Skip to content
2000
image of Evaluating the Chemical Characteristics of Wash-off Fine Particulate Matter from Leaves of Woody Plants in Budapest

Abstract

Background

Particulate matter poses a significant risk to human health, particularly fine particulate matter, as it is difficult to eliminate and leads to severe health issues. Conversely, urban woody plants are experiencing ambient pollution directly and continuously adjusting to the dynamic contaminants, thereby improving the urban environment for their living circumstances. Thus, studies conducted at the level of individual leaves can offer important insights into the productivity of an ecosystem.

Method

Leaf samples from three common woody plant species (, and ) in Budapest, Hungary, were collected throughout a vegetation phase. After ultrasonic wash-off, the chemical properties of dust deposits on the leaf surface were investigated.

Results

Our results showed a higher concentration of wash-off fine particulate from than from and and the precipitation, maximum wind speed, and ambient particulate matter content did not demonstrate a significant impact on it. Thus, the fine particulate matter washed off from woody plant leaves involves a more dynamic and complex procedure. The analysis of chemical parameters demonstrated the interaction of particulate matter and the leaves; pH values varied, and the total electric conductivity was significantly higher than the accepted limits. The excessive concentration of sulphate and chloride in wash-off particulate matter indicated significant interference caused by human activities and secondary suspension.

Conclusion

Given that is more susceptible to having wash-off fine particulate matter, which can contribute to secondary suspension, the capability of and to retain fine particulate may contribute to their effects in phytoremediation.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110324550241003104601
2025-02-04
2025-03-29
Loading full text...

Full text loading...

References

  1. Huang R. Tian Q. Zhang Y. Chen Z. Wu Y. Li Z. Wen Z. Differences in particulate matter retention and leaf microstructures of 10 plants in different urban environments in Lanzhou City. Environ. Sci. Pollut. Res. Int. 2023 30 47 103652 103673 10.1007/s11356‑023‑29607‑1 37688697
    [Google Scholar]
  2. Song J. Saathoff H. Gao L. Gebhardt R. Jiang F. Vallon M. Bauer J. Norra S. Leisner T. Variations of PM2.5 sources in the context of meteorology and seasonality at an urban street canyon in Southwest Germany. Atmos. Environ. 2022 282 119147 10.1016/j.atmosenv.2022.119147
    [Google Scholar]
  3. Ferenczi Z. Bozó L. Effect of the long-range transport on the air quality of greater Budapest area. Int. J. Environ. Pollut. 2017 62 2-4 407 416 10.1504/IJEP.2017.089428
    [Google Scholar]
  4. Akhbarizadeh R. Dobaradaran S. Amouei Torkmahalleh M. Saeedi R. Aibaghi R. Faraji Ghasemi F. Suspended fine particulate matter (PM2.5), microplastics (MPs), and polycyclic aromatic hydrocarbons (PAHs) in air: Their possible relationships and health implications. Environ. Res. 2021 192 110339 10.1016/j.envres.2020.110339 33068583
    [Google Scholar]
  5. Chen H.L. Hung K.F. Yen C.C. Laio C.H. Wang J.L. Lan Y.W. Chong K.Y. Fan H.C. Chen C.M. Kefir peptides alleviate particulate matter lt;4 μm (PM4.0)-induced pulmonary inflammation by inhibiting the NF-κB pathway using luciferase transgenic mice. Sci. Rep. 2019 9 1 11529 10.1038/s41598‑019‑47872‑4 31395940
    [Google Scholar]
  6. Füri P. Groma V. Török S. Farkas Á. Dian C. Ultrafine urban particle measurements in Budapest and their airway deposition distribution calculation. Inhal. Toxicol. 2020 32 13-14 494 502 10.1080/08958378.2020.1850937 33283557
    [Google Scholar]
  7. Baldacchini C. Sgrigna G. Clarke W. Tallis M. Calfapietra C. An ultra-spatially resolved method to quali-quantitative monitor particulate matter in urban environment. Environ. Sci. Pollut. Res. Int. 2019 26 18 18719 18729 10.1007/s11356‑019‑05160‑8 31055755
    [Google Scholar]
  8. Kwon K.J. Odsuren U. Bui H.T. Kim S.Y. Park B.J. Growth and physiological responses of four plant species to different sources of particulate matter. J. People Plants Environ. 2021 24 5 461 468 10.11628/ksppe.2021.24.5.461
    [Google Scholar]
  9. Jain S. Sharma S.K. Vijayan N. Mandal T.K. Seasonal characteristics of aerosols (PM2.5 and PM10) and their source apportionment using PMF: A four year study over Delhi, India. Environ. Pollut. 2020 262 114337 10.1016/j.envpol.2020.114337 32193082
    [Google Scholar]
  10. Samek L. Turek-Fijak A. Skiba A. Furman P. Styszko K. Furman L. Stegowski Z. Complex characterization of fine fraction and source contribution to PM2.5 mass at an urban area in Central Europe. Atmosphere (Basel) 2020 11 10 1085 10.3390/atmos11101085
    [Google Scholar]
  11. Juda-Rezler K. Reizer M. Maciejewska K. Błaszczak B. Klejnowski K. Characterization of atmospheric PM2.5 sources at a Central European urban background site. Sci. Total Environ. 2020 713 136729 10.1016/j.scitotenv.2020.136729 32028552
    [Google Scholar]
  12. Alwadei M. Srivastava D. Alam M.S. Shi Z. Bloss W.J. Chemical characteristics and source apportionment of particulate matter (PM2.5) in Dammam, Saudi Arabia: Impact of dust storms. Atmos. Environ. X 2022 14 100164 10.1016/j.aeaoa.2022.100164
    [Google Scholar]
  13. Perrone M.G. Vratolis S. Georgieva E. Török S. Šega K. Veleva B. Osán J. Bešlić I. Kertész Z. Pernigotti D. Eleftheriadis K. Belis C.A. Sources and geographic origin of particulate matter in urban areas of the Danube macro-region: The cases of Zagreb (Croatia), Budapest (Hungary) and Sofia (Bulgaria). Sci. Total Environ. 2018 619-620 1515 1529 10.1016/j.scitotenv.2017.11.092 29734626
    [Google Scholar]
  14. Wang L. Liang T. Geochemical fractions of rare earth elements in soil around a mine tailing in Baotou, China. Sci. Rep. 2015 5 1 12483 10.1038/srep12483 26198417
    [Google Scholar]
  15. Wang Y. Li W. Gao W. Liu Z. Tian S. Shen R. Ji D. Wang S. Wang L. Tang G. Song T. Cheng M. Wang G. Gong Z. Hao J. Zhang Y. Trends in particulate matter and its chemical compositions in China from 2013–2017. Sci. China Earth Sci. 2019 62 12 1857 1871 10.1007/s11430‑018‑9373‑1
    [Google Scholar]
  16. Report E.E.A. Up-to-date air quality data. 2023 Available from: https://www.eea.europa.eu/en/analysis/maps-and-charts/up-to-date-air-quality-data(Accessed on: 27, March, 2024)
  17. Available from: https://www.met.hu/idojaras/aktualis_idojaras/napijelentes/ Available from: https://legszennyezettseg.met.hu/levegominoseg/meresi-adatok/automata-merohalozat
  18. Ambient (outdoor) air pollution. 2024 Available from: https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
  19. Lennert J. Farkas J.Z. Kovács A.D. Molnár A. Módos R. Baka D. Kovács Z. Measuring and predicting long-term land cover changes in the functional urban area of Budapest. Sustainability (Basel) 2020 12 8 3331 10.3390/su12083331
    [Google Scholar]
  20. Ferenczi Z. Imre K. Lakatos M. Molnár Á. Bozó L. Homolya E. Gelencsér A. Long-term characterization of urban PM10 in Hungary. Aerosol Air Qual. Res. 2021 21 10 210048 10.4209/aaqr.210048
    [Google Scholar]
  21. Schmidt G. Sütöri-Diószegi M. Preservation and restoration of living plant collections on the example of the Buda Arboretum of Corvinus University, Budapest. Folia oecol. 2013 40 2
    [Google Scholar]
  22. Tandon H.L.S. Methods of Analysis of Soils, Plants, Waters, Fertilisers & Organic Manures. New Delhi Fertiliser Development and Consultation Organisation New Delhi 2013
    [Google Scholar]
  23. Korkmaz D. Precipitation titration: Determination of chloride by the mohr method. Methods 2001 2 1 6
    [Google Scholar]
  24. Bui H.-T. Jeong N.-R. Park B.-J. Seasonal variations of particulate matter capture and the air pollution tolerance index of five roadside plant species. Atmosphere 2023 14 1 138 10.3390/atmos14010138
    [Google Scholar]
  25. Singh H. Yadav M. Kumar N. Kumar A. Kumar M. Assessing adaptation and mitigation potential of roadside trees under the influence of vehicular emissions: A case study of Grevillea robusta and Mangifera indica planted in an urban city of India. PLoS One 2020 15 1 e0227380 10.1371/journal.pone.0227380 31990922
    [Google Scholar]
  26. Miao C. Yu S. Hu Y. Liu M. Yao J. Zhang Y. He X. Chen W. Seasonal effects of street trees on particulate matter concentration in an urban street canyon. Sustain. Cities Soc. 2021 73 103095 10.1016/j.scs.2021.103095
    [Google Scholar]
  27. Schaubroeck T. Deckmyn G. Neirynck J. Staelens J. Adriaenssens S. Dewulf J. Muys B. Verheyen K. Multilayered modeling of particulate matter removal by a growing forest over time, from plant surface deposition to washoff via rainfall. Environ. Sci. Technol. 2014 48 18 10785 10794 10.1021/es5019724 25137494
    [Google Scholar]
  28. Xu X. Xia J. Gao Y. Zheng W. Additional focus on particulate matter wash-off events from leaves is required: A review of studies of urban plants used to reduce airborne particulate matter pollution. Urban For. Urban Green. 2020 48 126559 10.1016/j.ufug.2019.126559
    [Google Scholar]
  29. Chen L. Liu C. Zou R. Yang M. Zhang Z. Experimental examination of effectiveness of vegetation as bio-filter of particulate matters in the urban environment. Environ. Pollut. 2016 208 Pt A 198 208 10.1016/j.envpol.2015.09.006 26385643
    [Google Scholar]
  30. Farkas O. Török Á. Dust deposition, microscale flow- and dispersion model of particulate matter, examples from the city center of Budapest. Idojaras 2019 123 1 39 55 10.28974/idojaras.2019.1.3
    [Google Scholar]
  31. Wang X. Teng M. Huang C. Zhou Z. Chen X. Xiang Y. Canopy density effects on particulate matter attenuation coefficients in street canyons during summer in the Wuhan metropolitan area. Atmos. Environ. 2020 240 117739 10.1016/j.atmosenv.2020.117739
    [Google Scholar]
  32. Correa M.A. Franco S.A. Gómez L.M. Aguiar D. Colorado H.A. Characterization methods of ions and metals in particulate matter pollutants on PM2.5 and PM10 samples from several emission sources. Sustainability (Basel) 2023 15 5 4402 10.3390/su15054402
    [Google Scholar]
  33. Keresztesi Á. Nita I.A. Boga R. Birsan M.V. Bodor Z. Szép R. Spatial and long-term analysis of rainwater chemistry over the conterminous United States. Environ. Res. 2020 188 109872 10.1016/j.envres.2020.109872 32846651
    [Google Scholar]
  34. Tiwari S. Hopke P.K. Thimmaiah D. Dumka U.C. Srivastava A.K. Bisht D.S. Rao P.S.P. Chate D.M. Srivastava M.K. Tripathi S.N. Nature and sources of ionic species in precipitation across the Indo-Gangetic plains, India. Aerosol Air Qual. Res. 2016 16 4 943 957 10.4209/aaqr.2015.06.0423
    [Google Scholar]
  35. Szép R. Bodor Z. Miklóssy I. Niță I.A. Oprea O.A. Keresztesi Á. Influence of peat fires on the rainwater chemistry in intra-mountain basins with specific atmospheric circulations (Eastern Carpathians, Romania). Sci. Total Environ. 2019 647 275 289 10.1016/j.scitotenv.2018.07.462 30081365
    [Google Scholar]
  36. Chu S.H. PM2.5 episodes as observed in the speciation trends network. Atmos. Environ. 2004 38 31 5237 5246 10.1016/j.atmosenv.2004.01.055
    [Google Scholar]
  37. Szigeti T. Óvári M. Dunster C. Kelly F.J. Lucarelli F. Záray G. Changes in chemical composition and oxidative potential of urban PM2.5 between 2010 and 2013 in Hungary. Sci. Total Environ. 2015 518-519 534 544 10.1016/j.scitotenv.2015.03.025 25777959
    [Google Scholar]
  38. Xu H. Xiao Z. Chen K. Tang M. Zheng N. Li P. Yang N. Yang W. Deng X. Spatial and temporal distribution, chemical characteristics, and sources of ambient particulate matter in the Beijing-Tianjin-Hebei region. Sci. Total Environ. 2019 658 280 293 10.1016/j.scitotenv.2018.12.164 30579189
    [Google Scholar]
  39. Huang X. Liu Z. Liu J. Hu B. Wen T. Tang G. Zhang J. Wu F. Ji D. Wang L. Wang Y. Chemical characterization and source identification of PM 2.5 at multiple sites in the Beijing–Tianjin–Hebei region, China. Atmos. Chem. Phys. 2017 17 21 12941 12962 10.5194/acp‑17‑12941‑2017
    [Google Scholar]
  40. Chen J. Cao X. Peng S. Ren H. Analysis and applications of GlobeLand30: A review. ISPRS Int. J. Geoinf. 2017 6 8 230 10.3390/ijgi6080230
    [Google Scholar]
/content/journals/cac/10.2174/0115734110324550241003104601
Loading
/content/journals/cac/10.2174/0115734110324550241003104601
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: air pollution ; Urban woody plants ; fine particulate matter ; chemical properties
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test