temperature for 30 minutes. NMR (1D 13C NMR and 1H NMR, 2D HMBC, HSQC, NOESY, and COSY) and LC-MS analysis characterized the ubrogepant impurity, revealing it to be an epimer of ubrogepant. The developed approach was highly sensitive, allowing for the quantification of the ubrogepant impurity even at a concentration of 0.2 µg/mL.

Conclusion

The approach demonstrated a remarkable degree of precision, linearity, specificity, and accuracy. This new impurity deserves special attention because of its striking similarity to the active ingredient, ubrogepant.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110324919240918112907
2025-01-01
2026-02-20
Loading full text...

Full text loading...

References

  1. DhirA. Ubrogepant to treat migraine.Drugs Today (Barc)202056745946710.1358/dot.2020.56.7.3157311 32648856
    [Google Scholar]
  2. ScottL.J. Ubrogepant: First Approval.Drugs202080332332810.1007/s40265‑020‑01264‑5 32020557
    [Google Scholar]
  3. Food and Drug Administration. This label may not be the latest approved by FDA.2019Available From: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/211765s000lbl.pdf
  4. Lars Edvinsson, ; Petersen, K.A. CGRP-receptor antagonism in migraine treatment.CNS Neurol. Disord. Drug Targets20076424024610.2174/187152707781387314 17691979
    [Google Scholar]
  5. DickersonI. Role of CGRP-receptor component protein (RCP) in CLR/RAMP function.Curr. Protein Pept. Sci.201314540741510.2174/13892037113149990057 23745704
    [Google Scholar]
  6. EvangelistaS. Role of calcitonin gene-related Peptide in gastric mucosal defence and healing.Curr. Pharm. Des.200915303571357610.2174/138161209789207024 19860701
    [Google Scholar]
  7. DavisC. XuC. The tortuous road to an ideal CGRP function blocker for the treatment of migraine.Curr. Top. Med. Chem.20088161468147910.2174/156802608786264218 18991732
    [Google Scholar]
  8. OcheretyanerE.R. KofmanM. QuattrocchiE. Calcitonin gene-related peptide (CGRP) receptor antagonists for the acute treatment of migraines in adults.Drugs Context20221111010.7573/dic.2022‑3‑5 36339294
    [Google Scholar]
  9. RussellF.A. KingR. SmillieS.J. KodjiX. BrainS.D. Calcitonin gene-related peptide: Physiology and pathophysiology.Physiol. Rev.20149441099114210.1152/physrev.00034.2013 25287861
    [Google Scholar]
  10. Rubio-BeltranE. ChanK.Y. DanserA.H.J. MaassenVanDenBrinkA. EdvinssonL. Characterisation of the calcitonin gene-related peptide receptor antagonists ubrogepant and atogepant in human isolated coronary, cerebral and middle meningeal arteries.Cephalalgia202040435736610.1177/0333102419884943 31674221
    [Google Scholar]
  11. ICH HARMONISED TRIPARTITE GUIDELINE IMPURITIES IN NEW DRUG PRODUCTS Q3B(R2). 2006. Available From: https://database.ich.org/sites/default/files/Q3B%28R2%29%20Guideline.pdf
  12. MAPP 5017.2 Rev. 1: Establishing Impurity Acceptance Criteria As Part of Specifications for NDAs, ANDAs, and BLAs Based on Clinical Relevance, U.S. Food and Drug Administration (FDA), 2018. https://www.fda.gov/media/124859/download
  13. NathD. SharmaB. Impurity Profiling-A Significant Approach in Pharmaceuticals.Curr. Pharm. Anal.201915766968010.2174/1573412914666181024150632
    [Google Scholar]
  14. KogawaA.C. SalgadoH.R.N. Impurities and Forced Degradation Studies: A Review.Curr. Pharm. Anal.2015121182410.2174/1573412911666150519000155
    [Google Scholar]
  15. TianY. ChongX.M. LiuY. HanY. HuC.Q. YaoS. XuM.Z. Study on Isomeric Impurities in Cefotiam Hydrochloride.Front Chem.2021861930710.3389/fchem.2020.619307 33585401
    [Google Scholar]
  16. RenX. ZhouJ. WangJ. Separation and characterization of impurities and isomers in cefpirome sulfate by liquid chromatography/tandem mass spectrometry and a summary of the fragmentation pathways of oxime‐type cephalosporins.Rapid Commun. Mass Spectrom.2021354e900410.1002/rcm.9004 33188542
    [Google Scholar]
  17. LajinB. SteinerO. FassholdL. ZanggerK. GoesslerW. The identification and chromatographic separation of a new highly analogous impurity of the active pharmaceutical ingredient icatibant.Eur. J. Pharm. Sci.201913212112410.1016/j.ejps.2019.03.003 30849486
    [Google Scholar]
  18. WipfP. SkodaE.M. MannA. Conformational Restriction and Steric Hindrance in Medicinal Chemistry.The Practice of Medicinal Chemistry(Fourth Edition)Cambridge, MassachusettsAcademic Press201510.1016/B978‑0‑12‑417205‑0.00011‑0
    [Google Scholar]
  19. DigheS.V. A review of the safety of generic drugs.Transplant. Proc.199931323S24S10.1016/S0041‑1345(99)00109‑8 10330955
    [Google Scholar]
  20. WangY.J. ZhengY.G. XueY.P. WangY.S. ShenY.C. Analysis and Determination of Anti-diabetes Drug Acarbose and its Structural Analogs.Curr. Pharm. Anal.201171122010.2174/157341211794708721
    [Google Scholar]
  21. AliI. HussainI. SaleemK. Aboul-EneinH.Y. Enantiomeric resolution of ibuprofen and flurbiprofen in human plasma by SPE-chiral HPLC methods.Comb. Chem. High Throughput Screen.201215650951410.2174/138620712800563882 22571370
    [Google Scholar]
  22. ZhangY. YaoS. ZengH. SongH. Chiral Separation of Pharmaceuticals by High Performance Liquid Chromatography.Curr. Pharm. Anal.20106211413010.2174/157341210791202636
    [Google Scholar]
  23. RaikarP. GurupadayyaB. KogantiV.S. Recent Advances in Chiral Separation of Antihistamine Drugs: Analytical and Bioanalytical Methods.Curr. Drug Deliv.201815101393141010.2174/1567201815666180830100015 30160212
    [Google Scholar]
  24. BuszewskiB. KrupczynskaK. BazylakG. Effect of stationary phase structure on retention and selectivity tuning in the high-throughput separation of tocopherol isomers by HPLC.Comb. Chem. High Throughput Screen.20047438339110.2174/1386207043328788 15200386
    [Google Scholar]
  25. Aboul-EneinH. DerayeaS. OmarM. AbdelmageedO. El-GizawyS. Abdel-MegiedA. A validated enantioselective HPLC method for assay of S-amlodipine using crown ether as a chiral stationary phase.Curr. Anal. Chem.201713211712310.2174/1573411012666160527151803
    [Google Scholar]
  26. GunnamS. ChoppariT. LakshmiN.C. CherlaP.M. SiddiquiS.I. Development and validation of teneligliptin stereoisomers by HPLC using cellulose based immobilized polysaccharide chiral stationary phase.Curr. Pharm. Anal.202117101317132210.2174/1573412917999201102204804
    [Google Scholar]
  27. GunjalP. SinghS.K. KumarR. KumarR. GulatiM. Role of Chromatograph-based Analytical Techniques in Quantification of Chiral Compounds: An Update.Curr. Anal. Chem.202117335537310.2174/1573411016999200525144506
    [Google Scholar]
  28. RajuI.V.S. RaghuramP. SriramuluJ. Novel Chiral LC Methods for the Enantiomeric Separation of Bicalutamide and Thalidomide on Amylose Based Immobilized CSP.Curr. Pharm. Anal.201171475310.2174/157341211794708758
    [Google Scholar]
  29. ChristodoulouE.A. An Overview of HPLC Methods for the Enantiomer Separation of Active Pharmaceutical Ingredients in Bulk and Drug Formulations.Curr. Org. Chem.201014192337234710.2174/138527210793351436
    [Google Scholar]
  30. KumarR. MeyyanathanS. GowrammaB. A validated chiral liquid chromatographic method for the enantiomeric separation of orphenadrine citrate in pharmaceutical dosage form.Curr. Pharm. Anal.201612435736410.2174/1573412912666160128224822
    [Google Scholar]
  31. GazdagM. 2.7 High performance liquid chromatography (HPLC) and related techniques. Identification and Determination of Impurities in Drugs.AmsterdamElsevier200021023910.1016/S1464‑3456(00)80014‑9
    [Google Scholar]
  32. Rossi ForimM. PerlattiB. Soares CostaE. Facchini MagnaniR. Donizetti de SouzaG. Concerns and considerations about the quality control of natural products using chromatographic methods.Curr. Chromatogr.201521203110.2174/2213240601666141113212732
    [Google Scholar]
  33. SanthanamM.K. NagarajanN.C. PonrajP.B. Mohamed HilurudeenM.S. A complete roadmap of analytical quality by design in various analytical techniques.Curr. Pharm. Anal.202319318421510.2174/1573412919666230118105908
    [Google Scholar]
  34. ReddyC.B. KumariM.V. EswarammaP. Analytical method development and validation of ubrogepant and their degradation studies in bulk and pharmaceutical dosage form by RP-HPLC.Int. J. Pharmaceut. Edu. Res.202351131910.37021/ijper.v5i1.03
    [Google Scholar]
  35. VangaN.R. KV. R. UmmitiK. RatnakaramV. N. Development of a stability-indicating purity method for ubrogepant through stress degradation analysis, extraction, and characterization of unidentified degradation products using flash chromatography, NMR, IR, and LC-MS.J. AOAC Int.2024107576177310.1093/jaoacint/qsae057 38941508
    [Google Scholar]
  36. ChagantiS. ChauhanU. BhattN. KommalapatiH. GollaV.M. PilliP. SamanthulaG. LC-HRMS and NMR studies for the characterization of degradation impurities of ubrogepant along with the in silico approaches for the prediction of degradation and toxicity.J. Pharm. Biomed. Anal.202424311611710.1016/j.jpba.2024.116117 38522383
    [Google Scholar]
  37. EMEA. Note for guidance on validation of analytical procedures: Text and methodology.1995Available From: https://www.ema.europa.eu/en/documents/scientific-guideline/ich-q-2-r1-validation-analytical-procedures-text-and-methodology-step-5_en.pdf
  38. NarayanamM. HandaT. SharmaP. JhajraS. MutheP.K. DappiliP.K. ShahR.P. SinghS. Critical practical aspects in the application of liquid chromatography–mass spectrometric studies for the characterization of impurities and degradation products.J. Pharm. Biomed. Anal.20148719121710.1016/j.jpba.2013.04.027 23706957
    [Google Scholar]
  39. LeeS.M. KimS. ShinD. ShinK.H. Determination of Sufentanil in Human Plasma Using Ultra-high Performance Liquid Chromatography Coupled with Tandem Mass Spectrometry (UPLC–MS/MS).Curr. Anal. Chem.202319753154010.2174/1573411019666230823094749
    [Google Scholar]
  40. SusannaK.J. GajbhiyeR. SarmahB. PawarS.D. MehtaP. MurtyU.S. RavichandiranV. AlexanderA. KumarP. Simultaneous method development and validation of anastrozole along with piperine: Degradation studies and degradants characterization using LC-QTOF-ESI-MS along with in-silico ADMET predictions.Curr. Drug Metab.202223211313010.2174/1389200223666220215152606 35168518
    [Google Scholar]
  41. YangY. JianY. LiuB. Rapid determination of diverse ganoderic acids in ganoderma using UPLC–MS/MS.Curr. Anal. Chem.202420319120010.2174/0115734110289769240125115919
    [Google Scholar]
  42. UmmitiK. Shanmukha KumarJ.V. Establishment of validated stability indicating purity method based on the stress degradation behavior of gonadotropin-releasing hormone antagonist (ganirelix) in an injectable formulation using HPLC and LC-MS-QTOF.Eur. J. Mass Spectrom. (Chichester, Eng.)2021272-412614010.1177/14690667211005335 33823624
    [Google Scholar]
  43. FejzoJ. LepreC. XieX. Application of NMR screening in drug discovery.Curr. Top. Med. Chem.200331819710.2174/1568026033392796 12570779
    [Google Scholar]
  44. ChagantiS. DhimanV. Madhyanapu GollaV. K RR. KhemchandaniR. SamanthulaG. Forced degradation study of baricitinib and structural characterization of its degradation impurities by high‐resolution mass spectrometry and nuclear magnetic resonance spectroscopy.Rapid Commun. Mass Spectrom.20233718e960510.1002/rcm.9605 37580847
    [Google Scholar]
  45. SaibabaB. VishnuvardhanC. Johnsi RaniP. Satheesh KumarN. Stability-Indicating Reversed-Phase UHPLC Method Development and Characterization of Degradation Products of Almotriptan Maleate by LC-QTOF-MS/MS.J. Chromatogr. Sci.201856161710.1093/chromsci/bmx074 28977362
    [Google Scholar]
  46. UmmitiK. VakkalaS. PanugantiV. AnnarapuM.R. Isolation, identification, and characterization of 17-oxo dexamethasone, an oxidative degradation impurity of dexamethasone using flash chromatography and NMR/HRMS/IR.J. Liq. Chromatogr. Relat. Technol.201437172403241910.1080/10826076.2013.836712
    [Google Scholar]
  47. ShiY. YaoQ. LinL. RenX. AiJ. ChenY. Separation and Characterization of the Components and Impurities in Policresulen Solution using LC-Q-TOF MS.Curr. Pharm. Anal.202319324625710.2174/1573412919666221223150943
    [Google Scholar]
  48. ZhangD.D. JungY.H. SeolM.J. ZhouS. ChaudharyD. JeongJ.H. KimJ.H. HPLC-MS/MS Method for the Quantitative Determination of Metformin in Rat Plasma and Its Application to Comparative Bioavailability Assessment.Curr. Anal. Chem.202420425526310.2174/0115734110288849240116045045
    [Google Scholar]
  49. FDA. Guidance for Industry Q1A(R2) Stability Testing of New Drug Substances and Products. 2003. Available From: https://www.fda.gov/media/71707/download
  50. International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use. ICH harmonised tripartite guideline stability testing: Photostability testing of new drug substances and products Q1B. 1996. Available From: https://database.ich.org/sites/default/files/Q1B%20Guideline.pdf
  51. Annex 10. Stability testing of active pharmaceutical ingredients and finished pharmaceutical products. 2018. Available From: https://cdn.who.int/media/docs/default-source/medicines/norms-and-standards/guidelines/regulatory-standards/trs1010-annex10-who-stability-testing-of-active-pharmaceutical-ingredients.pdf?sfvrsn=7cb7a4c9_4&download=true
  52. ZeleskyT. BaertschiS.W. FotiC. AllainL.R. HostynS. FrancaJ.R. LiY. MardenS. MohanS. UltramariM. HuangZ. AdamsN. CampbellJ.M. JansenP.J. KotoniD. LaueC. Pharmaceutical forced degradation (stress testing) endpoints: A scientific rationale and industry perspective.J. Pharm. Sci.2023112122948296410.1016/j.xphs.2023.09.003 37690775
    [Google Scholar]
  53. SinghS. JunwalM. ModheG. TiwariH. KurmiM. ParasharN. SidduriP. Forced degradation studies to assess the stability of drugs and products.Trends Analyt. Chem.201349718810.1016/j.trac.2013.05.006
    [Google Scholar]
  54. AlsanteK. AndoA. BrownR. EnsingJ. HatajikT. KongW. TsudaY. The role of degradant profiling in active pharmaceutical ingredients and drug products.Adv. Drug Deliv. Rev.2007591293710.1016/j.addr.2006.10.006 17187892
    [Google Scholar]
  55. KethaN.V.D.P. KolliD. SubbappaP.K. Structural elucidation of novel degradation impurity and development, validation of a single HPLC method for all putative impurities of clobetasol propionate in a foam drug product.J. Chromatogr. Sci.20232023bmad01610.1093/chromsci/bmad016 36857571
    [Google Scholar]
  56. BlessyM. PatelR.D. PrajapatiP.N. AgrawalY.K. Development of forced degradation and stability indicating studies of drugs—A review.J. Pharm. Anal.20144315916510.1016/j.jpha.2013.09.003 29403878
    [Google Scholar]
  57. BapatuH.R. MaramR.K. MurthyR.S. Robust and rugged stability-indicating HPLC method for the determination of plerixafor and its related impurities in drug substances.J. Chromatogr. Sci.20155391432144210.1093/chromsci/bmv029 25858970
    [Google Scholar]
  58. Prasad KethaN.V.D. KolliD. Using preparative chromatography and NMR/LCMS/FT-IR, Isolation, Identification, and Characterization of Posaconazole oxidative degradation impurities.Rasayan J. Chem.202215161962710.31788/RJC.2022.1516707
    [Google Scholar]
  59. GanthiH.K.R. Stability Indicating HPLC Method for Quantification of Solifenacin Succinate & Tamsulosin Hydrochloride along with Its Impurities in Tablet Dosage Form.Am. J. Anal. Chem.2016071184086210.4236/ajac.2016.711073
    [Google Scholar]
  60. SweidanK. ElayanM. SabbahD. IdreesG. ArafatT. Study of Forced Degradation Behavior of Amisulpride by LC-MS and NMR and Development of a Stability-Indicating Method.Curr. Pharm. Anal.20181426200910.2174/1573412913666170822162009
    [Google Scholar]
  61. DendeniM. CimetiereN. HuguetS. AmraneA. HamidaN.B. Forced Degradation Study of Quinapril by UPLC-DAD and UPLC/MS/MS: Identification of By-products and Development of Degradation Kinetics.Curr. Pharm. Anal.20139327829010.2174/1573412911309030006
    [Google Scholar]
  62. LvY. DuG. YangD. WangF. Study on the formation mechanisms of the degradation products of salvianolic acid A.Curr. Anal. Chem.201713215015710.2174/1573411012666160906154333
    [Google Scholar]
  63. TutarE. High Performance Liquid Chromatography (HPLC) – Theoretical and Practical Aspects.Essential Techniques for Medical and Life Scientists: A Guide to Contemporary Methods and Current Applications- Part II.Sharjah, Sharjah, United Arab EmiratesBentham Science Publishers202010.2174/9789811464867120010005
    [Google Scholar]
  64. HuY. ZhouG. KangJ. DuY. HuangF. GeJ. Assessment of chromatographic peak purity by means of artificial neural networks.J. Chromatogr. A1996734225927010.1016/0021‑9673(95)01303‑2 8673242
    [Google Scholar]
  65. IranetaP.C. WyndhamK.D. McCabeD.R. WalterT.H. A review of Waters hybrid particle technology.2010Available From: https://www.waters.com/webassets/cms/library/docs/720003929en.pdf
  66. NeueU.D. O’GaraJ.E. MéndezA. Selectivity in reversed-phase separations.J. Chromatogr. A200611271-216117410.1016/j.chroma.2006.06.006 16806238
    [Google Scholar]
  67. WyndhamK.D. O’GaraJ.E. WalterT.H. GloseK.H. LawrenceN.L. AldenB.A. IzzoG.S. HudallaC.J. IranetaP.C. Characterization and evaluation of C18 HPLC stationary phases based on ethyl-bridged hybrid organic/inorganic particles.Anal. Chem.200375246781678810.1021/ac034767w 14670036
    [Google Scholar]
  68. ŽuvelaP. SkoczylasM. Jay LiuJ. Ba̧czekT. KaliszanR. WongM.W. BuszewskiB. HébergerK. Column characterization and selection systems in reversed-phase high-performance liquid chromatography.Chem. Rev.201911963674372910.1021/acs.chemrev.8b00246 30604951
    [Google Scholar]
  69. NshanianM. LakshmananR. ChenH. LooR.R.O. LooJ.A. Enhancing sensitivity of liquid chromatography–mass spectrometry of peptides and proteins using supercharging agents.Int. J. Mass Spectrom.201842715716410.1016/j.ijms.2017.12.006 29750076
    [Google Scholar]
  70. ChenY. MehokA.R. MantC.T. HodgesR.S. Optimum concentration of trifluoroacetic acid for reversed-phase liquid chromatography of peptides revisited.J. Chromatogr. A20041043191810.1016/j.chroma.2004.03.070 15317407
    [Google Scholar]
  71. van de VenneJ.L.M. HendrikxJ.L.H.M. DeelderR.S. Retention behaviour of carboxylic acids in reversed-phase column liquid chromatography.J. Chromatogr. A197816711610.1016/S0021‑9673(00)91142‑7
    [Google Scholar]
  72. WarrenF.V.Jr BidlingmeyerB.A. DelaneyM.F. Selection of wavelengths for absorbance ratio monitoring in liquid chromatography.Anal. Chem.198759151897190710.1021/ac00142a003 3631514
    [Google Scholar]
  73. WickhamD. Photodiode array absorbance detection.AmsterdamElsevier199310.1016/B978‑0‑12‑545680‑7.50006‑2
    [Google Scholar]
  74. WaltersF.H. Statistical analysis of multivariate multiple wavelength liquid chromatographic response data.Anal. Lett.198922363564510.1080/00032718908051354
    [Google Scholar]
  75. UV Cutoff. 2024. Available From: https://macro.lsu.edu/HowTo/solvents/UV%20Cutoff.htm
/content/journals/cac/10.2174/0115734110324919240918112907
Loading
/content/journals/cac/10.2174/0115734110324919240918112907
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): epimer; flash chromatography; HPLC; LC-MS; NMR; NOESY; Ubrogepant
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test