Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Background

The present study is focused on the collection of honey samples from the different geographical and climatic conditions of Khyber Pakhtunkhwa and analyzing them for the determination of riboflavin. Quantification of riboflavin, being natively fluorescent, was accomplished using spectrofluorimetric method. Riboflavin has characteristic fluorescence spectra with maximum excitation at 464 nm followed by an emission peak at 525 nm.

Methods

The procedure followed in this work comprised the construction of a calibration curve by plotting the fluorescence intensity of a series of riboflavin solutions concentration. This curve was used for the quantification of riboflavin in the collected honey samples. The effect of several external factors such as the altitude of the sampling area, type of honey bee, type of flowers from which the nectar was collected, and sampling season on the concentration of riboflavin in the honey samples was statistically evaluated.

Results and Discussion

It was concluded that the samples collected from lower altitudes have high concentrations (1.156±0.08 μg g-1) of riboflavin. Similarly, the samples collected in autumn were found to have a maximum average riboflavin concentration of 1.37±0.06 μg g-1, which was higher in comparison to the samples collected in other seasons of the year. Likewise, the effect of flora on the concentration of riboflavin was also investigated and it was found that honey samples collected from areas where the nectar was collected from contains maximum riboflavin concentration averaged at 1.383±0.1 μg g-1.

Conclusion

Based on the size of the honey bees, the samples collected from hives of small honey bees were found to have a maximum riboflavin concentration of 1.176±0.07 μg g-1. This study suggests that besides the studied vitamin, the rest of the vitamins and other nutritional components may vary in the honey samples depending upon external factors.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110322433240924071425
2024-10-07
2025-04-22
Loading full text...

Full text loading...

References

  1. ZaheenZ. YatooA.M. AliS. AliN. MajidS. RasoolS. RashidS.M. AhmadS.B. MirM. ZehraU. Honey: Types, composition and antimicrobial mechanisms.Therapeutic Applications of Honey and its Phytochemicals202019321410.1007/978‑981‑15‑6799‑5_10
    [Google Scholar]
  2. LiS. Synthetic bioactive substances 33.Handbook of Food Chemistry20151061
    [Google Scholar]
  3. PandeyG. JoshiA. Riboflavin as an internal marker for spoilage and adulteration detection in milk.Food Chem.202135712974210.1016/j.foodchem.2021.12974233892358
    [Google Scholar]
  4. RaypahM.E. OmarA.F. MuncanJ. ZulkurnainM. Abdul NajibA.R. Identification of stingless bee honey adulteration using visible-near infrared spectroscopy combined with aquaphotomics.Molecules2022277232410.3390/molecules2707232435408723
    [Google Scholar]
  5. DarS.A. FarookU.B. RasoolK. AhadS. Honey: Classification, composition, safety, quality issues and health benefits.Advanced Techniques of Honey Analysis202413710.1016/B978‑0‑443‑13175‑2.00012‑X
    [Google Scholar]
  6. AnumbaI.A. AkunneC.E. OnonyeB.U. ChidiC.A. Assessment on colonization, absconding and honey yield by African honeybee colonies reared in hives with different colours in Awka, South-Eastern Nigeria.Hangug. Yangbong Haghoeji202035419920410.17519/apiculture.2020.11.35.4.199
    [Google Scholar]
  7. ChellappanM. Hand Holding Entrepreneurs in Honey Processing and Value Addition.202110.1201/9781003246138‑15
    [Google Scholar]
  8. KhanS. Exploring the chemistry, reactions, applications, and biomedical potentials of 2-nitrobenzaldehyde and 2-chlorobenzaldehyde.Fine Chem Eng202452345359
    [Google Scholar]
  9. FranklinR. NivertyS. HarpurB.A. ChawlaN. Unraveling the mechanisms of the Apis mellifera honeycomb construction by 4d x‐ray microscopy.Adv. Mater.20223442220236110.1002/adma.20220236136052560
    [Google Scholar]
  10. NelsonA.S. MooneyK.A. The evolution and ecology of interactions between ants and honeydew-producing hemipteran insects.Annu. Rev. Ecol. Evol. Syst.202253137940210.1146/annurev‑ecolsys‑102220‑014840
    [Google Scholar]
  11. SharmaR. ThakurM. RanaK. DeviD. BajiyaM.R. Honey, its quality and composition and their responsible factors.Int. J. Bio-Resour. Stress Manag.202314Jan, 117818910.23910/1.2023.3278a
    [Google Scholar]
  12. BobroffL.B. Nutrition for health and fitness: Sugar and other sweeteners.EDIS20202020510.32473/edis‑fs406‑2020.
    [Google Scholar]
  13. Đogo MračevićS. KrstićM. LolićA. RažićS. Comparative study of the chemical composition and biological potential of honey from different regions of Serbia.Microchem. J.202015210442010.1016/j.microc.2019.104420
    [Google Scholar]
  14. da SilvaP.M. GaucheC. GonzagaL.V. CostaA.C.O. FettR. Honey: Chemical composition, stability and authenticity.Food Chem.201619630932310.1016/j.foodchem.2015.09.05126593496
    [Google Scholar]
  15. KhanS. Ur RahmanF. UllahI. UllahS. GulZ. SadiqF. AhmadT. HussainS.M.S. AliI. IsrarM. Water desalination, and energy consumption applications of 2D nano materials: Hexagonal boron nitride, graphenes, and quantum dots.Rev. Inorg. Chem.202410.1515/revic‑2024‑0013
    [Google Scholar]
  16. UllahA. Shah BukhariK. KhanS. FarooqF. WahabA. HussainT. SaleemS. BabarN. Diversification via coupling reactions and biological activities of pyrimidine derivatives.ChemistrySelect2023847e20230307210.1002/slct.202303072
    [Google Scholar]
  17. KhanS. IqbalA. Organic polymers revolution: Applications and formation strategies, and future perspectives.J Polymer Sci Eng202361312510.24294/jpse.v6i1.3125
    [Google Scholar]
  18. KhanS. Phase engineering and impact of external stimuli for phase tuning in 2D materials.AECM202351405510.37256/aecm.5120243886
    [Google Scholar]
  19. NazirS. ZhangJ.M. JunaidM. SaleemS. AliA. UllahA. KhanS. Metal-based nanoparticles: Basics, types, fabrications and their electronic applications.Z. Phys. Chem.202410.1515/zpch‑2023‑0375
    [Google Scholar]
  20. GulZ. SalmanM. KhanS. ShehzadA. UllahH. IrshadM. ZeeshanM. BatoolS. AhmedM. AltafA.A. Single organic ligands act as a bifunctional sensor for subsequent detection of metal and cyanide ions, a statistical approach toward coordination and sensitivity.Crit. Rev. Anal. Chem.202311710.1080/10408347.2023.218616536913240
    [Google Scholar]
  21. WangJ. LiQ.X. Chemical composition, characterization, and differentiation of honey botanical and geographical origins.Adv. Food Nutr. Res.2011628913710.1016/B978‑0‑12‑385989‑1.00003‑X21504822
    [Google Scholar]
  22. AliA. SajoodS. TabanQ. MumtazP.T. RatherM.A. ParayB.A. GanieS. Honey as component of diet: Importance and scope.Therapeutic Applications of Honey and its Phytochemicals202021523610.1007/978‑981‑15‑6799‑5_11
    [Google Scholar]
  23. AfrozR. TanvirE. HossainM.M. Physical properties of honey.Honey2023123110.1002/9781119113324.ch2
    [Google Scholar]
  24. EdoG.I. OnoharighoF.O. AkpoghelieP. AkpoghelieE.O. AgboJ.J. AgohE. LawalR.A. Natural honey (raw honey): Insights on quality, composition, economic and health effects: A comprehensive review.Food Science and Engineering2023265293
    [Google Scholar]
  25. AhmedM.W. AsifM. AhmedR. KhanA.S. RazaR. Pharmacology, nutrition value and therapeutic potential of honey: A review.J. Pharmacogn. Phytochem.2024132404710.22271/phyto.2024.v13.i2a.14868
    [Google Scholar]
  26. FakhlaeiR. SelamatJ. KhatibA. RazisA.F.A. SukorR. AhmadS. BabadiA.A. The toxic impact of honey adulteration: A review.Foods2020911153810.3390/foods911153833114468
    [Google Scholar]
  27. HossainM.L. LimL.Y. HammerK. HettiarachchiD. LocherC. Honey-based medicinal formulations: A critical review.Appl. Sci. (Basel)20211111515910.3390/app11115159
    [Google Scholar]
  28. HassanN.H. CacciolaF. ChongN.S. ArenaK. MarriottP.J. WongY.F. An updated review of extraction and liquid chromatography techniques for analysis of phenolic compounds in honey.J. Food Compos. Anal.202211410475110.1016/j.jfca.2022.104751
    [Google Scholar]
  29. KarabagiasI.K. MaiaM. KarabourniotiS. GatziasI. KarabagiasV.K. BadekaA.V. Palynological, physicochemical, biochemical and aroma fingerprints of two rare honey types.Eur. Food Res. Technol.202024691725173910.1007/s00217‑020‑03526‑8
    [Google Scholar]
  30. WangX. ChenY. HuY. ZhouJ. ChenL. LuX. Systematic review of the characteristic markers in honey of various botanical, geographic, and entomological origins.ACS Food Sci Technol20222220622010.1021/acsfoodscitech.1c00422
    [Google Scholar]
  31. BobişO. AsmaS.T. AcarözU. KolayliS. NayikG.A. Honey.Honey Bees, Beekeeping and Bee ProductsTaylor-Francis2024698710.1201/9781003354116‑6.
    [Google Scholar]
  32. MachadoA. Volatile chemical characterization and biological activity assessment of Portuguese honey types: Importance of botanical origin.Doctoral Thesis, University of Lisbon2022
    [Google Scholar]
  33. OtmaniA. Amessis-OuchemoukhN. BirinciC. YahiaouiS. KolayliS. Rodríguez-FloresM.S. EscuredoO. SeijoM.C. OuchemoukhS. Phenolic compounds and antioxidant and antibacterial activities of Algerian honeys.Food Biosci.20214210107010.1016/j.fbio.2021.101070
    [Google Scholar]
  34. ZhangX.H. GuH.W. LiuR.J. QingX.D. NieJ.F. A comprehensive review of the current trends and recent advancements on the authenticity of honey.Food Chem. X20231910085010.1016/j.fochx.2023.10085037780275
    [Google Scholar]
  35. KhanS. RahmanF.U. ZahoorM. HaqA.U. ShahA.B. RahmanM.U. RahmanH.U. The DNA threat probing of some chromophores using UV/VIS spectroscopy.World J Bio Biotechnol202382192210.33865/wjb.008.02.0962
    [Google Scholar]
  36. FernandesK.E. FrostE.A. RemnantE.J. SchellK.R. CokcetinN.N. CarterD.A. The role of honey in the ecology of the hive: Nutrition, detoxification, longevity, and protection against hive pathogens.Front. Nutr.2022995417010.3389/fnut.2022.95417035958247
    [Google Scholar]
  37. KuśP. Honey as source of nitrogen compounds: Aromatic amino acids, free nucleosides and their derivatives.Molecules202025484710.3390/molecules2504084732075114
    [Google Scholar]
  38. AgaM.B. SharmaV. DarA.H. DashK.K. SinghA. ShamsR. KhanS.A. Comprehensive review on functional and nutraceutical properties of honey.eFood202342e7110.1002/efd2.71
    [Google Scholar]
  39. TalebiM. TalebiM. FarkhondehT. SamarghandianS. Molecular mechanism-based therapeutic properties of honey.Biomed. Pharmacother.202013011059010.1016/j.biopha.2020.11059032768885
    [Google Scholar]
  40. KhanS. ZahoorM. RahmanM.U. GulZ. Cocrystals; Basic concepts, properties and formation strategies.Z. Phys. Chem.2023237327333210.1515/zpch‑2022‑0175
    [Google Scholar]
  41. MohammedM.E.A. Factors affecting the physicochemical properties and chemical composition of bee’s honey.Food Rev. Int.20223861330134110.1080/87559129.2020.1810701
    [Google Scholar]
  42. MurashovaE. TunikovG.M. NefedovaS.A. KarelinaO.A. ByshovaN.G. SerebryakovaO.V. Major factors determining accumulation of toxic elements by bees and honey products.Int Transac J Eng Manag Appl Sci Technol2020
    [Google Scholar]
  43. HristovP. ShumkovaR. PalovaN. NeovB. Factors associated with honey bee colony losses: A mini-review.Vet. Sci.20207416610.3390/vetsci704016633143134
    [Google Scholar]
  44. ValverdeS. AresA.M. Stephen ElmoreJ. BernalJ. Recent trends in the analysis of honey constituents.Food Chem.202238713292010.1016/j.foodchem.2022.13292035413557
    [Google Scholar]
  45. CebreroG. SanhuezaO. PezoaM. BáezM.E. MartínezJ. BáezM. FuentesE. Relationship among the minor constituents, antibacterial activity and geographical origin of honey: A multifactor perspective.Food Chem.202031512629610.1016/j.foodchem.2020.12629632014663
    [Google Scholar]
  46. LayekU. MondalR. KarmakarP. Honey sample collection methods influence pollen composition in determining true nectar-foraging bee plants.Acta Bot. Bras.202034347848610.1590/0102‑33062020abb0086
    [Google Scholar]
  47. RodneyS. PurdyJ. Dietary requirements of individual nectar foragers, and colony-level pollen and nectar consumption: A review to support pesticide exposure assessment for honey bees.Apidologie (Celle)202051216317910.1007/s13592‑019‑00694‑9
    [Google Scholar]
  48. RannehY. AkimA.M. HamidH.A. KhazaaiH. FadelA. ZakariaZ.A. AlbujjaM. BakarM.F.A. Honey and its nutritional and anti-inflammatory value.BMC Complement Med Ther20212113010.1186/s12906‑020‑03170‑5
    [Google Scholar]
  49. CapelaN. SarmentoA. SimõesS. LopesS. CastroS. Alves da SilvaA. AlvesJ. DupontY.L. de GraafD.C. SousaJ.P. Exploring the external environmental drivers of honey bee colony development.Diversity (Basel)20231512118810.3390/d15121188
    [Google Scholar]
  50. Sonmez OskayG. UygurG.S. OskayD. ArdaN. Impact of stress factors internal and external to the hive on honey bees and their reflection on honey bee products: A review.J. Apic. Res.202311610.1080/00218839.2023.2247840
    [Google Scholar]
  51. KhanS. UllahI. KhanH. Ur RahmanM. SaleemM.A. AliA. NazirS. UllahA. Ur RahmanF. Green synthesis of AgNPs from leaves extract of Saliva sclarea , their characterization, antibacterial activity, and catalytic reduction ability.Z. Phys. Chem.2024238510.1515/zpch‑2023‑0363
    [Google Scholar]
  52. ZhangY. SuM. WangL. HuangS. SuS. HuangW.F. Vairimorpha (Nosema) ceranae infection alters honey bee microbiota composition and sustains the survival of adult honey bees.Biology (Basel)202110990510.3390/biology1009090534571782
    [Google Scholar]
  53. ZarićN.M. BrodschneiderR. GoesslerW. Honey bees as biomonitors – Variability in the elemental composition of individual bees.Environ. Res.2022204Pt C11223710.1016/j.envres.2021.11223734688641
    [Google Scholar]
  54. NaS.J. KimY.K. ParkJ.M. Nectar characteristics and honey production potential of five rapeseed cultivars and two wildflower species in South Korea.Plants202413341910.3390/plants1303041938337952
    [Google Scholar]
  55. BrudzynskiK. Honey as an ecological reservoir of antibacterial compounds produced by antagonistic microbial interactions in plant nectars, honey and honey bee.Antibiotics (Basel)202110555110.3390/antibiotics1005055134065141
    [Google Scholar]
  56. KhanS. AjmalS. HussainT. Ur RahmanM. Clay-based materials for enhanced water treatment: Adsorption mechanisms, challenges, and future directions.J Umm Al-Qura Univ Appl Sci20239310.1007/s43994‑023‑00083‑0
    [Google Scholar]
  57. SalmonC. Influence of water application rates on visitation by the South African honeybee (Apis mellifera capensis/ ) and seed yield of Texas Grano onions.Thesis, Cape Peninsula University of Technology2022
    [Google Scholar]
  58. AqueelM.A. Seasonal management of honeybees for their improved honey production.Advances In Insect Pollination Technology In Sustainable Agriculture2023
    [Google Scholar]
  59. LalN. LakariaB. VishwakarmaA.K. ShiraleA.O. BiswasA.K. PatraA.K. Regulations of flowering in fruit crop for higher yield and quality production.Research Management in Horticultural CropsScripown Publications20223248
    [Google Scholar]
  60. HidalgoH.A. NicolasA.R. CedonR. Development barriers of stingless bee honey industry in Bicol, Philippines.Int. J. Adv. Sci. Eng. Inf. Technol.2020103124510.18517/ijaseit.10.3.4747
    [Google Scholar]
  61. WakgariM. YigezuG. Honeybee keeping constraints and future prospects.Cogent Food Agric.202171187219210.1080/23311932.2021.1872192
    [Google Scholar]
  62. BhandariP.L. KattelR.R. Value chain analysis of honey sub-sector in Nepal.Int. J. Appl. Sci. Biotechnol.202081839510.3126/ijasbt.v8i1.27804
    [Google Scholar]
  63. BraghiniF. BilucaF.C. OttequirF. GonzagaL.V. da SilvaM. VitaliL. MickeG.A. CostaA.C.O. FettR. Effect of different storage conditions on physicochemical and bioactive characteristics of thermally processed stingless bee honeys.Lebensm. Wiss. Technol.202013110972410.1016/j.lwt.2020.109724
    [Google Scholar]
  64. Missio da SilvaP. GonzagaL.V. BilucaF.C. SchulzM. VitaliL. MickeG.A. Oliveira CostaA.C. FettR. Stability of Brazilian Apis mellifera L. honey during prolonged storage: Physicochemical parameters and bioactive compounds.Lebensm. Wiss. Technol.202012910952110.1016/j.lwt.2020.109521
    [Google Scholar]
  65. da SilvaP.M. GonzagaL.V. de AzevedoM.S. BilucaF.C. SchulzM. CostaA.C.O. FettR. Stability of volatile compounds of honey during prolonged storage.J. Food Sci. Technol.20205731167118210.1007/s13197‑019‑04163‑032123438
    [Google Scholar]
  66. AlbuA. Radu-RusuC-G. PopI.M. FrunzaG. NacuG. Quality assessment of raw honey issued from Eastern Romania.Agriculture202111324710.3390/agriculture11030247
    [Google Scholar]
  67. AguiarD. PereiraA.C. MarquesJ.C. The influence of transport and storage conditions on beer stability—A systematic review.Food Bioprocess Technol.20221571477149410.1007/s11947‑022‑02790‑8
    [Google Scholar]
  68. MeseleT.L. Review on physico-chemical properties of honey in Eastern Africa.J. Apic. Res.2021601334510.1080/00218839.2020.1754566
    [Google Scholar]
  69. SantanaJ.E.G. CoutinhoH.D.M. da CostaJ.G.M. MenezesJ.M.C. Pereira TeixeiraR.N. Fluorescent characteristics of bee honey constituents: A brief review.Food Chem.202136213017410.1016/j.foodchem.2021.13017434119949
    [Google Scholar]
  70. BanaśJ. BanaśM. Combined application of fluorescence spectroscopy and principal component analysis in characterisation of selected herbhoneys.Molecules202429474910.3390/molecules2904074938398501
    [Google Scholar]
  71. HasamS. QarizadaD. AziziM. A review: honey and its nutritional composition.Asian J. Res. Biochem202073344310.9734/ajrb/2020/v7i330142
    [Google Scholar]
  72. KhanS. UllahI. KhanS. AjmalS. SaqibN. RahmanF.U. AliS. Advancements in nanohybrids: From coordination materials to flexible solar cells. Polymer Sci Eng202471427610.24294/jpse.v7i1.4276
    [Google Scholar]
  73. RadotićK. StankovićM. BartolićD. NatićM. Intrinsic fluorescence markers for food characteristics, shelf life, and safety estimation: Advanced analytical approach.Foods20231216302310.3390/foods1216302337628022
    [Google Scholar]
  74. RahmanF.U. Effect of ionic strength on DNA–dye interactions of Victoria blue B and methylene green using UV–visible spectroscopy.Z. Phys. Chem.2023
    [Google Scholar]
  75. CiniN. GölcüA. Spectrophotometric methodologies applied for determination of pharmaceuticals.Curr. Anal. Chem.20211781141116810.2174/1573411016999200526133357
    [Google Scholar]
  76. IqbalM.S. IqbalZ. AnsariM.I. YadavG.K. SinghS.P. PandeyB. SrivastavaJ.K. SinghK. Contributions of fingerprinting food in the detection of food adulterants.Biotechnological Approaches in Food Adulterants.CRC Press202018020310.1201/9780429354557‑8
    [Google Scholar]
  77. KhanS. GulZ. SaleemS. ZhengH. JiaoH. RahmanM.M. AliA. AlthomaliR.H. Al BahirA. Al-HumaidiJ.Y. Reduction mechanism and energy transfer between Eu 3+ and Eu 2+ in Eu-doped materials synthesized in air atmosphere.Rev Inorg Chem202410.1515/revic‑2024‑0011.
    [Google Scholar]
  78. Tirado-KulievaV.A. Hernández-MartínezE. SuomelaJ.P. Non-destructive assessment of vitamin C in foods: A review of the main findings and limitations of vibrational spectroscopic techniques.Eur. Food Res. Technol.202224882185219510.1007/s00217‑022‑04023‑w
    [Google Scholar]
  79. KhanS. Bicomponent polymorphs of salicylic acid, their antibacterial potentials, intermolecular interactions, DFT and docking studies.Z. Phys. Chem.202323801116
    [Google Scholar]
  80. BratuA.M. PopaC. BojanM. LogofatuP.C. PetrusM. Non-destructive methods for fruit quality evaluation.Sci. Rep.2021111778210.1038/s41598‑021‑87530‑233833395
    [Google Scholar]
  81. KyriazisI. SkaperdaZ. TekosF. MakriS. VardakasP. VassiE. PatounaA. TeriziK. AngelakisC. KouretasD. Methodology for the biofunctional assessment of honey (Review).Int J Funct Nutr202122510.3892/ijfn.2021.15
    [Google Scholar]
  82. MendesE. DuarteN. Mid-infrared spectroscopy as a valuable tool to tackle food analysis: A literature review on coffee, dairies, honey, olive oil and wine.Foods202110247710.3390/foods1002047733671755
    [Google Scholar]
  83. BarretoD. LealV. ConradoJ. FernandesG. MachadoC. BatistaA. SilvaS. PetruciJ. Performing reliable absorbance and fluorescence measurements with low budget-A tutorial for beginners.Quim. Nova202144091184119110.21577/0100‑4042.20170758
    [Google Scholar]
  84. DadiM. YasirM. Spectroscopy and spectrophotometry: Principles and applications for colorimetric and related other analysis.Colorimetry202218110210.5772/intechopen.101106
    [Google Scholar]
  85. FakayodeS.O. LisseC. MedawalaW. BradyP.N. BwambokD.K. AnumD. AlongeT. TaylorM.E. BakerG.A. MehariT.F. RodriguezJ.D. ElzeyB. SirajN. MacchiS. LeT. ForsonM. BashiruM. Fernand NarcisseV.E. GrantC. Fluorescent chemical sensors: Applications in analytical, environmental, forensic, pharmaceutical, biological, and biomedical sample measurement, and clinical diagnosis.Appl. Spectrosc. Rev.202459118910.1080/05704928.2023.2177666
    [Google Scholar]
  86. MaciiF. BiverT. Spectrofluorimetric analysis of the binding of a target molecule to serum albumin: Tricky aspects and tips.J. Inorg. Biochem.202121611130510.1016/j.jinorgbio.2020.11130533261935
    [Google Scholar]
  87. KhanS. Ur RahmanM. KhanA.H. ShahA.B. AlthomaliR.H. RahmanM.M. UllahI. Inorganic-polymer composite electrolytes: Basics, fabrications, challenges and future perspectives.Rev Inorg Chem202410.1515/revic‑2023‑0030
    [Google Scholar]
/content/journals/cac/10.2174/0115734110322433240924071425
Loading
/content/journals/cac/10.2174/0115734110322433240924071425
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test